§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1306201709535100
DOI 10.6846/TKU.2017.00406
論文名稱(中文) Euonymus laxiflorus Champ 以及 Paenibacillus sp. TKU042 所生產α-葡萄糖苷酶抑制劑與α-澱粉酶抑制劑之研究
論文名稱(英文) The studies on α‐glucosidase and α‐amylase inhibitors from Euonymus laxiflorus Champ and Paenibacillus sp. TKU042
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系博士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 阮文邦
研究生(英文) Van-Bon Nguyen
學號 803160117
學位類別 博士
語言別 英文
第二語言別
口試日期 2017-05-22
論文頁數 84頁
口試委員 指導教授 - 王三郎(sabulo@mail.tku.edu.tw)
委員 - 謝淳仁(cjshieh@nchu.edu.tw)
委員 - 王三郎(sabulo@mail.tku.edu.tw)
委員 - 王全祿(chuanlu@mail.fit.edu.tw)
委員 - 糜福龍(flmi530326@tmu.edu.tw)
委員 - 郭耀豪(kuoyh@nricm.edu.tw)
關鍵字(中) 抑制劑
大丁黃
糖尿病
類芽孢桿菌
微生物轉換
關鍵字(英) Inhibitors
Euonymus laxiflorus Champ
diabetes
Paenibacillus
microbial conversion
第三語言關鍵字
學科別分類
中文摘要
本研究將收集自越南得樂省之二十六種中草藥進行α-葡萄糖
苷酶及α-澱粉酶抑制活性之分析。結果顯示大丁黃之甲醇萃取物
具有最高抑制活性。自此大丁黃萃取物分離出十一種具抑制活性之
化合物。其中三種(1,10,11)為新化合物,兩種為已知結構但新
發現具有α-澱粉酶抑制活性之化合物(13,21),以及已知之酚類
化合物(2,9,16,17,18,19)。其中六種化合物(1,2,9,
13,16,17)具有與阿卡波糖這種糖尿病用藥不相上下之抑制活
性。此外自台灣土壤所篩選超過六百株細菌當中,類芽孢桿菌
TKU042 具有最佳α - 葡萄糖苷酶抑制活性。此菌發酵營養液
(nutrient broth)所得抑制活性高於阿卡波糖且具耐熱及酸鹼安
定性,小鼠降血糖試驗結果亦經證實。這些結果顯示,大丁黃及類
芽孢桿菌TKU042 發酵液具有應用於控制糖尿病及減肥之類保健食
品之潛力。
英文摘要
The present study was aimed at finding safe, natural and abundant source of α-glucosidase and α-amylase inhibitors (αGIs and αAIs). Twenty-six samples of medicinal plants were collected in the Dak Lak province of Vietnam and evaluated for αGIs and αAIs. Trunk bark extract from Euonymus laxiflorus Champ (ELC) was selected as the best source of these inhibitors. Eleven novel active compounds were successfully isolated from ELC. Five compounds (1, 10, 11, 13 and 21) were determined as new aAIs in which 3 inhibitors (1, 10 and 11) were identified as new compounds. Another 6 compounds (2, 9, 16, 17, 18, and 19) were confirmed as known phenolic compounds. Notably, 6 compounds (1, 2, 9, 13, 16 and 17) showed a potency of slightly higher or comparable inhibition to that of acarbose. Among more than 600 bacterial strains isolated from Taiwanese soils, Paenibacillus sp. TKU042 was selected as the best producer of aGIs. The supernatant of fermented nutrient broth (FNB) showed stronger inhibitory activities than acarbose. The FNB aGIs also showed high thermal and pH stability, and acceptable effect on reducing plasma glucose in mice. All of the results suggest that ELC and FNB could have potential use for type 2 diabetes and obesity treatments or health foods development.
第三語言摘要
論文目次
Introduction 1
Diabetes mellitus (DM) 1
Indigenous medicinal plants in Central Higland of Vietnam, potential sources of
natural bio-active compounds
1
Microbial fermentation, a potent and effective tool for production of natural
bioactive materials
3
Chapter 1. Screening and evaluation of α-glucosidase inhibitors from indigenous
medicinal plants in Dak Lak Province, Vietnam
8
1.1.Introduction 8
1.2. Results and Discussion 9
1.2.1. Screening and evaluation of α-glucosidase inhibition 9
1.2.2. Inhibitory activity of the ELC extract against α-glucosidase from S. cerevisiae 10
1.2.3. The pH and thermal stabilities of the ELC extract 12
1.2.4. Inhibitory activity of the ELC extract against some enzymes 13
1.2.5. The influence of reaction time on the inhibitory activity of the extract against
some enzymes
15
1.3. Experimental Section 15
1.3.1. Materials 15
1.3.2. Extraction method 16
1.3.3. Rat intestinal α-glucosidase inhibition screening assay 16
1.3.4. General α-glucosidase inhibition assay using α-glucosidase from S. cerevisiae
and B. stearothermophilus
16
1.3.5. α-amylase assay 17
1.3.6. Protease assay 17
1.3.7. Cellulase assay 17
1.3.8. Stability of inhibitor measurement 18
1.3.9. Polyphenol measurement 18
1.3.10.Total sugar measurement 18
1.4. Conclusions 18
Chapter 2. Porcine pancreatic α–amylase inhibitors from Euonymus laxiflorus
Champ
21
2.1. Introduction 21
2.2. Results and Discussion 22
VI
2.2.1. Screening and evaluation of α-amylase inhibition 22
2.2.2. The pre-incubation time and dialyzing experiment 22
2.2.3. The thermal and pH stabilities of the ELC extract 24
2.2.4. Inhibitory activity of the ELC extract against some α-amylases 26
2.2.5. The influence of reaction time on the inhibitory activity of the extract against
some α-amylases
27
2.3. Experimental Section 28
2.3.1. Materials 28
2.3.2. Extraction method 28
2.3.3. Assay of α–amylase inhibitory activity (general assay) 29
2.3.4. Optimal pre–incubation time 29
2.3.5. Stability of inhibitor measurement 29
2.3.6. Statistics 30
2.4. Conclusions 30
Chapter 3. Isolation and identification of novel α-amylase inhibitors from
Euonymus laxiflorus Champ
32
3.1. Introduction 32
3.2. Results and Discussion 33
3.2.1. Isolation and purification of active compounds 33
3.2.1.1. Activity of factions after fractionating by Diaion open column 33
3.2.1.2. Activity of sub-factions after sub-fractionating by ODS open column 33
3.2.2. Primary evalution of aAI (%) of isolated compounds and identification of active
compounds
37
3.2.3. Inhibitory activity comparison of isolated aAIs and some relationships between
chemical structures and bioactivity
41
3.3. Experimental 42
3.3.1 Materials 42
3.3.2 Biological activities and total phenolic acid assays 42
3.3.3 General process of active compounds isolation 42
3.3.4. The HPLC analysis of ELC, ELC3 and Poly Condensed tannin 43
3.4. Conclusions 43
Chapter 4. Biosynthesis of α-glucosidase Inhibitors by a newly isolated
bacterium, Paenibacillus sp. TKU042 and its effect on reducing plasma glucose
in a mouse model
