系統識別號 | U0002-1307200521452100 |
---|---|
DOI | 10.6846/TKU.2005.00239 |
論文名稱(中文) | 適用於行動通訊及無線網路之寬頻低功率三角積分調變器之設計與實現 |
論文名稱(英文) | Design and Implementation of Wideband Lower Power Delta Sigma Modulator for Modern Communication and Wireless Network |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 電機工程學系碩士班 |
系所名稱(英文) | Department of Electrical and Computer Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 93 |
學期 | 2 |
出版年 | 94 |
研究生(中文) | 李易聰 |
研究生(英文) | Yi-Tsung Li |
學號 | 692390932 |
學位類別 | 碩士 |
語言別 | 英文 |
第二語言別 | |
口試日期 | 2005-06-08 |
論文頁數 | 76頁 |
口試委員 |
指導教授
-
余 繁
共同指導教授 - 江正雄 委員 - 郭建宏 委員 - 劉榮宜 委員 - 鄭國興 委員 - 黃弘一 |
關鍵字(中) |
類比轉數位 三角積分調變器 寬頻應用 |
關鍵字(英) |
Analog-to-Digital(A/D) Delta-Sigma Modulator Wide bandwidth application |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
在現代行動通訊及無線網路系統的應用上,類比/數位轉換器(A/D Converter)在其系統中扮演極其重要的角色。超取樣和雜訊移頻技術則是早已被應用於現代超大型積體電路中的類比數位轉換介面,由於超取樣的特性,使得三角積分調變器通常都被限制在音頻信號的應用上。而隨著超大型積體電路製程的改良,使許多的研究逐漸轉移到寬頻帶的應用上,如802.11a、xDSL、Bluetooth、GSM及WCDMA等。 在現代行動通訊及網路系統對高頻寬的需求下,一般傳統的低階三角積分調變器已經無法勝任這高頻寬的需求,所以高階且多位元的三角積分調變器在高頻寬系統上是必須的。而產品未來的發展導向將朝向體積小巧、價格低廉、及較長的待機時間發展,因此SOC(System-on-Chip)及低功率消耗的設計概念將是未來無線寬頻及行動通訊技術發展的不可或缺的兩個要素。 本論文所研究的方向為設計並實現適用於GSM及WCDMA的雙頻帶三角積分器及適用於802.11a系統下之寬頻低功率三角積分調變器。在設計考量上由於類比電路中的積分器會產生許多非理想的誤差,如有限的直流增益,電容偏差...等等,這些電路上的非理想誤差會對我們的高階三角積分調變器造成很大的影響,在本論文中我們將這些非理想的誤差用Matlab及Simulink這兩套軟體來將其加入我們的模型中,以期達到更精準的高階三角積分調變器性能。而且由於我們可以由此模型訂出我們最佳化的係數及電路規格,這樣便可以大大的節省設計的時間。而且在電路實現時也會有設計的準則及目標。 本篇論文所提出之應用於GSM及WCDMA的雙頻帶三角積分調變器,已在0.18微米1P6M標準製程中實現,工作電壓為1.8V,GSM及WCDMA的寬頻分別為200KHz及2MHz,取樣頻率為32MHz,超取樣比為80及8,量測結果顯示其動態輸入範圍為76及68dB,在WCDMA模式下功率消耗為28mW。另一個應用於802.11a系統下之寬頻低功率三角積分調變器,將在0.18微米1P6M標準製程加以設計實現,工作電壓為1.8V,寬頻為10MHz,取樣頻率為160MHz,超取樣比為8,模擬結果顯示在取樣頻率160MHz下其動態輸入範圍為74dB,而最大的訊號雜訊失真比為70dB,總功率消耗38mW。 |
英文摘要 |
In the applications for the modern communication and wireless network systems, the analog-to-digital (A/D) converters play an important role in the systems. The over-sampling and noise shaping techniques are used in analog to digital conversion interface of modern very-large-scaled integrated circuits. Due to over-sampling characteristics, the delta sigma (ΔΣ) modulators usually are limited on the application of voice band signals. As the integrated circuits process improvement, it makes many researches transfer to applications of wide-bandwidth gradually, such as 802.11a, xDSL, Bluetooth, GSM, and WCDMA. Analog-to-digital converters based on the delta ΔΣ modulators have become popular in various applications. Due to the wide bandwidth requirement of modern communication and network, however, the low-order single-bit ΔΣ modulator cannot suit in wide bandwidth applications. Therefore, the high-order multi-bit ΔΣ modulator is necessary in wide bandwidth applications. With the improvement of the VLSI technique, all of these modules are expected to integrate for less chip area, low cost, and low power consumption. Therefore, the SOC (System on a Chip) and low power consumption are the most important concepts in the development for the modern communication and network systems. In this thesis, we want to design wideband, lower power delta sigma modulator for WCDMA and GSM dual bandwidth and 802.11a applications. Furthermore, the circuit non-idealities effects also can be included in our architectures to predict the final performance of actual the ΔΣ modulators. According to these non-idealities models and analyses, we can obtain the optimum circuit specifications to implement our ΔΣ modulators. Therefore, the design cycle time can be reduced effectively and the circuits also can be implemented based on these optimum specifications. In this thesis, a wideband, lower power ΔΣ modulator for W-CDMA and GSM dual bandwidth application is implemented in a standard 0.18-μm 1P6M CMOS technology. For the W-CDMA applications, the measurements indicate a dynamic range of 68dB and a SNDR of 61dB. For the GSM applications, the measurements indicate a dynamic range of 76dB and a SNDR of 70dB. The core area is 0.84mm2, and the power consumption is 28-mW at 1.8V. Another lower power ΔΣ modulator in applications of 802.11a is implemented in a standard 0.18-μm 1P6M CMOS technology, too. The simulation results show that the bandwidth is 10MHz;the sampling frequency is 160MHz;the dynamic range and the peak signal to noise ratio are 74dB and 70 dB respectively, and the total power dissipation is 38-mW at 1.8V. |
第三語言摘要 | |
論文目次 |
Chapter 1:Introduction 1 1.1 Motivation and Applications 1 1.1.1 Dual-Standard of GSM and WCDMA System 3 1.1.2 Wireless LAN 802.11a System 5 1.2 Thesis Structure 6 Chapter 2:Architecture Study of Delta Sigma Converters 8 2.1 Introduction 8 2.2 Motivations for Delta Sigma Modulator Converters 9 2.2.1 Quantization 9 2.2.2 Oversampling Technique 14 2.2.3 Noise Shaping Delta Sigma Modulator 17 2.3 Wideband Delta Sigma Modulator Architecture 19 2.3.1 Single-Loop Architecture 20 2.3.2 Interpolative Architecture 21 2.3.3 Multi-stage Cascaded Delta Sigma Modulator 25 2.3.4 Multi-Bit Noise Shaping Delta Sigma Modulator 26 2.4 Summary 29 Chapter 3:Dual-Mode WCDMA/GSM Delta Sigma Modulator 30 3.1 Introduction 30 3.2 System Level Design 30 3.2.1 Dual-Band Modulator 32 3.2.2 Low-Distortion and Swing-Suppression Topology 33 3.2.3 Multi-bit DAC Mismatches 34 3.3 Circuit Level Design 35 3.3.1 Design of the OTA 39 3.3.2 Design of the four bit Quantizer 43 3.3.3 Design of the Clock Generator 45 3.4 Simulation Results 46 3.5 Experimental Results 47 3.5.1 Test Setup 47 3.5.2 Layout and Pin assignment 49 3.5.3 Measurement Results 51 Chapter 4:A 20-MSample/s Sigma Delta modulator for 802.11a 54 4.1 Introduction 54 4.2 System Level Design 55 4.3 Circuit Level Design 58 4.3.1 OTA Design 62 4.3.2 Design of the Clock Generator 64 4.4 Simulation Results 65 4.5 Experimental Consideration 67 4.5.1 Test Setup 67 4.5.2 Layout and Pin Assignment 67 4.6 Conclusion 70 Chapter 5:Conclusion and Future Work 71 5.1 Conclusion 71 Reference 72 Chapter 1 Figure 1.1 Wideband Receiver for Dual-Standard System 4 Chapter 2 Figure 2.1 (a) model of the quantizer (b) The linear model, (c) input-output characteristic of a B-bit quantizer, (d) and one-bit quantizer (e) The quantization error of a B-bit quantizer, (f) and one-bit quantizer 10 Figure 2.2 (a) Probability Density Function (PDF) and (b) Power Spectral Density (PSD) of the quantization error, (c) Transfer function of the quantization error to the output 13 Figure 2.3 Illustrating the benefits of oversampling (a) Sampled quantizer symbol and approximated PSD of the quantization error; (b) In-band error power and total error power 16 Figure 2.4 (a) General structure of a noise-shaping ADC and (b) its