淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1307200900342400
中文論文名稱 表面磁鐵型轉子永磁同步自軸承電動機之徑向力改善
英文論文名稱 Improvements of Radial Force Control Drive for a SPM Type PMSM Self-Bearing Motor
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 陳治鈞
研究生英文姓名 Chih-Chun Chen
學號 696370526
學位類別 碩士
語文別 中文
口試日期 2009-06-19
論文頁數 73頁
口試委員 指導教授-李宗翰
共同指導教授-楊勝明
委員-林逢傑
委員-王銀添
委員-楊勝明
中文關鍵字 永磁同步馬達  磁懸浮  徑向力控制  自軸承馬達 
英文關鍵字 PM synchronous motor  magnetic levitation  self-bearing motor  Radial force control 
學科別分類 學科別應用科學機械工程
中文摘要 本文提出一徑向力控制法則應用於表面轉子型永磁同步自軸承電動機。此控制策略建立於自軸承馬達上,其具有一組主要繞組以及一組虛擬懸浮繞組。主繞組產生轉矩,懸浮繞組產生徑向的轉子懸浮力。計算這些電流並經過控制器將其結合,因此,馬達內只有一組線圈其可以同時產生需要的徑向力與轉矩。改善的徑向力模式考慮了磁鐵經位移產生的不平衡拉力,經過有限元素法與實驗的驗證其性能。
英文摘要 This paper presents a radial force control scheme for self-bearing operation of a surface permanent magnet synchronous motor. The scheme is based on a self-bearing motor which consists of a set of main and a set of fictitious suspension windings. The main winding produces rotational torque, and the suspension winding produces radial force for rotor levitation. The calculated currents for these windings are combined internally in the controller. Consequently, only a set of windings is needed to produce the controllable radial force and rotational torque in the motor. An improved force model which considered the un-balanced pull force produced by the permanent magnets is also presented. Both finite element analysis and experiment verifications are performed.
論文目次 中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖 目 錄 VI
表 目 錄 VIII
符號說明 IX
第一章 緒論 1
1.1 研究背景與目的 1
1.2 論文目的 2
1.3 文獻回顧 3
1.4 論文大綱 6
第二章 永磁同步自軸承馬達模式與控制 7
2.1 永磁同步自軸承馬達轉矩模式 8
2.2 徑向力生成原理 13
2.3 複合線圈型永磁同步自軸承馬達徑向力模式 15
2.4 複合線圈型永磁同步自軸承馬達徑向力控制 25
2.5 單一線圈型永磁同步自軸承馬達徑向力控制 26
第三章 馬達設計與製作 30
3.1 馬達基本設計 31
3.2 改善頓轉矩方法 33
3.3 磁路設計 35
3.4 電氣設計 42
3.5 馬達設計修正 50
第四章 有限元素分析 52
4.1 頓轉矩分析 52
4.2 無轉矩電流徑向力分析 53
4.3 具轉矩電流徑向力分析 54
第五章 實驗結果 57
5.1 實驗機構 57
5.2 馬達製作 60
5.3 力量感測器 64
5.4 控制程式 66
第六章 結論與未來研究方向 68
6.1 結論 68
6.2 未來研究方向 68
參考文獻 69

圖 目 錄
圖1.1 磁力軸承工具機主軸馬達及其內部結構圖 1
圖1.2 自軸承馬達示意圖 2
圖2.1 複合線圈與單一線圈型自軸承PMSM,(a) 複合線圈型,(b) 單一線圈型 7
圖2.2 永磁同步馬達等效電路圖 8
圖2.3 d-q 軸與定子軸關係圖 11