47
4.1. Introduction 47
4.2. Results and discussion 47
VII
4.2.1. Isolation, screening, and identification of strain TKU042 48
4.2.2. Effects of the C/N (Carbon/Nitrogen) source on aGIs production 49
4.2.3. Optimization of culture condition 50
4.2.4. Specific αGI activity and antioxidant activity of FNB 51
4.2.5. Confirmation that aGIs contained in FNB were produced during NB
fermentation
53
4.2.6. The thermal and pH stabilities of FNB aGIs 53
4.2.7. The effects of FNB on reducing plasma glucose in the mouse model 54
4.3. Materials and methods 56
4.3.1. Materials 56
4.3.2. Measurement of rat α-glucosidase inhibition 56
4.3.3. DPPH radical scavenging activity assay 57
4.3.4. Isolation and screening of aGI-producing strains 57
4.3.5. Optimization of culture conditions for synthesis of aGIs 57
4.3.6. Measurement of inhibitor stability 58
4.3.7. Experimental animal protocol 58
4.4. Conclusions 58
Appendix
Appendix 1: List of publications during PhD program (2014-2017) 62
Appendix 2: Figure 1. Eunonymus laxiflorus Champ
Figure 2. αAIs isolated from Eunonymus laxiflorus Champ
63
Appendix 3: NMR spectrums of Compound 1 64
Appendix 4: NMR spectrums of Compound 10 71
Appendix 5: NMR spectrums of Compound 11 78
VIII
List of tables
Introduction Page
Table 1. Alpha-glucosidase inhibitor and antioxidant conpounds/extracts
obtained by microbial convers
4
Chapter 1. Screening and evaluation of α-glucosidase inhibitors from indigenous
medicinal plants in Dak Lak Province, Vietnam
Table 1. The IC50 values of α-glucosidase inhibitory activities of some
Vietnamese medicinal plants
10
Table 2. Alpha-glucosidase inhibition, OD280nm, polyphenol and total sugar
concentration (μg) of the ELC extracta before and after dialysis
11
Table 3. IC50 values and maximum inhibitory activity of the ELC extract against
some enzymes
14
Chapter 2. Porcine pancreatic α–amylase inhibitors from Euonymus laxiflorus Champ
Table 1. The IC50 values of the porcine pancreatic α-amylase inhibitory activity
of some Vietnamese medicinal plants
23
Table 2. Porcine pancreatic α-amylase and rat α-glucosidase inhibition by the
ELC extracta before and after dialysis
24
Table 3. The thermal stabilities of the ELC extract 25
Table 4. The IC50 and maximum inhibitory activity of the ELC extract against
some amylases
26
Chapter 3. Isolation and identification of a novel α-amylase inhibitors from Euonymus
laxiflorus Champ
Table 1. Alpha-amylase inhibitory activity of ELC and its fractions 34
Table 2. Alpha-amylase inhibitory activity of ELC2, ELC3 and their subfractions
35
Table 3. Alpha-amylase inhibitory activity of isolated aAIs 42
Chapter 4. Biosynthesis of α-Glucosidase Inhibitors by a Newly Isolated Bacterium,
Paenibacillus sp. TKU042 and Its Effect on Reducing Plasma Glucose in a Mouse
Model
Table 1. Comparison of culture conditions before and after optimization 51
Table 2. Specific inhibitory activity of FNB and acarbose against enzymes. 52
IX
List of figures
Introduction Page
Figure 1. The oral a-glucosidase inhibitors currently in clinical use
for the treatment of diabetes mellitus.
2
Chapter 1. Screening and evaluation of α-glucosidase inhibitors from indigenous
medicinal plants in Dak Lak Province, Vietnam
Figure 1. Alpha-glucosidase inhibition activity of the ELC extract 11
Figure 2. pH stability of the ELC extract 12
Figure 3. The thermal stability of ELC extract. 13
Figure 4. Inhibitory activity (%) of the ELC extract against some enzymes 14
Figure 5. The influence of reaction time on the inhibitory activity of the extract
against some enzymes
15
Chapter 2. Porcine pancreatic α–amylase inhibitors from Euonymus laxiflorus Champ
Figure 1. The pre-incubation time experimental results 24
Figure 2. The pH stability of the ELC extract 26
Figure 3. The inhibitory activity (%) of the ELC extract against some α-amylases 27
Figure 4. The influence of reaction time on the inhibitory activity of the ELC
extract against some α-amylases
28
Chapter 3. Isolation and identification of a novel α-amylase inhibitors from Euonymus
laxiflorus Champ
Figure 1. The isolation chart of active compounds from ELC extract 36
Figure 2. Evalution of aAI (%) of the isolated compounds 37
Figure 3. Chemical structures of isolated inhibitors from ELC extract (A), Key
correlations of HMBC and COSY of 3 new compounds (B)
39
Figure 4. HPLC finger print (A) and 13C NMR spectrum (B) of PCT-ELC.3.1-d 40
Chapter 4. Biosynthesis of α-Glucosidase Inhibitors by a Newly Isolated Bacterium,
Paenibacillus sp. TKU042 and Its Effect on Reducing Plasma Glucose in a Mouse
Model
Figure 1. Screening C/N sources for fermentation 49
Figure 2. The effects of some parameters on aGIs production 50
Figure 3. The HPLC finger prints of unfermented and fermented NB 53
Figure 4. Thermal and pH stability of FNB 54
Figure 5. Effects of FNB and acarbose, alone or in combination, on the increase
in plasma glucose levels following oral sucrose loading in ICR mice.
55
參考文獻
References for introduction
1. Ley, S. H.; Hamdy, O.; Mohan, V.; Hu, F. B. Prevention and management of type 2 diabetes: Dietary components
and nutritional strategies. The Lancet. 2014, 383, 1999–2007.
2. Gerstein, H. C.; Miller, M. E.; Byington, R. P.; Goff, D. C. Jr.; Bigger, J. T.; Buse, J. B.;… Grimm, R. H. Jr.
Effects of intensive glucose lowering in type 2 diabetes. The New England Journal of Medicine. 2008, 358, 2545–
2559.
3. Aguiree, F.; Brown, A.; Cho, N. H.; Dahlquist, G.; Dodd, S.; Dunning, T.,... Patterson, C. IDF diabetes atlas (6th
ed.). http://www.idf.org/diabetesatlas (accessed Jan30,2014).
4. DeMelo, E. B.; Gomes, A.; Carvalha, I. α-and β-Glucosidase inhibitors: chemical structure and biological activity.
J. Tetrahedron. 2006, 62, 10277–10302.
5. Surya, S.; Salam, A. D.; Tomy, D. V.; Carla, B.; Kumar, R. A.; Sunil, C. Diabetes mellitus and medicinal plants-a
review. Asian Pac J Trop Dis. 2014, 4, 337-347.
6. Kaur, G.; Verma, N. Nature curing cancer – review on structural modification studies with natural active
compounds having anti-tumor efficiency. Biotechnology Reports. 2015, 6, 64–78.
7. Dey, T. B.; Chakraborty, S.; Jain, K. K.; Sharma, A.; Kuhad, R. C. Antioxidant phenolics and their microbial
production by submerged and solid state fermentation process: A review. Trends in Food Science &
Technology.2016, 53, 60 – 74.
8. Zhu, Y. P.; Yin, L. J.; Cheng, Y. Q.; Yamaki, K.; Mori, Y.; Su, Y. C.; Li. L. T. Effects of sources of carbon and
nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Food Chemistry.
2008, 109, 737–742.
9. Wang, Y. J.; Liu, L. L.; Wang, Y. S.; Xue, Y. P.; Zheng, Y. G.; Shen, Y. C. Actinoplanes utahensis ZJB-08196 fedbatch
fermentation at elevated osmolality for enhancing acarbose production. Bioresource Technology. 2012, 103,
337–342
10. Pham,H.H. MedicinalPlantsinVietnam.YouthPublisher,HoChiMinh. 2007
11. Nguyen, D. N. V.; Nguyen, T. An overview of the use of plants and animals in traditional medicine systems in Viet
Nam. TRAFFIC Southeast Asia, Greater Mekong Programme, Ha Noi, Viet Nam. 2008
12. Datta, B. K.; Rahman, I.; Das, T. K. Antifungal activity of Indian plant extracts. Mycoses. 1998, 41,535–6.
13. Ahmad, I.; Mehmood, Z.; Mohammad, F. Screening of some Indian medicinal plants for their antimicrobial
properties. J Ethnopharmacol. 1998, 62,183–93.
14. Ankli, A.; Heinrich, M.; Bork, P.; Wolfram, L.; Bauerfeind, P.; Brun, R.; Schmid, C.; Weiss, C.; Bruggisser, R.;
Gertsch, J.; Wasescha, M.; Sticher, O. Yucatec Mayan medicinal plants. Evaluation based on indigenous uses. J.
Ethnopharmacol. 2002, 79, 43–52.
15. Neto, C. C.; Owens, C. W.; Langfield, R. D.; Comeau, A. B.; Onge, J. S.; Vaisberg, A. J.; Hammond, G. B.
Antibacterial activity of some Peruvian medicinal plants from the Callejon de Huaylas. J Ethnopharmacol. 2002,
79,133–8.
16. Nguyen, V. B.; Nguyen, Q. V.; Nguyen, A. D.; Wang, S. L. Screening and evaluation of α-glucosidase inhibitors
from indigenous medicinal plants in Dak Lak Province, Vietnam. Res. Chem. Intermed. 2015, doi:10.1007/s11164-
016-2434-x
17. Schmidt, D. D.; Frommer, W.; Junge B.; Müller, L.; Wingender, W.; Truscheit, E.; Schäfer, D. α-Glucosidase
inhibitors, new complex oligosaccharides of microbial origin. Naturwissenschaften. 1997, 64, 535–536
18. Nam, H.; Jung, H.; Karuppasamy, S.; Park, Y. S.; Cho, Y. S.; Lee, J. Y.; Seong, S.; Suh, J. G. Anti-diabetic Effect
of the Soybean Extract Fermented by Bacillus subtilis MORI in db/db Mice. Food Sci. Biotechnol. 2012, 21, 1669-
1676.
19. Ezure, Y.; Maruo, S.; Miyazaki, K.; Kawamata, M. Moranoline (1-deoxynojirimycin) fermentation and its
improvement. Agr. Biol. Chem. Tokyo 1985, 49, 1119-1125.
20. Zhu, Y. P.; Yamaki, K.; Yoshihashi, T.; Ohnishi Kameyama, M.; Li, X. T.; Cheng, Y. Q.; Mori, Y.; Li, L. T.
Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from
Chinese traditional food (meitaoza). J. Agr. Food Chem. 2010, 58, 4097-4103.
7
21. Kim, H. S.; Lee, J. Y.; Hwang, K. Y.; Cho, Y. S.; Park, Y. S.; Kang, K. D.; Seong, S. I. Isolation and identification
of a Bacillus sp. producing α-glucosidase inhibitor 1-deoxynojirimycin. Korean J. Microbiol. Biothechnol. 2011,
39, 49-55.
22. Cho, Y. S.; Park, Y. S.; Lee, J. Y.; Kang, K. D.; Hwang, K.Y.; Seong, S. I. Hypoglycemic effect of culture broth of
Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Kororean Soc. Food Sci. Nutr. 2008, 37, 1401-1407.
23. Chen, J.; Cheng, Y. Q.; Yamaki, K.; Li, L. T. Anti-α-glucosidase activity of Chinese traditionally fermented
soybean (douchi). Food Chemistry. 2007, 103, 1091–1096.
24. Fujita, H.; Yamagami, T.; Ohshima, K. Efficacy and safety of Touchi extract, an a-glucosidase inhibitor derived
from fermented soybeans, in non-insulin-dependent diabetic mellitus. J. of Nutritional Biochemistry. 2001, 12,
351–356.
25. McCue, P.; Kwon, Y. I.; Shetty, K. Anti-diabetic and antihypertensive potential of sprouted and solid-state
bioprocessed soybean. Asian Pacific Journal of Clinic Nutrition. 2005, 14, 145–152.
26. Kameda, Y.; Asano, N.; Yoshikawa, M.; Takeuchi, M.; Yamaguchi, T.; Matsui, K.; Horii, S.; Fukase, H.
Valiolamine, a new alpha-glucosidase inhibiting amino-cyclitol produced by Streptomyces hygroscopicus, J.
Antibiot. 1984, 37, 1301-1307.
27. Onosea, S.; Ikedab, R.; Nakagawaa, K.; Kimurac, T.; Yamagishic, K.; Higuchid, O.; Miyazawaa, T. Production
of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chemistry. 2013, 138, 516 – 523
28. Jing, L.; Zong, S.; Li, J.; Surhio, M. M.; Ye, M. (2016). Purification, structural features and inhibition activity on α-
glucosidase of a novel polysaccharide from Lachnum YM406. Process Biochemistry. 2016, 51, 1706–1713.
29. Wang, S. L.; Li, H. T.; Zhang, L. J.; Lin, Z. H.; Kuo, Y. H. Conversion of squid pen to homogentisic acid via
Paenibacillus sp. TKU036 and the antioxidant and anti-inflammatory activities of homogentisic acid. Mar. Drugs
2016, 14, 183.