linearized mode 17 Figure 2.5 The PSD of the quantization noise PDSEq(ω) for different converter 19 Figure 2.6 The Single-Loop L-Order Delta Sigma Modulator 20 Figure 2.7 Pole and Zero locations and NTF frequency response 21 Figure 2.8 Distributed feedback with a forward input and resonator feedback 22 Figure 2.9 Feedforward summation with a forward input and resonator feedback 22 Figure 2.10 Pole and Zero locations and NTF frequency response of the Butterworth alignment 23 Figure 2.11 Pole and Zero locations and NTF frequency response of the Inverse Chebyshev alignment 24 Figure 2.12 Pole and Zero locations and NTF frequency response of the Elliptic alignment 24 Figure 2.13 General structure of a cascaded delta-sigma modulator 26 Figure 2.14 A linear model of multi-bit modulator with DAC errors 28 Chapter 3 Figure 3.1 The frequency responses 31 Figure 3.2 The proposed multi-noise shaping (MNS) ΔΣ modulator architecture 33 Figure 3.3 The output spectrum with 1% DAC mismatch 35 Figure 3.4 Block diagram of the implemented Fifth-order multi-noise-shaping modulator 36 Figure 3.5 The schematic of the first stage 2nd-order Delta Sigma Modulator 37 Figure 3.6 SC realization of the summation at the quantizer input in Fig 35 37 Figure 3.7 (a) the 1st integrator (b) the 2nd and 3rd integrator (c) the summing integrator of the interpolative delta sigma modulator in the cascaded-stage 39 Figure 3.8 The folded-cascode OTA (a) with gain-boosted (b) without gain-boosted 41 Figure 3.9 The Bias circuit of OTA 42 Figure 3.10 The schematic of the CMFB circuit 42 Figure 3.11 The schematic of four bit quantizer 44 Figure 3.12 The schematic of switched-capacitor comparator 45 Figure 3.13 The schematic of comparator circuit 45 Figure 3.14 The schematic of clock generator circuit 46 Figure 3.15 The spectrum of the MNS modulator simulation (a) in HSPICE and(b) comparison with MATLB for GSM application Simulation (c) in HSPICE and (d) comparison with MATLB for W-CDMA application 47 Figure 3.16 Experimental test setup 48 Figure 3.17 (a) Regulator circuit (b) Reference voltage circuit (c) The filter tank for the supply voltages 48 Figure 3.18 The die photo of the MNS modulator 49 Figure 3.19 (a) Pin configuration diagram and (b) Pin assignments of the chip 50 Figure 3.20 The photograph of the PC board for measurement 51 Figure 3.21 The digital output bit streams 52 Figure 3.22 Measured output power spectra of the modulator (a) for GSM and (b) WCDMA application 52 Figure 3.23 Measured SNDR vs Input power 53 Chapter 4 Figure 4.1 The schematic of the fifth order single loop Delta Sigma Modulator 56 Figure 4.2 SNSR vs jitter 57 Figure 4.3 SNDR vs KT/C 57 Figure 4.4 (a) SNDR vs nonlinearly finite gain (b) Mathematical model of the nonlinear gain 58 Figure 4.5 (a) First integrator stage, (b) Second integrator stage, (c) Third integrator stage, (d) Fourth integrator stage (e) Fifth integrator stage 60 Figure 4.6 3-bit quantizer combine with sc summation 61 Figure 4.7 control circuit 62 Figure 4.8 The schematic of the telescopic amplifiers 63 Figure 4.9 The schematic of clock generator circuit 65 Figure 4.10 Output spectrum of the modulator (post layout simulation) 66 Figure 4.11 The dynamic range of the modulator 66 Figure 4.12 Experimental test setup 68 Figure 4.13 Layout of the experimental modulator 68 Figure 