淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1307200711145400
中文論文名稱 平板式薄膜模組作為熱與物質併合交換器之研究
英文論文名稱 Study on the plate-type membrane module as a hybrid heat and mass exchanger
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 許泰翔
研究生英文姓名 Tay-Shyang Shue
電子信箱 694360115@s94.tku.edu.tw
學號 694360115
學位類別 碩士
語文別 中文
口試日期 2007-07-09
論文頁數 162頁
口試委員 指導教授-張煖
委員-程學恆
委員-陳錫仁
中文關鍵字 薄膜  熱交換  質量交換  氨水  吸收 
英文關鍵字 Membrane  Heat Exchange  Mass Exchange  Ammonia  Absorption 
學科別分類
中文摘要 本研究利用一個三流體平板式薄膜模組作為具有混合氣液質傳與熱交換功能之裝置,進行薄膜模組作為純熱交換(水-水、水-水-空氣)與同時作為熱交換與物質交換(氨水蒸氣-氨水-冷卻水)之實驗,並在程序模擬軟體Aspen Plus之上,利用附加程式之方式建立此平板式薄膜模組之數學模式。
模式中採用文獻報導之四種熱質傳係數關聯式,以與實驗結果進行比較,並藉以探討模組內部之熱質傳特性,以及分析各操作條件與熱質傳係數改變對熱交換量與吸收量之影響。在純熱交換與併合熱與物質交換之情形下,各關聯式與實驗數據之吻合程度不同。針對氨水系統,熱傳阻力之分佈以多孔膜為最大,其次為氣相層,質傳阻力則以多孔膜為最小,氣相層次之,液相層稍高。
本研究透過實驗結果證實了此一併合氣液質傳與熱交換功能之裝置的可行性,以及所建立數學模式之適用性。
英文摘要 Experimental and simulation study for a triple-fluid flat-type membrane module as a hybrid heat exchanger and mass exchanger is conducted. The device is investigated for three operation modes, including for simple heat exchange between water/water and water/water/air as well as for hybrid heat and mass exchange between ammonia-water vapor/ammonia-water liquid/cooling water. Simulation model is established on Aspen Plus by adding a user defined unit operation for the device.
This mathematical model uses four heat and mass transfer coefficient reported in the literature correlations for comparisons with the experimental results, investigation of heat and mass resistance characteristics, and study of the effects of operating conditions. Under the three modes of operations, the correlations show different degrees of agreement with the experimental results. For the ammonia-water operation, the greatest heat transfer resistance comes form the porous membrane between the vapor and liquid and the vapor phase resistance is the second. The mass transfer resistance of porous membrane is the least, vapor phase is the second, and the liquid phase (ammonia-water solution) is relatively greater.
This study has verified the feasibility of the device as a hybrid heat and mass exchanger and the applicability of the model.
論文目次 誌謝 ................................................i
中文摘要 ..........................................iii
英文摘要 ...........................................iv
目錄 ................................................v
圖目錄 .............................................vii
表目錄 .............................................xii
第一章 前言 .......................................1
第二章 文獻回顧 ...................................7
第三章 實驗系統 ..................................13
3.1實驗藥品與設備 .................................13
3.1.1實驗藥品 ...................................13
3.1.2實驗設備 ...................................14
3.2實驗裝置 .......................................37
3.2.1純熱傳 .....................................37
3.2.2熱質傳 .....................................41
3.3薄膜特性分析 ...................................44
3.3.1熱傳膜 .....................................44
3.3.1.1浸泡試驗實驗步驟 .......................44
3.3.1.2驗實結果 ...............................44
3.3.2熱質傳膜 .......................................45
3.3.2.1蒸氣浸泡試驗實驗步驟 ...................46
3.3.2.2液滴穿透試驗實驗步驟 ...................46
3.3.2.3貫穿壓力試驗實驗步驟 ...................46
3.3.2.4實驗結果 ...............................47
3.4實驗方法與步驟 .................................49
3.4.1模組裝置方法 ...............................49
3.4.1.1氣-液-液熱交換(三層模組) .............49
3.4.1.2液-液熱交換(兩層模組) .................49
3.4.2純熱傳 .....................................49
3.4.2.1氣-液-液熱交換(三層模組) .............49
3.4.2.2液-液熱交換(兩層模組) .................50
3.4.3熱質傳 .....................................51
3.5實驗結果 .......................................54
3.5.1純熱傳 .....................................54
3.5.2熱質傳 .....................................54
第四章 數學模式 ..................................55
4.1質量與能量平衡 .................................55
4.2熱力學模式與物理/輸送性質 ......................61
4.3熱質傳係數 .......................................62
4.4數值解析方法 ...................................64
第五章 結果與討論 ................................65
5.1實驗與模擬結果之比較 ...........................65
5.1.1純熱傳 .....................................65
5.1.1.1液-液熱交換 ...........................65
5.1.1.2氣-液-液熱交換 .......................73
5.1.2熱質傳 .....................................82
5.2操作條件影響之模擬分析 .........................88
5.2.1熱傳 .......................................88
5.2.1.1液-液熱交換 ...........................88
5.2.1.2氣-液-液熱交換量 .....................91
5.2.2熱質傳 .....................................98
5.3熱質傳係數影響之模擬分析 ......................103
5.3.1熱傳 ......................................103
5.3.1.1液-液熱交換...........................103
5.3.1.2氣-液-液熱交換 ......................105
5.3.2熱質傳 ....................................108
第六章 結論 .....................................110
符號說明............................................114
參考文獻............................................120
附錄A ..............................................123
附錄B ..............................................131
附錄C ..............................................139