References for chapter1
1. Tiwari, A. K.; Srinivas, P. V.; Ali, A. Z.; Babu, T. H.; Nehru, K. J.; Agawane, S. B.; Rao, J. M. Fucoidan – a
novel α-amylaseinhibitor from Turbinaria ornata with relevance to NIDDM therapy. J. Indian Arecanut Spices
Med. 2007, 9, 172 – 179.
2. DeMelo, E. B.; Gomes, A.; Carvalha, I. α-and β-Glucosidase inhibitors: chemical structure and biological activity.
J. Tetrahedron. 2006, 62, 10277–10302.
3. Fatmawati, S.; Shimizua, K.; Kondoa, R. Ganoderol B: A potent α-glucosidase inhibitor isolated from the fruiting
body of Ganoderma lucidum. J. Phytomedicine. 2011, 18, 1053-1055.
4. Feng, J.; Yang, X.W.; Wang, R.F. Bio-assay guided isolation and identification of α-glucosidase inhibitors from the
leaves of Aquilaria sinensis. J. Phytochemistry. 2011, 72, 242-247.
5. T.V. Kumara, S. Lakshmanasenthil, D. Geetharamani, T. Marudhupandi, G. Suja, P. Suganya, Fucoidan – A α-dglucosidase
inhibitor from Sargassum wightii with relevance to type 2 diabetes mellitus therapy. J. International
Journal of Biological Macromolecules. 2015, 72, 1044-1047.
6. Li, D.Q.; Zhao, J.; Xie, J.; Li, S.P. A novel sample preparation and on-line HPLC-DAD-MS/MS-BCD analysis for
rapid screening and characterization of specific enzyme inhibitors in herbal extracts. J. Pharmaceutical and
Biomedical Analysis. 2014, 88, 130-135.
7. Ooi, K.L.; Loh, S.I.; Tan, M.L.; Muhammad, T.S.T.; Sulaiman, S.F. Growth inhibition of human liver carcinoma
HepG2 cells and α-glucosidase inhibitory activity of Murdannia bracteata (CB Clarke) Kuntze ex JK Morton
extracts. J. Ethnopharmacology. 2015, 162, 55-60.
8. Rengasam, K.R.R.; Aderogba, M.A.; Amoo, S.O.; Stirk, W.A.; Staden, J.V. Potential antiradical and alphaglucosidase
inhibitors from Ecklonia maxima (Osbeck) Papenfuss. J. Food Chemistry. 2013, 141, 1412-1415.
9. Satoh, T.; Igarashi, M.; Yamada, S.; Takahashi, N.; Watanabe, K. Inhibitory effect of black tea and its combination
with acarbose on small intestinal α-glucosidase activity. J. Ethnopharmacology. 2015, 161, 147-155.
10. Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20
Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and
pancreatic lipase. J. FoodChemistry. 2015, 172, 862-872.
11. Zhao, H.; Zhang, Y.; Guob, Y.; Shi, S. Identification of major α-glucosidase inhibitors in Radix Astragali and its
human microsomal metabolites using ultrafiltration HPLC-DAD-MSn. J. Pharmaceutical and Biomedical Analysis.
2015, 104, 31-37.
12. Geb, A.h.; Bai, Y.; Li, J.; Liua, J.; Hea, J.; Liu, E.w.; Zhang, P.; Zhang, B.l.; Gao, X.m.; Chang, Y.x. An activityintegrated
strategy involving ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass
spectrometry and fraction collector for rapid screening and characterization of the α-glucosidase inhibitors in
Coptis chinensis Franch. (Huanglian). J. of Pharmaceutical and Biomedical Analysis. 2014, 100, 79–87.
13. Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in dietary polyphenols as α-glucosidases inhibitors: a review
on structure-activity relationship aspect. J. Crit Rev Food Sci Nutr. 2013, 53, 818-36.
14. Kwon, Y.I.; Vattem, D.A.; Shetty, K. Evaluation of Clonal Herbs aceae species for management of Diabetes and
Hypertension. J. Asian Pacific Journal of Clinical Nutrition. 2006, 15, 107–118.
15. Ohta, T.; Sasaki, S.; Oohori, T.; Yoshikawa, S.; Kurihara, H. α- glucosidase inhibitory activity of a 70% methanol
extract from Ezoishige [Pelvetia abingtonii de Toni] and its effects on the elevation of blood glucose level in rats. J.
Bioscience Biotechnology Biochemistry. 2002, 66, 1552–1554.
16. Kim, Y.; Wang, M.; Rhee, H. A novel alpha-glucosidase inhibitor from pine bark. J. Carbohydrate Research. 2004,
339, 715–717.
17. Yu, Z.; Yin, Y.; Zhao, W.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Novel peptides derived from egg white protein
inhibiting alpha-glucosidase. J. Food Chemistry. 2011, 129, 1376–1382.
18. Bernfeld, P. Amylases: alpha and beta methods. Enzymol. 1995, 1, 149-158.
19. Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31,
426-428.
20. Abe, M.; Domoto, C.; Arai, S.; Abe, K.; Iwabuchi, K. Corn cystatin I expressed in 384 Escherichia coli:
investigation of its inhibitory profile and occurrence in corn kernels. J. of Biochemistry. 1994, 116, 489-492
21. Ghose, T. K. Measurement of cellulose activities. Pure Appl. Chem. 1987, 59, 257-268
22. Yen, G.C.; Hsieh, C.L. Antioxidant activity of extracts from Du-zhong (Eucommia ulmoides) toward various lipid
peroxidation in vitro. J. Agric Food Chem. 1998, 46, 3952-7.
23. Dubois, M.; Gills, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars
and related substances. J. Analytical Chemistry. 1956, 28, 350-356.

References for chapter2
1. Tiwari, A. K.; Srinivas, P. V.; Ali, A. Z.; Babu, T. H.; Nehru, K. J.; Agawane, S. B.; Rao, J. M. Fucoidan – a
novel α-amylaseinhibitor from Turbinaria ornata with relevance to NIDDM therapy. J. Indian Arecanut Spices
Med. 2007, 9, 172 – 179.
2. DeMelo, E. B.; Gomes, A.; Carvalha, I. α-and β-Glucosidase inhibitors: chemical structure and biological activity.
J. Tetrahedron. 2006, 62, 10277–10302.
3. Richardson, M. Seed storage proteins: the enzyme inhibitors. Methods in Plant Biochemistry. 1991, 5, 259–305.
4. Lakshmanasenthil, S.; Vinothkumar, T.; Geetharamani, D.; Marudhupandi, T.; Suja, G.; Sindhu, N. S.
Fucoidan—a novel α-amylase inhibitor from Turbinaria ornata with relevance to NIDDM therapy. J. Biocatalysis
and Agricultural Biotechnology. 2014, 3, 66–70.
