§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1306201116024200
DOI 10.6846/TKU.2011.00406
論文名稱(中文) 以反應曲面法探討配水管線之防蝕水質組合
論文名稱(英文) Investigation of the effect of water quality composition on corrosivity of drinking water using response surface methodology(RSM)
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 陳妤亭
研究生(英文) Yu-Ting Chen
學號 699480116
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-06-12
論文頁數 104頁
口試委員 指導教授 - 李奇旺(chiwangli@gmail.com)
委員 - 李奇旺(chiwangli@gmail.com)
委員 - 陳孝行(f10919@ntut.edu.tw)
委員 - 康世芳(kangsf@mail.tku.edu.tw)
關鍵字(中) 反應曲面法
部分因子設計
鑄鐵
配水系統
藍氏飽和指標
關鍵字(英) Response surface methodology (RSM)
Fractional factorial design
Ductile-iron
Water distribution system
Langelier saturation index
第三語言關鍵字
學科別分類
中文摘要
過去文獻及研究幾乎沒有針對多個配水管線之腐蝕因子一起進行實驗,都只以一次變動一個因子方式進行實驗並探討,此傳統方法未必能找尋最佳化組合,因腐蝕因子間皆會相互影響,故本實驗將腐蝕之因子進行部分因子設計實驗,篩選出對於腐蝕速率及總鐵濃度較為顯著之因子進行反應曲面法,再以聯立最佳化技術尋求符合飲用水質標準的最佳解。
本研究以配水管線使用的鑄鐵材質試片進行瓶杯試驗,實驗參數為pH(6.0-8.5)、鹼度(50-150 mg/L as CaCO3)、餘氯濃度(0.2-1.0 mg/L)、磷酸鹽防蝕劑(0-1 mg/L as P)、實驗時間(2-10天)、水溫(6-38℃)和水體搖晃(0-140 rpm)。實驗參數範圍是參照文獻及目前的飲用水質標準選定。
由部分因子設計可知,對於腐蝕速率較為顯著之主效應為溫度、搖晃、鹼度;而對總鐵濃度較為重要之前三個顯著主效應為pH、實驗天數、溫度。最後篩選出pH值、鹼度及水溫三個參數進行反應曲面法,結果發現在水溫6℃、pH 8.5及鹼度為50-130 mg/L可達到較好的防蝕水質組合,可減少飲用水產生色度及增加管線的使用年限。
英文摘要
Face-centered central composite design (FCD) model, a model that belongs to the response surface methodology (RSM), was used in this study to obtain the optimum operating conditions for less corrosion rate and less release of iron in the solution. Then, the best operation condition is found out through simultaneous optimization technique.
In the research, the ductile-iron of coupon is used for the bench-scale test, and the factors tested are pH (6.0-8.5), alkalinity (50-150 mg/L as CaCO3), chlorine (0.2-1.0 mg/L), phosphate inhibition (0-1 mg/L as P), contact time (2-10 days), temperature (6-38℃) and rotation (0-140 rpm). The selected range of the factors mentioned above is based on the literatures and the present drinking water standards of Taiwan. 
According to fractional factorial design, the most significant factors affecting corrosion rate are temperature, rotation and alkalinity. On the other hand, pH, contact time and temperature are the main factors affecting the release of iron in the solution. Finally, pH, alkalinity and temperature are selected to build the corrosion models using response surface methodology. Based on the models, the combination of operation condition with less corrosivity in terms of weight loss of test coupon and release of iron in solution is at temperature of 6℃, pH of 8.5 and alkalinity of 50-130 mg/L.
第三語言摘要
論文目次
圖目錄	IV
表目錄	VI
第一章、前言	1
1-1 研究緣起	1
1-2 研究目的	2
第二章、文獻回顧	3
2-1 金屬腐蝕機制	3
2-2 影響腐蝕之參數	4
2-2-1 pH	5
2-2-2 鹼度	7
2-2-3 自由餘氯	8
2-2-4 磷酸鹽	9
2-2-5 接觸時間	11
2-2-6 溫度	12
2-2-7 流速	13
2-2-8 溶氧	13
2-3 鏽蝕層	15
2-4 腐蝕評估	17
2-4-1 藍式飽和指數	17
2-4-2 腐蝕速率	18
2-4-3 腐蝕實驗之反應值比較	20
2-5 實驗設計	22
2-5-1 因子設計	22
2-5-2 反應曲面法	27
2-5-3 聯立最佳化技術	28
第三章、實驗材料與方法	30
3-1 實驗流程	30
3-2 實驗材料	31
3-2-1 石墨鑄鐵片	31
3-2-2 實驗水樣	31
3-2-3 實驗藥品	33
3-3 實驗設備	35
3-3-1 實驗裝置	35
3-3-2 實驗儀器	36
3-4 實驗方法	36
3-4-1 轉速變因實驗	37
3-4-2 部分因子設計	37
3-4-3 反應曲面法	41
3-5 實驗分析	42
3-5-1 重量損失	42
3-5-2 鹼度分析	43
3-5-3 總溶解固體之分析	43
3-5-4 總鐵及溶解鐵濃度分析	44
3-5-5 二價鐵及三價鐵濃度分析	45
3-5-6 鈣濃度分析	46
3-5-7 餘氯分析之DPD法	47
3-5-8 總磷濃度之分析	48
第四章、結果與討論	50
4-1 轉速變因實驗	50
4-2 部分因子設計	56
4-2-1 腐蝕速率分析	56
4-2-2 溶液中總鐵濃度分析	62
4-2-3 腐蝕參數之探討	67
4-3 反應曲面法	70
4-3-1 腐蝕速率分析	71
4-3-2 溶液中總鐵濃度分析	78
4-3-3 探討較佳防蝕水質組合	83
4-4 腐蝕指標之探討	90
第五章、結論與建議	94
5-1 結論	94
5-2 建議	95
參考文獻	96

表目錄
Table 1.各種不同單位之腐蝕速率平衡常數(K) ......................................... 19
Table 2. 23-1 因子設計的正負號表 ..................................................................... 24
Table 3. Central Composite Design 與Box-Benhken Design 之比較 ............... 28
Table 4.本校實驗室自來水之水質分析表 ........................................................ 32
Table 5 部份因子設計之因子及其水準 ............................................................ 38