圖2.4 固定軸與轉子軸幾何關係圖 12
圖2.5 兩相四極PMSM 的徑向力產生示意圖 13
圖2.7 三相4 極6 槽複合線圈型自軸承PMSM 結構圖,(a)三相,(b)兩相 15
圖2.8 不平衡拉力示意圖(a)激磁電流產生磁力(b)相同激磁電流因位移產生不平衡拉力 16
圖2.10 磁位能與等效磁路(a)磁路分析(b)等效磁路 18
圖2.11 懸浮電感與位移關係 21
圖2.12 複合線圈型自軸承PMSM 控制系統方塊圖 26
圖2.13 單一線圈型PMSM 自軸承控制系統方塊圖 29
圖3.1 設計流程圖 30
圖3.3 磁鐵之工作點 36
圖3.4 等效磁路圖 38
圖3.5 馬達定子尺寸符號 40
圖3.6 50CS1300 之BH 曲線 41
圖3.7 PMSM 繞組分佈圖 42
圖3.8 槽形示意圖 45
圖3.9 激磁方式示意圖 46
圖3.10 單一線圈平均繞線長度示意圖 47
圖3.11 馬達損失示意圖 47
圖3.12 永磁同步馬達設計尺寸圖 49
圖4.1 轉子頓轉矩模擬結果(a)無斜列(b)有斜列 52
圖4.2 固定轉子角度 ,無轉矩電流時徑向力模擬結果(a)電流分布(b)力量圓分布 53
圖4.3 固定轉子角度 ,無轉矩電流時徑向力0.1mm模擬結果(a)電流分布(b)力量圓分布 54
圖4.4 固定轉子角度 且有轉矩電流之徑向力模擬結果,(a)複合線圈型,(b)單一線圈型 55
圖4.5 轉子機械角與徑向力角度同步且有轉矩電流下徑向力模擬結果(a)複合線圈型,(b)單一線圈型 56
圖5.1 系統實驗架構圖 57
圖5.2 雙極式後級電壓轉換器 58
圖5.3 雙極式後級電壓轉換器切換模式 59
圖5.4 雙極式後級電壓轉換器切換模式下之電流示意圖 59
圖5.5 自軸承PMSM 尺寸圖 60
圖5.6 定子照片(a)定子與繞組,(b)定子含鋁殼 61
圖5.7 轉子照片 63
圖5.8 自軸承系統機構照片 64
圖5.9 量測機構受力示意圖 65
圖5.10 具滑軌之量測機構受力示意圖 65
圖5.11 力量感測機構照片 66
圖5.12 控制程式流程圖 67

表 目 錄
表1.1 自軸承馬達規格 2
表3.1 各類磁鐵比較表 32
表3.2 永磁同步馬達規格與主要尺寸 33
表3.3 馬達定子細部尺寸參數表 41
表3.4 銅線型式 44
表3.5 永磁同步馬達設計模擬結果 49
表4.1 自軸承馬達控制參數表 52
表5.1 凡立水性質表 61
表5.2 杜邦絕緣紙性質表 62
表5.3 電子零件灌注膠性質表 62
表5.4 金屬黏膠 63
參考文獻 [1] H. Toliyat and G. Kliman, eds., “Handbook of Electric Motors”, 2nd
edition, Marcel Dekker Inc., 2004.
[2] 黃忠良, 磁懸浮與磁力軸承, 復漢出版社, 1994.
[3] http://www.mmsonline.com/articles/040104.html
[4] P. K. Hermann, “A Radial Active Magnetic Bearing Having a Rotating
Drive”, London Patent No. 1500809, Feb., 1974.
[5] P. Meinke and G. Flachenecker, “Electromagnetic Drive Assembly for
Rotary Bodies Using a Magnetically Mounted Rotor”, United States
Patent No. 3988658, Jul. 29, 1974.
[6] T. Higuchi, “Magnetically Floating Actuator Having Angular Positioning
Function”, United States Patent No. 4683391, Mar. 12, 1985.
[7] R. Bosch, “Development of a Bearingless Electric Motor”, ICEM, 1988,
pp. 373-375.
[8] A. Chiba and T. Fukao, “Electric Rotating Machinery with Radial Position
Control Windings and its Rotor Radial Position Controller”, Japan Patent
No. 2835522, Jan. 1989.
[9] A. Chiba, T. Deido, T. Fukao and M. Rahman, “An Analysis of
Bearingless AC Motors”, IEEE Transactions on Energy Conversion, Vol. 9,
No. 1, Mar., 1994, pp. 61-68.