5. Zeng, F.; Wang, X.; Cui, J.; Ma, Y,; Li, Q. Effects of a New Microbial α-Amylase Inhibitor Protein on Helicoverpa
armigera Larvae. J. Agric. Food Chem. 2013, 61, 2028−2032.
6. Bandna, K.; Pratima, S.; Amarjit, K. N. α-Amylase inhibitor in local Himalyan collections of Colocasia: Isolation,
purification, characterization and selectivity towards α-amylases from various sources. J. Pesticide Biochemistry
and Physiology. 2012, 103, 49–55.
7. Feng, G.H.; Richardson, M.; Chen, M. S.; Kramer, K.J.; Morgan, T.D.; Reeck, G.R. α-Amylase inhibitors from
wheat: amino acid sequences and patterns of inhibition of insect and human α-amylases. Insect Biochem. Mol. Biol,
1996, 26, 419–426.
31
8. Franco, O. L.; Ridgen, D. J.; Melo, F. R.; Bloch C. Jr.; Silva, C. P.; Grossi-de-Sa, M.F. Activity of wheat alphaamylase
inhibitors towards bruchid alpha-amylases and structural explanation of observed specificities. Eur. J.
Biochem, 2000, 267, 2166–2173.
9. Giri, A. P.; Kachole, M. Amylase inhibitor s of pigeonpea (Cajanus cajan) seeds. Phytochemistry. 1998, 47, 197–
202.
10. Grossi-de-Sa, M. F.; Mirkov, T. E.; Ishimoto, M.; Colucci, G.; Bateman, K. S.; Chrispeels, M.J. Molecular
characterization of a bean alpha-amylase inhibitor that inhibits the alpha-amylase of the mexican bean weevil
Zabrotes subfasciatus. Planta, 1997, 203, 295–303.
11. Liangliang, L.; Yin, C.; Fang, L.; Jingang Y.; Xinyu, J.; Xiaoqing, C. Analysis of α-amylase from corni fructus by
coupling magnetic cross-linked enzyme aggregates of α-amylase with HPLC-MS. J. Chromatography B. 2015,
995-996, 64-69.
12. Marshall, J. J.; Lauda, C. M. Purification and properties of phaseolamin, an Inhibitor of α-amvlase, from the kidnev
bean Phaseolus vulgaris. J. Biol. Chem. 1975, 250, 8030–8037.
13. Melo, F. R.; Sales, M. P.; Pereira, L. S.; Bloch C. Jr.; Franco, O. L.; Ary, M. B. α-Amylase inhibitors from cowpea
seeds. Prot. Peptide Letters. 1999, 6, 385–390.
14. Ryan, C. A. Protease inhibitors in plants: genes for improving defense against insects and pathogens. Annu. Rev.
Phytopath. 1990, 28, 425–449.
15. Wang, H. H.; Chen, C. L.; Jeng, T. L.; Sung, J. M. Comparisons of a-amylase inhibitors from seeds of common
bean mutants extracted through three phase partitioning. J. FoodChemistry. 2011, 128, 1066–1071.
16. Yamagata, H.; Kunimatsu, K.; Kamasaka, H.; Kuramoto, T.; Iwasaki, T. Rice bifunctional α-amylase/subtilisin
inhibitor: characterization, localization, and changes in developing and germinating seeds. Biosci. Biotechnol.
Biochem. 1998, 62, 978–985.
17. Nguyen, V. B.; Nguyen, Q. V.; Nguyen, A. D.; Wang, S. L. Screening and evaluation of α-glucosidase inhibitors
from indigenous medicinal plants in Dak Lak Province, Vietnam. J. Research on Chemical Intermediates. 2015,
doi: 10.1007/s11164-016-2434-x
18. Sasikiran, K.; Rekha, M. R.; Padmaja, G. Purification and partial characterization of proteinase and α–amylase
inhibitors from lesser yam (Dioscorea esculenta), Int. J. FoodProp. 2014, 7 185–199
19. McEwan, R.; Madivha, R. P.; Djarova, T.; Oyedeji, O. A.; Opoku, A. R. Alpha-amylase Inhibitor of amadumbe
(Colocasia esculenta):Isolation, purification and selectivity toward α-amylases from various sources. Afr.
J.Biochem.Res. 2010, 4, 220–224.
20. Bernfeld, P. Amylases: alpha and beta methods. Enzymol. 1995, 1, 149-158
21. Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31,
426-428.
22. Yu, Z.; Yin, Y.; Zhao, W.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Novel peptides derived from egg white protein
inhibiting alpha-glucosidase. J. Food Chemistry. 2011, 129, 1376–1382.

References for chapter3
1. Low L. C. The epidemic of type 2 diabetes mellitus in the Asia-Pacific region. Pediatric Diabetes. 2010, 11, 212–
5.
2. Nguyen V. B.; Nguyen A. D.; Kuo Y. H.; Wang S. L. Biosynthesis of α– glucosidase inhibitors by a newly
isolated bacterium, Paenibacillus sp. TKU042 and its effect on reducing plasma glucose in mouse model. Int. J.
Mol. Sci. 2017, 18, 700.
3. Cambell, R. K. Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clin.
Ther. 2011, 33, 511-527.
4. Lakshmanasenthil, S.; Vinothkumar, T.; Geetharamani, D.; Marudhupandi, T.; Suja, G.; Sindhu, N. S. Fucoidan- a
novel α-amylase inhibitor from Turbinaria ornata with relevance to NIDDM therapy. Biocatalysis Agric.
Biotechnol. 2014, 3, 66-70.
5. Nguyen, V. B.; Nguyen, Q. V.; Nguyen, A. D.; Wang, S. L. Porcine pancreatic α-amylase inhibitors from
Euonymus laxiflorus Champ. Res. Chem. Intermed. 2017, 43, 259-269.
6. Whitaker, J. R. ɑ-Amylase inhibitors of higher plants and microorganisms, in: J.E. Kinsella, W.G. Soucle (Eds.),
Food Protein Proc. Prot. Co-Prot. Symp., AM. Oil Chem. Soc., Champaign, IL, USA. 1988, 354–380.
7. Svensson, B.; Fukuda, K.; Nielsen, P. K.; Bonsager, B. C. Proteinaceous a-amylase inhibitors. Biochimica et
Biophysica Acta. 1696 (2004), 145–156
8. Francoise, P. Structural basis for the inhibition of mammalian and insect a-amylases by plant protein inhibitors.
Biochimica et Biophysica Acta. 2004, 1696, 171–180
9. Prafull, P. G.; Sandip K. W.; Faiyaz K. S.; Rajesh D. T.; Manohar V. P.; Manvendra S. K. A bifunctional α-
amylase/trypsin inhibitor from pigeonpea seeds: Purification, biochemical characterization and its bio-efficacy
against Helicoverpa armigera. Pesticide Biochemistry and Physiology. 2015, 125, 17–25.