圖目錄

圖1.1 50年後人類關切之問題.........................1
圖1.2 吸收式熱泵系統示意圖.........................3
圖1.3 中空纖維式併合熱與物質交換薄膜模組...........6
圖2.1 薄膜吸收器與蒸餾塔...........................9
圖3.1 不鏽鋼薄膜鋪置器............................14
圖3.2 薄膜臨界突破壓力測試器......................15
圖3.3 平板式模組..................................19
圖3.4 氣體發生器..................................20
圖3.5 液體桶槽....................................21
圖3.6 恆溫槽......................................22
圖3.7 浮子式體積流量計............................24
圖3.8 熱電偶與壓力計..............................25
圖3.9 移動型溫度顯示器............................26
圖3.10 加熱帶......................................27
圖3.11 膜片式幫浦..................................28
圖3.12 質量流量偵測計與顯示器......................30
圖3.13 溫度控制器..................................31
圖3.14 桌上型酸鹼度計..............................32
圖3.15 皂泡氣體流量器計與量測裝置..................33
圖3.16 膜厚量測器..................................33
圖3.17 保溫材......................................35
圖3.18 液-液熱交換實驗系統圖......................37
圖3.19 液-液熱交換實驗系統示意圖..................38
圖3.20 氣-液-液熱交換實驗系統圖..................39
圖3.21 氣-液-液熱交換實驗系統示意圖..............40
圖3.22 氣-液-液熱與物質交換實驗系統圖............42
圖3.23 氣-液-液熱與物質交換實驗系統示意圖........43
圖4.1 Aspen Plus模擬系統圖......................56
圖4.2 平板式薄膜模組與物流進出配置................57
圖4.3 氣-液-液熱質傳系統物流進出與熱質傳
通量示意圖..................................58
圖5.1 液-液熱交換量之實驗值與模擬值-
Goerke等人之關聯式..........................69
圖5.2 液-液熱交換量之實驗值與模擬值-
Murthy與Gupta之關聯式.......................70
圖5.3 液-液熱交換量之實驗值與模擬值-
Phattaranawik 等人(Film theory)之關聯式.....71
圖5.4 液-液熱交換量之實驗值與模擬值-
Phattaranawik等人(Surface renewal theory)
之關聯式....................................72
圖5.5 氣-液-液熱交換量之實驗值與模擬值-
Goerke等人之關聯式..........................77
圖5.6 氣-液-液熱交換量之實驗值與模擬值-
Murthy與Gupta之關聯式.......................78
圖5.7 氣-液-液熱交換量之實驗值與模擬值-
Phattaranawik等人(Film theory)之關聯式......80
圖5.8 氣-液-液熱交換量之實驗值與模擬值-
Phattaranawik等人(Surface renewal theory)
之關聯式....................................81
圖5.9 氣-液-液熱質傳吸收量之實驗值與模擬值-
Goerke等人之關聯式..........................85
圖5.10 氣-液-液熱質傳吸收量之實驗值與模擬值-
Murthy與Gupta之關聯式.......................86
圖5.11 氣-液-液熱質傳吸收量之實驗值與模擬值-
Phattaranawik等人(Film theory)之關聯式......86
圖5.12 氣-液-液熱質傳吸收量之實驗值與模擬值-
Phattaranawik等人(Surface renewal theory)
之關聯式....................................87
圖5.13 液-液熱交換熱流體流量對熱交換量之影響......89
圖5.14 液-液熱交換熱流體進口溫度對熱交換量之影響..89
圖5.15 液-液熱交換冷卻流體流量對熱交換量之影響....90
圖5.16 液-液熱交換冷卻流體進口溫度對熱交換量
之影響......................................90
圖5.17 氣-液-液熱交換熱流體流量對熱交換量之影響..93
圖5.18 氣-液-液熱交換熱流體進口溫度對熱交換量
之影響......................................94
圖5.19 氣-液-液熱交換冷卻流體流量對熱交換量
之影響......................................96
圖5.20 氣-液-液熱交換冷卻流體進口溫度對熱交換量
之影響......................................97
圖5.21 氣-液-液熱質傳吸收液流量對吸收量之影響...100
圖5.22 氣-液-液熱質傳吸收液濃度對吸收量之影響...100
圖5.23 氣-液-液熱質傳發生器氣化分率對吸收量
之影響.....................................101
圖5.24 氣-液-液熱質傳發生器進料氨水流量對吸收量
之影響.....................................101
圖5.25 氣-液-液熱質傳發生器進料氨水濃度對吸收量
之影響.....................................102
圖5.26 氣-液-液熱質傳發生器溫度對吸收量之影響...102
圖5.27 液-液熱交換熱傳係數改變之影響-
MF=transfer coeff./transfer coeff.
(base case)................................104
圖5.28 氣-液-液熱交換熱傳係數改變之影響-
MF=transfer coeff./transfer coeff.
(base case)................................107
圖5.29 氣-液-液熱質傳熱質傳係數改變之影響-
MF=transfer coeff./transfer coeff.
(base cas).................................109