4.14 (a) Pin configuration diagram and (b) Pin assignments of the chip 69 Table 1.1 The receiver specifications for GSM and WCDMA System 5 Table 1.2 The specifications for Wireless LAN 6 Table 3.1 The second stage coefficients of capacitors 39 Table 3.2 The gain-boosted folded-cascode OTA MOS size 41 Table 3.3 The folded-cascode OTA MOS size 41 Table 3.4 Performance summary of the OTAs 43 Table 3.5 Performance summary of the DSM 53 Table 4.1 Influences of the non-idealities 57 Table 4.2 The coefficients of capacitors 60 Table 4.3 The corresponding table of thermometer code and active code 61 Table 4.4 Performance summary of the telescopic OTA 64 Table 4.5 Performance Summary 66 Table 4.6 ΔΣ modulator performance comparisons 67 |
參考文獻 |
[1]S. R Norsworthy, R. Schreier, and G. C. Temes, “Delta-Sigma Data Converters: Theory Design, and Simulation,” IEEE Press, New York, 1997. [2]S. Rabii and B. A. Wooley, “The Design of Low-voltage, Low-Power Sigma-delta Modulators,” Kluwer Academic Publishers, Boston/Dordrecht/ London, 1999 [3]K. C.-H. Chou, S. Nadeem, W. L. Lee, and G. C. Sodini, “A higher-order topology for interpolative modulators for oversampling A/D converters,” IEEE Trans. Circuits and Syst. II, vol. 37, pp. 309-318, March 1990. [4]M. Frodigh, S. Parkvall, C. Roobol, P. Johansson, and P. Larsson, “Future-generation wireless networks,” IEEE Personal Communications, vol. 8, no. 5, pp. 10-17, Oct. 2001. [5]“Information technology-telecommunications and information exchange between systems-local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” ISO/IEC 8802-11, ANSI/IEEE Std 802.11, 20 Aug. 1999 [6]X. Li and M. Ismail, “A Single-chip CMOS Front-end Receiver Architecture for Multi-standard Wireless Applications,” Proceedings of 2001 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 374-377, 2001. [7]H. A. Alzaher, H. O. Elwan, and M. Ismail, “CMOS digital Programmable Filter for Multi-standard wireless receivers,” Electronics Letters, vol. 36, no. 2, pp. 133-155, Jan. 2000. [8]“ETS 300 577, BSM: Digital Cellular Telecommunications System (Phase 2); Radio Transmission and Reception (GSM 05.05 Version 4.19.1),” European Telecommunication Standard Institute (ETSI), 1997. [9]“3GPP TS 25.101, V3.5.0,” Third Generation Partnership Project, Dec. 2000 [10]R. Van Nee, G. Awater, M. Morikura, H. Takanashi, M. Webster, and K.W. Halford, ’’ New High-Rate Wireless LAN Standards’’, IEEE Commun. Mag., vol. 37, no.12, Dec. 1999, pp.82-88. [11]IEEE Std 802.11a/D7.0-1999, “Part11: Wirless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the GHz Band.” [12]B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995. [13]S. R. Norsworthy, R. Schreier, and G. C. Temes, Eds., Delta-Sigma Data Converters: Theory, Design, and Simulation, New York: IEEE Press, 1996 [14]T. Ritoniemi, T. Karema, and H. Tenhunen, “The design of stable high order 1-bit sigma-delta modulators,” Proeedingsc of 1990 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 3267-3270, 1990. [15]T.-H. Kuo, K.-D. Chen, and J.-R. Chen, “Automatic coefficients design for high-order sigma-delta modulator,” IEEE Transaction on Circuit and Systems II, vol. 46, no. 1, pp. 6-15, Jan. 1999. [16]J.-S. Chiang, P.-C. Chou, and T.