10. Guzman-Partida, A. M.; Jatomea-Fino, O.; Robles-Burgueno, M. R.; Ortega-Nieblas, M.; Vazquez-Moreno, L.
Characterization of ɑ-amylase inhibitor from Palo Fierro seeds. Plant Physiology and Biochemistry. 2007, 45,
711-715.
11. Rimaljeet K.; Narinder K.; Anil K. G. Structural features, substrate specificity, kinetic properties of insect α-
amylase and specificity of plant ɑ-amylase inhibitors. Pesticide Biochemistry and Physiology. 2014, 116, 83–93
12. Weselake, R. J.; MacGregor, A. W.; Hill, R. D. An endogenous ɑ -amylase inhibitor in barley kernel.
PlantPhysiol. 1983, 72, 809–812.
13. Barber, D.; Sanchez-Monge, R.; Mendez, E.; Lazaro, A.; Garcia-Olmedo, F.; Salcedo, G. New a-amylase and
trypsin inhibitors among the CM-proteins of barley (Hordeum vulgare). Biochim. Biophys. Acta. 1986, 869, 115–
118.
14. Franco, O. L.; Rigden, D. J.; Melo, F. R.; Grossi-de-Sa`, M. F. Plant α-amylase inhibitors and their interaction
with insect a-amylases. Structure, function and potential for crop protection. Eur. J. Biochem. 2002, 269, 397–412.
15. Ho, M. F.; Yin, F. F.; Lajolo, F.; Whitaker, J. R. Naturally occurring α-amylase inhibitors: structure/function
relationships, in: R.Y. Yada, R.L. Jackman, J.L. Smith (Eds.), Protein Structure–Function Relationshipsin Foods,
Blackie Academic & Professional, London. 1994, 89–119.
45
16. Priya, S.; Kumar, S.; Kaur, N.; Gupta, A. K. Specificity of α-amylase and trypsin inhibitor proteins in wheat
against insect pests. New Zeal. J. Crop Hort. 2013, 41, 49–56.
17. Wiegand, G.; Epp, O.; Huber, R. The crystal structure of porcine pancreatic α-amylase in complex with the
microbial inhibitor Tendamistat. J. Mol. Biol. 1995, 247, 99–110.
18. Silva, S. M.; Koehnlein, E. A.; Bracht, A.; Castoldi, R.; Morais, G. R.; Baesso, M. L.; Peralta, R. A.; Souza, C. G.
M.; Sá-Nakanishi, A. B.; R. M. Peralta. Inhibition of salivary and pancreatic α-amylases by a pinhão coat
(Araucaria angustifolia) extract rich in condensed tannin. Food Research International. 2014, 56, 1–8.
19. Marques, T. R.; Caetano, A. A.; Simão, A. A.; O. Castro, F. C.; Ramos, V. O.; Corrêa. A. D. Metanolic extract of
Malpighia emarginata bagasse: phenolic compounds and inhibitory potential on digestive enzymes. Revista
Brasileira de Farmacognosia. 2016, 26, 191–196.
20. Liub, L.; Cen, Y.; Liu, F.; Yu, J.; Jiang, X.; Chen, X. Analysis of a-amylase inhibitor from corni fructus by
coupling magnetic cross-linked enzyme aggregates of a-amylase with HPLC–MS. Journal of Chromatography B.
2015, 995–996, 64–69.
21. Trinh B. T. D.; Staerk , D; Jäger, A. K. Screening for potential α-glucosidase and α-amylase inhibitory
constituents from selected Vietnamese plants used to treat type 2 diabetes. Journal of Ethnopharmacology. 2016,
186, 189–195.
22. Nguyen, V. B.; Nguyen, Q. V.; Nguyen, A. D.; Wang, S. L. Screening and evaluation of α-glucosidase inhibitors
from indigenous medicinal plants in Dak Lak Province, Vietnam. Res. Chem. Intermed. 2016, doi:
10.1007/s11164-016-2434-x
23. Nguyen, Q. V.; Nguyen, N. H.; Wang, S. L.; Nguyen, V. B.; Nguyen, A. D. Free radical scavenging and
antidiabetic activities of Euonymus laxiflorus Champ extract. Res. Chem. Intermed. 2017, doi: 10.1007/s11164-
017-2951-2
24. Liu, L. M.; Cheng, S. F.; Shieh, P. C.; Lee, J. C.; Chen, J. J.; Ho, C. T.; Kuo, S. C.; Kuo, D. H ; Huang, L. J.; Way,
T. D. The methanol extract of Euonymus laxiflorus, Rubia lanceolata and Gardenia jasminoides inhibits xanthine
oxidase and reduce serum uric acid level in rats. Food Chem Toxicol. 2014, 70, 179-84
25. Kuo Y. H.; Huang, H. C.; Chiou, W. F.; Shi, L.-S.; Wu, T. S.; Wu, Y. C. A novel NO - production-inhibiting
triterpene and cytotoxicity of known alkaloids from Euonymus laxiflorus. Journal of Natural Products. 2003, 66,
554 – 557
26. Medini, F.; Megdiche, W.; Mshvildadze, V.; Pichette, A.; Legault, J.; St-Gelais, A.; Ksouri, R. Antiviral-guided
fractionation and isolation of phenolic compounds from Limonium densiflorum hydroalcoholic extract. Comptes
Rendus Chimie, 2016 , 19, 726 – 732
27. Nomizu, K.; Hashida, K.; Makino, R.; Ohara. S. Antioxidants from steamed used tea leaves and their reaction
behavior. Biosci. Biotechnol. Biochem. 2008, 72, 1682–1689
28. Shrestha, S.; Lee, D. Y.; Park, J. H.; Cho, J. G.; Lee, D. S.; Li, B.; Kim, Y. C.; Kim, G.; Bang, M. H.; Baek, N.
I. Phenolic components from Rhus parviflora fruits and their inhibitory effects on lipopolysaccharide-induced
nitric oxide production in RAW 264.7 macrophages. Natural Product Research, 2013 , 27, 2244 – 2247
29. Schofield, P.; Mbugua, D. M.; Pell, A. N. Analysis of condensed tannins: a review. Animal Feed Science and
Technology. 2001, 91, 21-40.
30. Gu, H. F.; Li, C. M.; Xu, Y. J.; Hu, W. F.; Chen, M. H.; Wan, Q. H. Structural features and antioxidant activity of
tannin from persimmon pulp. Food Res. Int. 2008, 41, 208–217.