表目錄

表1.1 氨-水型與水-溴化鋰型吸收式熱泵系統之比較...2
表3.1 PET膜實驗結果與數據.........................45
表3.2 PTFE膜基本資料..............................46
表3.3 PTFE膜實驗結果與數據........................48
表5.1 液-液熱交換實驗裝置尺寸....................66
表5.2 液-液熱交換實驗操作條件改變範圍............66
表5.3 液-液熱傳之實驗個案........................67
表5.4 氣-液-液熱交換實驗裝置尺寸................73
表5.5 氣-液-液熱交換實驗操作條件改變範圍........73
表5.6 氣-液-液熱傳之實驗個案....................74
表5.7 氣-液-液熱質傳實驗裝置尺寸................83
表5.8 氣-液-液熱質傳實驗操作條件改變範圍........83
表5.9 氣-液-液熱質傳之實驗個案..................84
表5.10 液-液熱交換基本個案條件與操作條件變數範圍..88
表5.11 氣-液-液熱交換量基本個案條件與操作條件
變數範圍....................................91
表5.12 熱質傳基本個案條件與操作條件變數範圍........98
表5.13 液-液熱交換基本個案之熱傳阻力.............103
表5.14 氣-液-液熱交換基本個案之熱傳阻力.........105
表5.15 氣-液-液熱質傳基本個案之熱質傳阻力.......108
參考文獻 Baker, R. W., “Future directions of membrane gas separation
technology,” Ind. Eng. Chem. Res., Vol. 41, pp. 1393-1411, 2002.

Chen, J., H. Chang and S. R. Chen, “Simulation study of a hybrid
absorber-heat exchanger using hollow fiber membrane module for the
ammonia-water absorption cycle,” Int. J. Refrig., Vol. 29, pp.
1043-1052, 2006.

Gableman, A. and S. Hwang, “Hollow fiber membrane contactors,” J.
Mem. Sci., Vol. 159, pp. 61-106, 1999.

Goerke, A. R., J. Leung and S.R. Wickramasinghe, “Mass and
momentum transfer in blood oxygenators,” Chem. Eng. Sci., Vol. 57,
pp. 2035-2046, 2002.

Ferreira, C. A., C. Keizer and C. H. M. Machielsen, “Heat and mass
transfer in vertical tubular bubble absorbers for ammonia-water
absorption refrigeration systems,” Int. J. Refrig., Vol. 7, pp.
348-357, 1984.

Kang, Y. T. and R. N. Christensen, “Development of a counter-current
model for vertical fluted tube GAX absorber,” International
Absorption Heat Pump Conference, AES-Vol. 31, pp. 7-16, 1993.

Kang, Y. T., R .N. Christensen and K. Vafai, “Analysis of absorption
process in a smooth-tube heat exchanger with a porous medium,” Heat
Transfer Eng., Vol. 15, No. 4, pp. 42-55, 1994.