-H. Chang, “Dual-band sigma-delta modulator for wideband receiver applications”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E87-A, No. 2, Feb. 2004, pp. 311-323. [17]P. Kiss, J. Silva, A. Wiesbauer, T. Sun, U. Moon, and G. C. Temes, “Adaptive correction of analog errors in MASH ADCs- Part II. Correction using test-signal inhection,” IEEE Transaction on Circuit and Systems II, vol. 47, no. June. 2000. [18]T. Hayashi, Y. Inabe, K. Uchimura, and T. Kimura, “A multistage delta-sigma modulator without double integration loop,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, February 1986, vol. 39, pp. 182–183. [19]Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, and T. Yoshitome, “A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping,” IEEE Journal of Solid-State Circuits, vol. 22, no. 12, pp. 921–929, December 1987. [20]K. Uchimura, T. Hayashi, T. Kimura, and A. Iwata, “Oversampled A-to-D and DtoA converters with multistage noise shaping modulators,” IEEE Transactions on Accoustics, Speech, and Signal Processing, vol. 36, no. 12, pp. 1899–1905, December 1988. [21]A. Wiesbauer and G. C. Temes, “Adaptive digital leakage compensation for MASH delta-sigma ADCs,” Research report, Oregon State University, Department of Electrical and Computer Engineering, July 31, 1997. [22]J. Steensgaard-Madsen, High-Performance Data Converters, Ph.D. thesis, The Technical University of Denmark, Department of Information Technology, March 8, 1999. [23]J.-B. Shyu, G. C. Temes, and F. Krummenacher, “Arandom error effects in matched MOS capacitors and current sources,” IEEE Journal of Solid-State Circuits, vol. SC-19, pp. 948-955, Dec. 1984. [24]Y. Geerts, M. Steyaert, and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters, Kluwer Academic Publishers, 2002. [25]K. Vleugels, S. Rabii, and B. A. Wooley, “A 2.5-V sigma-delta modulator for broadband communications applications,” IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1887-1899, Dec. 2001. [26]T.-H. Kuo, K.-D. Chen, and H.–R. Yeng, “A wideband CMOS sigma-delta modulator with incremental data weighted averaging,” IEEE Journal of Solid-State Circuits, vol. 37, no. 1, pp. 11-17, Jan. 2002. [27]R. Rio, F. Medeiro, J. M. Rosa, B. Perez-Verdu, and A. Rodriguez-Vazquez, “A 2.5V sigma-delta modulator in 0.25-um CMOS for ADSL,” Proeedingsc of 2002 IEEE International Symposium on Circuits and Systems, vol. 3, pp. 301-304, 2002. [28]J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, “Wideband low-distortion delta-sigma ADC topology,” Electronics Letters, vol. 37, no. 12, pp. 737-738, June 2001. [29]J.-S. Chiang, T.-H. Chang, and P.-C. Chou, “A lowdistortion and swing- suppression sigma-delta modulator with extended dynamic range,” Proc. 3rd IEEE Asia-Pacific Conf. on ASICs, pp. 9-12, 2002. [30]I. Fujimori, L. Longo, A. Hairapetian, K. Seiyama, S. Kosic, J. Cao, and S. Chan, “A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multi-bit delta–sigma modulation at 8x oversampling ratio,” IEEE J. Solid-State Circuits, vol. 35, pp. 1820–1828, Dec. 2000. [31]Y. Geerts, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 3.3-V, 15-bit, delta-sigma ADC with a signal bandwidth of 1.1 MHz for ADSL applications,” IEEE J. Solid-State Circuits, vol. 34, no. 7, pp. 927-936, July 1999. [32]P. Balmelli and Q. Huang, “A 25MS/s 14b 200mW Sigma Delta Modulator in 0.18um CMOS,” IEEE International Solid-State Circuits Conference, ISSCC. Vol. 