[10] M. Ooshima, S. Miyazawa, A. Chiba, F. Nakamura, T. Fukao,
“Performance Evaluation and Test Results of a 11,000r/min, 4kW
Surface-Mounted Permanent Magnet-Type Bearingless Motor”, Proc. of
the 7th Int. Sym. Magnetic Bearings, 2000, pp.377-382.
70
[11] A. Chiba﹐T. Fukao﹐O. Ichikawa﹐M. Oshima﹐M. Takemoto﹐and D.
Dorrell, “Magnetic Bearings and Bearingless Drives”, Elsevier’s Science
& Technology, 2005.
[12] J. Bichsel, “Contributions on Bearingless Electric Motors”, ETH Thesis
No. 9303, 1990.
[13] R. Schoeb, “Contributions on Bearingless Asynchronous Machines”, ETH
Thesis No. 10417, 1993.
[14] W. Amrhein, S. Silber and K. Nenninger, “Levitation Forces in
Bearingless Permanent Magnet Motors”, IEEE Transactions on Magnetics,
Vol. 35, No. 5, Sep. 1999, pp. 4052-4054.
[15] H. Kanebako and Y. Okada, “New Design of Hybrid-Type Self-bearing
Motor for Small, High-Speed Spindle”, IEEE/ASME Transactions on
Mechatronics, Vol. 8, No. 1, Dec. 2003, pp.111-119.
[16] F. Wang, B. Wang, and L. Xu, “A Novel Bearingless Motor with Hybrid
Rotor Structure and Levitation Force Control”, IEEE-IAS, Oct. 2002,
pp.212-215.
[17] N. Heng, Y. He, Y. Zhou, “Analytical Modeling of the Magnetic
Levitation Force for an Inset Permanent Magnet Type Bearingless motor”,
ICEMS 2005, pp. 893-897.
[18] M. Casemore and L. Stephens, “Actuator Gains for a Toothless
Permanent-Magnet Self-bearing Motor”, IEEE Transactions on Magnetics,
Vol. 35, No. 6, Nov. 1999, pp. 4482-4489.
[19] S. Williamsons, “Construction of Electrical Machine”, United States
Patent No. 4792710, Feb., 1987.
[20] A. O. Salazar, W. Dunford, R. Stephan and E. Watanabe, “A Magnetic
Bearing System Using Capacitive Sensors for Position Measurement”,
71
IEEE Transactions on Magnetics, Vol. 26, No. 5, Sep. 1990, pp.
2541-2543.
[21] Y. Okada, K. Dejima, and T. Ohishi, “Analysis and Comparison of PM
Synchronous Motor and Induction Motor Type Magnetic Bearings”, IEEE
Transactions on Industry Applications, Vol. 31, No. 5, Sep./Oct. 1995,
pp.1047-1053.
[22] Y. Okada, S. Miyamoto, and T. Ohishi, “Levitation and Torque Control of
Internal Permanent Magnet Type Bearingless Motor”, IEEE Transactions
on Control Systems Technology, Vol. 4, No. 5, Sep. 1996, pp.565-571.
[23] S. Khoo, R. Fittro, and S. Garvey, “An AC Self-bearing Rotating Machine
with a Single Set of Windings”, Conference on Power Electronics,
Machines and Drives, 2003, pp. 292-297.
[24] S. Khoo, “Bridge Configured Winding for Polyphase Self-bearing
Machines”, IEEE Transactions on Magnetics, Vol. 41, No. 4, Apr. 2005,
pp.1289-1295.
[25] L. Stephens and D. Kim, “Analysis and Simulation of a Lorentz-Type
Slotless, Self-bearing Motor”, Control Engineering Practices, Vol. 10,
2002, pp. 899-905.
[26] L. S. Stephens and D. G.. Kim, “Force and Torque Characteristics for a
Slotless Lorentz Self-Bearing Servomotor”, IEEE Transactions on
Magnetics, Vol. 38, No. 4, Jul. 2002, pp. 17642-1773.
[27] W. S. Han, C. W. Lee, and Y. Okada, “Design and Control of a Disk-Type
Integrated Motor-Bearing System”, IEEE Transactions on Mechatronics,
Vol. 7, No. 1, Mar. 2002, pp. 15-22.