Kang, Y. T., R. N. Christensen, T. Kashiwagi and F. Ziegler,
“Ammonia-water bubble absorber with a plate heat exchanger,”
ASHRAE T., Vol. 104, pp. 1565-1576, 1998.

Kang, Y. T., A. Akisawa and T. Kashiwagi, “Experimental correlation of
combined heat and mass transfer for NH3-H2O falling film absorption,”
Int. J. Refrig., Vol. 22, pp. 250-262, 1999.

Kang, Y. T., A. Akisawa and T. Kashiwagi, “Analytical investigation of
two different absorption modes: falling film and bubble types,” Int. J. Refrig., Vol. 23, pp. 430-443, 2000.

King, C. J., Separation Process, 2nd Ed., McGraw-Hill, Inc., New York,
1981.

Liu, W., J. Davidson and S. Mantell, “Thermal analysis of polymer
heat exchangers for solar water heating:a case study,” J. Sol.
Energ. Eng., Vol. 122, pp. 84-91, 2000.

Lixin, M., S. K. Hwang, “Correlation of concentration polarization and
hydrodynamic parameters in hollow fiber modules,” J. Mem. Sci., Vol.
159, pp. 143-165, 1999.

Lu, D. and D. Fenton, “Survey of available data on secondary properties
of the ammonia-water solution and sensors for their measurement,”
ASHRAE T., Vol. 109, pp. 288-298, 2003.

Mahmud, H., A. Kumar, R. M. Narbaitz and T. Matsuura, “A study of
mass transfer in the membrane air-stripping process using microporous
polyproplylene hollow fibers,” J. Mem. Sci., Vol. 179, pp. 29-41, 2000.

Murthy, Z. P. V. and S. K. Gupta, “Estimation of mass transfer coefficient
using a combined nonlinear membrane transport and film theory model,”
Desalination, Vol. 109, pp. 39-49, 1997.

Panchal, C. B. and K. J. Bell, “Heat and mass transfer consideration in
advanced heat pump systems,” Argonne National Laboratory, Illinois,
1992.

Perez-Blanco, H., “A model of ammonia-water falling film absorber,”
ASHRAE T., Vol. 94, PART 1, pp. 467-483, 1998.

Phattaranawik, J., T. Leiknes and W. Pronk, “Mass transfer studies in
flat-sheet membrane contactor with ozonation,” J. Mem. Sci., Vol. 247,
pp. 153-167, 2005.

Raman, R., S. Mantell, J. Davidson, C. Wu and G. Jorgensen, “A review
of polymer materials for solar water heating systems,” J. Sol.
Energ. Eng., Vol. 122, pp. 92-100, 2000.

Sieres, J. and J. Fernández-Seara, “Mass transfer characteristics of a
structured packing for ammonia rectification in ammonia-water
absorption refrigeration systems,” Int. J. Refrig., Vol. 30, pp.
58-67, 2007.

Sirkar, K. K., Other new membrane processes, in: Ho, W. S. W. and K. K.
Sirkar (Eds.), Membrane Handbook, Chapman & Hall, New York, 1992.

Wickramasinghe, S. R. , B. Han, J. D. Garcia and R. Specht,
“Microporous membrane blood oxygenators,” AIChE J., Vol. 51, pp.
656-670, 2005.

Winterton, R. H. S., “Where did the Dittus and Boelter equation come
from?,” Int. J. Heat Mass Tran., Vol. 41, pp. 809-810, 1998.

Zaheed, L. and R. J. J. Jachuck, “Review of polymer compact heat
exchangers, with special emphasis on a polymer film unit,” Appl. Therm.
Eng, Vo. 24, pp. 2323-2358, 2004.

Zaheed, J., Cross-corrugated polymer film compact heat exchanger
(PFCHE), Ph.D. Thesis, School of Chemical and Advanced Materials,
University of Newcastle Upon Tyne, UK, 2003.

Zarkadas, D. M. and K. K. Sirkar, “Polymeric hollow fiber heat
exchangers: An alternative for lower temperature applications,” Ind.
Eng. Chem. Res., Vol. 43, pp. 8093-8106, 2004.

Zhang, G. and E. L. Cussler, “Distillation in hollow fibers,” AIChE J.,
Vol. 49, No. 9, pp. 2344-2351, 2003.

Zhang, G. and E. L. Cussler, “Hollow fiber as structured distillation
packing,” J. Mem. Sci., Vol. 215, pp. 185-193, 2003.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信