4 , 2004. [33]J. G. Kenney and L. R. Carley, “Design of Multibit Noise-Shaping Data Converters,” Analog Integrated Circuits Signal Processing Journal, vol. 3, pp. 259-272, 1993. [34]R. Gaggl, M. Inversi, and A. Wiesbauer, “A Power Optimized 14-Bit SC Delta- Sigma Modulator,” IEEE International Solid-State Circuits Conference, ISSCC. Vol. 4 , 2004. [35]C. H. Kuo, The Design and Implementation of Low Voltage CMOS Delta Sigma Modulator, Ph.D. thesis, Department of Electrical Engineering, National Taiwan University, June, 2003. [36]A. Marques, V. Peluso, M. Steyaert, and W. Sansen, “ A 15-b Resolution 2MHz Nyquist Rate Delta Sigma ADC in a 1-um COMS Technology”, IEEE Journal of Solid-state Circuits, vol. 33, no. 7, pp. 1065-1075, July 1998. [37]R. Jiang and T. S. Fiez, “A 14-bit Delta-Sigma ADC With 8 OSR and 4-MHz Conversion Bandwidth in a 0.18-um CMOS Process,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475-482, March. 2003. [38]Y.-In Park, S. Karthikeyan, M. K. Wern, J. Zhongnong, and T.-C. Tan, “A 16-bit, 5-MHz multi-bit sigma-delta ADC using adaptively randmoized DWA,” in Proc. IEEE Custom Integrated Circ. Conf., pp. 721–724, Sept. 2003. [39] M. R. Miller and C. S. Petrie, “A Multibit Sigma-Delta ADC for Multimode Receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475-482, March. 2003. [40]J. C. Morizio, M. Hoke, T. Kocak, and C. Geddie, “14-bit 2.2-MS/s sigma-delta ADC’s, IEEE J. Solid-State Circuits,” vol. 35, no. 7, pp. 968-976, July 2000. [41]K. C.-H. Chou, S. Nadeem, W. L. Lee, and G. C. Sodini, “A higher-order topology for interpolative modulators for oversampling A/D converters,” IEEE Trans. Circuits and Syst. II, vol. 37, pp. 309-318, March 1990. [42]P. Kiss, Adaptive Digital Compensation of Analog Circuit Imperfections for Cascaded Delta-Sigma Analog-to-Digital Converters, Ph.D. thesis, Politehnica University of Timisoara, Department of Measurements and Optical Electronics, August 20, 1999. [43]P.-C. Chou, Dual-Mode Sigma-Delta A/D Converter for Wideband Receiver Applications, Ph.D. thesis, Tamkang University of Taiwan, Department of Electrical Engineering, June, 2004. [44]J. Thomson, B. Baas, E. M. Cooper, J. M. Gilbert, G. Hsieh, P. Husted, A. Lokanathan, J. S. Kuskin, D. McCracken, B. McFarland, T. H. Meng, D. Nakahira, S. Ng, M. Rattehalli, J. L. Smith, R. Subramanian, L. Thon, Y. H. Wang, R. Yu, and Z. Xiaoru. “An Integrated 802.11a Baseband and MAC Processor,” IEEE International Solid-State Circuits Conference, ISSCC, vol. 4, Feb. 2002. [45]S. Ray, P. Tadeparthy, S. S. Rath, D. B. Lavanmoorthy, C. P. S. Sujit, and S. Mathur, “A Low Power 10 Bit 80 MSPS Pipelined ADC in Digital CMOS Process,” IEEE MWSCAS Circuits and Systems, vol. 1, pp. 579-582, Aug. 2002. [46]P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and A. Baschirotto, “Behavioral Modeling of Switched-Capacitor Sigma Delta Modulators,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 352–364, Mar. 2003. [47]K. Gulati and H. S. Lee, “A High-Swing COMS Telescopic Operational Amplifier,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2010-2019, Dec. 1998. [48]Y. Geerts, M. J. Steyaert, and W. Sansen, “A High-Performance Multibit Delta Sigma CMOS ADC,” IEEE J.Solid-State Circuits, vol. 35, pp. 1829–1840, Dec. 2000. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信