[28] S. H. Park and C. W. Lee, “Lorentz Force-Type Integrated Motor-Bearing
System in Dual Rotor Disk Configuration”, IEEE Transactions on
72
Mechatronics, Vol. 10, No. 6, Dec. 2005, pp. 618-625.
[29] H. Grabner, W. Amrhein, S. Silber, and K. Nenninger,, “Nonlinear
Feedback Control of a Bearingless Brushless DC Motor”, IEEE PEDS,
2005, pp-366-371.
[30] F. Lin, “Switched Reluctance Motor Radial Force Control and its
Applications”, Ph.D Thesis, Tamkang University, Jul., 2006.
[31] F. Lin and S. Yang, “Modeling and Control of Radial Force in Switched
Reluctance Motor”, Power Electronics Specialist Conference (PESC),
Korea, 2006.
[32] S. Chen, S. Fan, and W. Lu, “Electromagnetic-Force Analysis of the
Magnetically Levitated Motor with Two Directions of Movement”, IEEE
Transactions on Industry Applications, Vol. 42, No.1, Jan. 2006, pp.
31-41.
[33] H. Kanebako, and Y. Okada, “New design of hybrid-type self-bearing
motor for small, high-speed spindle”, Mechatronics IEEE/ASME
Transactions on, Mar. 2003, Vol. 8, pp. 111-119.
[34] M. Ooshima, A. Chiba, A. Rahman, and T. Fukao,”An Improved Control
Method of Buried-Type IPM Bearingless Motors Considering Magnetic
Saturation and Magnetic Pull Variation”, Energy conversion, ieee
transactions on, Sep. 2004, Vol. 19, pp. 569- 575.
[35] T. Schneider, and A. Binder, “Design and Evaluation of a 60 000 rpm
Permanent Magnet Bearingless High Speed Motor”, Power Electronics
and Drive Systems, 2007 PEDS '07 7th International Conference on, Nov.
2007, pp. 1-8.
[36] B. Whenshao, H. Shenghua, W. Shanming, and W. Fang, “A Kind of
Generalized Analytical Model on Magnetic Suspension Force of
73
earingless Motor and its Application”, Industrial Electronics and
Applications, 2007. ICIEA 2007 2nd IEEE Conference on , May 2007, pp.
1663-1668.
[37] T. Schneider, J. Petersen, A. Binder, “Influence of pole pair combinations
on high-speed bearingless permanent magnet motor performance”, Power
Electronics, Machines and Drives, 2008 PEMD 2008 4th IET Conference
on, April 2008, pp. 707-711.
[38] D. W. Novotny and T. A. Lipo, “Vector Control and Dynamics of AC
Drives”, Oxford University Press, 1996.
[39] D. Hanselman, “Brushless Permanent Magnet Motor Design”, the Writers’
Collective published, 2003.
[40] N. Bianchi and S. Bolognani, “Design Techniques for Reducing the
Cogging Torquein Surface-Mounted PM Motors”, IEEE Transactions on
Industry Applications, Vol. 38, No. 5, Sep./Oct. 2002.
[41] R. Islam, , I. Husain, A. Fardoun, and K. McLaughlin,“Permanent-Magnet
Synchronous Motor Magnet Designs With Skewing for Torque Ripple and
Cogging Torque Reduction”, IEEE Transactions on Industry Applications,
Vol. 45, No. 1, Jan./Feb. 2009.
[42] G.H. Kang, ,Y.D. Son, G.T. Kim, and J. Hur, “A Novel Cogging Torque
Reduction Method for Interior-Type Permanent-Magnet Motor”, IEEE
Transactions on Industry Application, Vol. 45, No. 1, Jan./Feb. 2009.
[43] 陳盛基, “高性能永磁無刷設計與電腦輔助磁路分析”, 工研院永磁
電機電腦輔助設計與分析技術研討會, 2003.
[44] 茆尚勳, “直驅式跑步機用直流無刷馬達之設計”, 國立成功大學機
械工程學系碩士論文, 民國91 年5 月.
[45] RM-core, Kawasaki Steel Coporation, Japan.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-24公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信