31. Li, C.; Leverence, R.; Trombley, J. D.; Xu, S.; Yang, J.; Tian, Y.; Reed, J. D.; Hagerman, A. E. High Molecular
Weight Persimmon (Diospyros kaki L.) Proanthocyanidin: A highly galloylated, a-Linked tannin with an unusual
flavonol terminal unit, myricetin. J. Agric. Food Chem. 2010, 58, 9033-9042.
32. Chai, W. M.; Shi, Y.; Feng, H. L.; Qiu, L.; Zhou, H. C.; Deng, Z. W.; Yan, C. L.; Chen. Q. X. NMR, HPLC-ESIMS,
and MALDI-TOF MS Analysis of Condensed Tannins from Delonix regia (Bojer ex Hook.) Raf. and Their
Bioactivities. J. Agric. Food Chem. 2012, 60, 5013−5022
33. Guo, P.; Anderson, J. D.; Bozell, J. J.; Zivanovic, S. The effect of solvent composition on grafting gallic acid onto
chitosan via carbodiimid. Carbohydrate Polymers. 2016 , 140, 171–180
46
34. Ishimaru, K.; Nonaka, G. I.; Nishioka, I. Phenolic glucoside gallates from quercus mongolica and Q. acutissima.
Phytochemistry. 1987 , 26, 1147 – 1152
35. Lianda, R. L. P.; Sant'ana, L. D.; Echevarria, A.; Castro, R. N. Polyphenolic compounds in the fruits of Egyptian
medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): Characterization,
quantitation and determination of antioxidant capacities. Journal of the Brazilian Chemical Society. 2012, 23, 618
- 627
36. He, J.; Xing, Y. F.; Huang, B.; Zhang, Y. Z.; Zeng, C. M. Tea catechins induce the conversion of preformed
lysozyme amyloid fibrils to amorphous aggregates. J. Agric. Food Chem. 2009, 57,11391 – 11396
37. Ngoumfo, R. M.; Ngounou, G. E.; Tchamadeu, C. V.; Qadir, M. I.; Mbazoa, C. D.; Begum, A.; Ngninzeko, F. N.;
Lontsi, D.; Choudhary, M. I. Inhibitory effect of macabarterin, a polyoxygenated ellagitannin from Macaranga
barteri, on human neutrophil respiratory burst activity. Journal of Natural Products. 2008 , 71, 1906 - 1910
38. Kwon, D, H.; Choi, W. J.; Lee, C. H.; Kim, J. H.; Kim, M. B. Flavonoid compound having an antiviral activity.
Patent: US2009/171074 A1, 2009
39. Sadik; Islam; Rahman; Khondkar; Rashid; Sarker. Antimicrobial and cytotoxic constituents of Loranthus globosus.
Fitoterapia. 2003 , 74, 308 – 311
40. Rawat, P.; Khan, M. F.; Kumar, M.; Tamarkar, A. K.; Srivastava, A. K.; Arya, K. R.; Maurya, R. Constituents
from fruits of Cupressus sempervirens. Fitoterapia, 2010 , 81, 162 – 166.
41. Zhao, J.; Zhou, X. W.; Chen, X. B.; Wang, Q. X. α-glucosidase inhibitory constituents from Toona sinensis.
Chemistry of Natural Compounds, 2009, 45, 244 – 246.
42. Hara, Y.; Honda, M. The Inhibition of α-amylase by tea polyphenols. Agricultural and Biological
Chemistry. 1990, 54, 1939 – 1945.
43. Sanae, F.; Miyaichi, Y.; Kizu, H.; Hayashi, H. Effects of catechins on vascular tone in rat thoracic aorta with
endothelium. Life Sciences. 2002 , 71,. 2553 – 2562.
44. Nguyen, Q. V.; Nguyen, V. B.; Eun, J. B.; Wang, S. L.; Nguyen, D. H.; Tran T. N.; Nguyen, A. D. Anti-oxidant
and antidiabetic effect of some medicinal plants belong to Terminalia species collected in Dak Lak Province,
Vietnam. Res. Chem. Intermed. 2016, 42, 5859-5871

References for chapter4
1. Cambell, R.K. Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clin. Ther.
2011, 33, 511–527.
2. Lakshmanasenthil, S.; Vinothkumar, T.; Geetharamani, D.; Marudhupandi, T.; Suja, G.; Sindhu, N.S. Fucoidan—A
novel α-amylase inhibitor from Turbinaria ornata with relevance to NIDDM therapy. Biocatal. Agric. Biotechnol.
2014, 3, 66–70.
3. DeMelo, E.B.; Gomes, A.; Carvalha, I. α-and β-Glucosidase inhibitors: Chemical structure and biological activity.
J. Tetrahedron 2006, 62, 10277–10302.
4. Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food
Sci. Hum. Wellness 2014, 3, 136–174.
5. Chen, J.; Cheng, Y.Q.; Yamaki, K.; Li, L.T. Anti-α-glucosidase activity of Chinese traditionally fermented soybean
(douchi). Food Chem. 2007, 103, 1091–1096.
6. Fujita, H.; Yamagami, T.; Ohshima, K. Long-term ingestion of touchi-extract, a α-glucosidase inhibitor, by
borderline and mild type-2 diabetic subjects is safe and significantly reduces blood glucose levels. Nutr. Res. 2003,
23, 713–722.
7. Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, in vitro evaluation and molecular docking studies of novel
triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem. 2017, 125, 423–429.
8. Ezure, Y.; Maruo, S.; Miyazaki, K.; Kawamata, M. Moranoline (1-deoxynojirimycin) fermentation and its
improvement. Agric. Biol. Chem. Tokyo 1985, 49, 1119–1125.
9. Kameda, Y.; Asano, N.; Yoshikawa, M.; Takeuchi, M.; Yamaguchi, T.; Matsui, K.; Horii, S.; Fukase, H.
Valiolamine, a new α-glucosidase inhibiting amino-cyclitol produced by Streptomyces hygroscopicus. J. Antibiot.
1984, 37, 1301–1307.
10. Kim, H.S.; Lee, J.Y.; Hwang, K.Y.; Cho, Y.S.; Park, Y.S.; Kang, K.D.; Seong, S.I. Isolation and identification of a
Bacillus sp. producing α-glucosidase inhibitor 1-deoxynojirimycin. Korean J. Microbiol. Biotechnol. 2011, 39, 49–
55.
11. Onose, S.; Ikeda, R.; Nakagawa, K.; Kimura, T.; Yamagishi, K.; Higuchi, O.; Miyazawa, T. Production of the α-
glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chem. 2013, 138, 516–523.
12. Nam, H.; Jung, H.; Karuppasamy, S.; Park, Y.S.; Cho, Y.S.; Lee, J.Y.; Seong, S.; Suh, J.G. Anti-diabetic effect of
the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci. Biotechnol. 2012, 21, 1669–
1676.
13. Zhu, Y.P.; Yamaki, K.; Yoshihashi, T.; Ohnishi, K.M.; Li, X.T.; Cheng, Y.Q.; Mori, Y.; Li, L.T. Purification and
identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional
food (meitaoza). J. Agric. Food Chem. 2010, 58, 4097–4103.
14. Cho, Y.S.; Park, Y.S.; Lee, J.Y.; Kang, K.D.; Hwang, K.Y.; Seong, S.I. Hypoglycemic effect of culture broth of
Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1401–1407.
15. Zheng, Y.G.; Xue, Y.P.; Shen, Y.C. Production of valienamine by a newly isolated strain: Stenotrophomonas
maltrophilia. Enzym. Microb. Technol. 2006, 39, 1060–1065.
60
16. Schmidt, D.D.; Frommer, W.; Junge, B.; Müller, L.; Wingender, W.; Truscheit, E.; Schäfer, D. α-Glucosidase
inhibitors, new complex oligosaccharides of microbial origin. Naturwissenschaften 1977, 64, 535–536.
17. Fujita, H.; Yamagami, T.; Ohshima, K. Efficacy and safety of Touchi extract, an a-glucosidase inhibitor derived
from fermented soybeans, in non-insulin-dependent diabetic mellitus. J. Nutr. Biochem. 2001, 12, 351–356.
18. McCue, P.; Kwon, Y.I.; Shetty, K. Anti-diabetic and antihypertensive potential of sprouted and solid-state
bioprocessed soybean. Asian Pac. J. Clin. Nutr. 2005, 14, 145–152.
19. Jing, L.; Zong, S.; Li, J.; Surhio, M.M.; Ye, M. Purification, structural features and inhibition activity on α-
glucosidase of a novel polysaccharide from Lachnum YM406. Process Biochem. 2016, 51, 1706–1713.
20. Wang, S.L.; Li, H.T.; Zhang, L.J.; Lin, Z.H.; Kuo, Y.H. Conversion of squid pen to homogentisic acid via
Paenibacillus sp. TKU036 and the antioxidant and anti-inflammatory activities of homogentisic acid. Mar. Drugs
2016, 14, 183.
21. Liang, T.W.; Wang, S.L. Recent advances in exopolysaccharides from Paenibacillus spp.: Production, isolation,
structure, and bioactivities. Mar. Drugs 2015, 13, 1847–1863.
22. Liang, T.W.; Tseng, S.C.; Wang, S.L. Production and characterization of antioxidant properties of
exopolysaccharides from Paenibacillus mucilaginosus TKU032. Mar. Drugs 2016, 14, 40–51.
23. Liang, T.W.; Wu, C.C.; Cheng, W.T.; Chen, Y.C.; Wang, C.L.; Wang, I.L.; Wang, S.L. Exopolysaccharides and
antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014, 172,
933–950.
24. Sermsathanaswadi, J.; Baramee, S.; Tachaapaikoon, C.; Pason, P.; Ratanakhanokchai, K.; Kosugi, A. The family
22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus
B-6 has an important role in lignocellulose degradation. Enzym. Microb. Technol. 2017, 96, 75–84.
25. Shi, R.; Liu, Y.; Mu, Q.; Jiang, Z.; Yang, S. Biochemical characterization of a novel L-asparaginase from
Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. Int. J. Biol.
Macromol. 2017, 96, 93–99.
26. Yang, S.; Fu, X.; Yan, Q.; Guo, Y.; Liu, Z.; Jiang, Z. Cloning, expression, purification and application of a novel
chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem. 2016, 192, 1041–1048.
27. Seo, D.J.; Lee, Y.S.; Kim, K.Y.; Jung, W.J. Antifungal activity of chitinase obtained from Paenibacillus ehimensis
MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microb. Pathogenes. 2016, 96, 10–14.
28. Hong, C.E.; Kwon, S.Y.; Park, J.M. Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas
syringae and its interaction with Arabidopsis thaliana. Microbiol. Res. 2016, 185, 13–21.
29. Lal, S.; Tabacchioni, S. Ecology and biotechnological potential of Paenibacillus polymyxa: A minirevie. Indian J.
Microbiol. 2009, 49, 2–10
30. Puri, A.; Padda, K.P.; Chanway, C.P. Evidence of nitrogen fixation and growth promotion in canola (Brassica
napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol. Fertil. Soils 2016, 52, 119–125.
31. Zhu, Y.P.; Yin, L.J.; Cheng, Y.Q.; Yamaki, K.; Mori, Y.; Su, Y.C.; Li, L.T. Effects of sources of carbon and
nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Food Chem.
2008, 109, 737–742.
32. Nguyen, V.B.; Nguyen, Q.V.; Nguyen, A.D.; Wang, S.L. Screening and evaluation of α-glucosidase inhibitors
from indigenous medicinal plants in Dak Lak Province, Vietnam. Res. Chem. Intermed. 2015, doi:10.1007/s11164-
016-2434-x
33. Zhang, L.; Hogan, S.; Li, J.; Sun, S.; Canning, C.; Zheng, S.J.; Zhou, K. Grape skin extract inhibits mammalian
intestinal α-glucosidase activity and suppresses postprandial glycemic response in streptozocin-treated mice. Food
Chem. 2011, 126, 466–471.
34. Trinh, B.T.D.; Staerk, D.; Jäger, A.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents
from selected Vietnamese plants used to treattype 2 diabetes. J. Ethnopharmacol. 2016, 186, 189–195.
35. Nguyen, V.B.; Nguyen, Q.V.; Nguyen, A.D.; Wang, S.L. Porcine pancreatic α-amylase inhibitors from Euonymus
laxiflorus Champ. Res. Chem. Intermed. 2017, 43, 259–269.
61
36. Kwon, Y.I.; Jang, H.D.; Shetty, K. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II
diabetes and hypertension. Asia Pac. J. Clin. Nutr. 2006, 15, 425–432.
37. Kim, Y.; Wang, M.; Rhee, H. A novel α-glucosidase inhibitor from pine bark. J. Carbohydr. Res. 2004, 339, 715–
717.
38. Yu, Z.; Yin, Y.; Zhao, W.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Novel peptides derived from egg white protein
inhibiting α-glucosidase. Food Chem. 2011, 129, 1376–1382.
39. Liang, T.W.; Chen, W.T.; Lin, Z.H.; Kuo, Y.H.; Nguyen, A.D.; Pan, P.S.; Wang, S.L. An amphiprotic novel
chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant
and anti-inflammatory evaluation. Int. J. Mol. Sci. 2016, 17, 1302.
40. Arai, I.; Amagaya, S.; Komatsu, Y.; Okada, M.; Hayashi, T.; Kasai, M.; Arisawa, M.; Momose, Y. Improving
effects of the extracts from Eugenia uniflora on hyperglycemia and hypertriglyceridemia in mice. J.
Ethnopharmacol. 1999, 68, 307–314.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信