Table 6. 27-3 部份因子設計結合中心點 ............................................................. 39
Table 7. 27-3 部分因子設計之別名關係 ............................................................. 40
Table 8.三因子之反應曲面法結合面中心中央合成設計 ................................ 42
Table 9.轉速變因實驗結果之比較 .................................................................... 55
Table 10.因子設計-腐蝕速率分析之試驗值 .................................................. 57
Table 11.因子設計-腐蝕速率分析之試驗值(中心點) .............................. 58
Table 12.因子設計-腐蝕速率分析之所有的效應估計 .................................. 59
Table 13.因子設計-腐蝕速率分析之ANOVA ............................................... 62
Table 14.因子設計-總鐵濃度分析之試驗值 .................................................. 63
Table 15.因子設計-總鐵濃度分析之試驗值(中心點) .............................. 64
Table 16.因子設計-總鐵濃度分析之所有的效應估計 .................................. 65
Table 17.因子設計-總鐵濃度分析之ANOVA ............................................... 67
Table 18.反應曲面法之因子及其水準 .............................................................. 71
Table 19.反應曲面法-腐蝕速率分析試驗值 .................................................. 72
Table 20.配適腐蝕速率模型的差異 .................................................................. 74
Table 21.反應曲面法-腐蝕速率分析之ANOVA ........................................... 75
Table 22.腐蝕速率模型之統計資料彙整 .......................................................... 75
Table 23.反應曲面法-總鐵濃度分析試驗值 .................................................. 79
VII
Table 24.配適總鐵濃度模型的差異 .................................................................. 80
Table 25.反應曲面法-總鐵濃度分析之ANOVA ........................................... 80
Table 26.總鐵濃度模型之統計資料彙整 .......................................................... 81
Table 27.各反應值之願望函數 .......................................................................... 88
Table 28.LSI 與腐蝕速率、總鐵濃度之t 檢定 ................................................ 91
Table 29.在水體搖晃的條件下,LSI 與腐蝕速率、總鐵濃度之t 檢定 ........ 93
Table 30.在水體靜置的條件下,LSI 與腐蝕速率、總鐵濃度之t 檢定 ........ 93
Table 31.實驗時間2 天,LSI 與腐蝕速率、總鐵濃度之t 檢定 .................... 94
Table 32.實驗時間6 天,LSI 與腐蝕速率、總鐵濃度之t 檢定 .................... 95
Table 33.實驗時間10 天,LSI 與腐蝕速率、總鐵濃度之t 檢定 .................. 95
Table 34.LSI 對腐蝕速率及總鐵濃度之t 檢定結果整理 ................................ 96

圖目錄
Figure 1.鏽蝕層之形成 ....................................................................................... 16
Figure 2. 23-1 部分因子設計投影成三個22 全因子設計 .................................. 23
Figure 3. 23 因子設計的兩個1/2 部分 .............................................................. 25
Figure 4.三因子之配適二階模型設計 ............................................................... 28
Figure 5.實驗流程圖 ........................................................................................... 30
Figure 6.鑄鐵試片 ............................................................................................... 31
Figure 7.實驗裝置 ............................................................................................... 35
Figure 8.三因子之面中心中央合成設計 ........................................................... 41
Figure 9.總鐵之檢量線 ....................................................................................... 45
Figure 10. Fe2+之檢量線 ..................................................................................... 46
Figure 11.鈣之檢量線 ......................................................................................... 47
Figure 12.自由有效餘氯之檢量線 ..................................................................... 48
Figure 13.磷之檢量線 ......................................................................................... 49
Figure 14.水樣攪拌及靜置與試片重量損失之關係 ......................................... 52
Figure 15.水樣攪拌及靜置與鏽蝕層多寡之關係 ............................................. 52
Figure 16.水樣攪拌及靜置與鐵溶出量之關係 ................................................. 53
Figure 17.水樣攪拌及靜置與鏽蝕層佔重量損失之比例關係 ......................... 53
Figure 18.水樣攪拌及靜置與腐蝕速率之關係 ................................................. 54
Figure 19.鏽蝕層之SEM 分析 .......................................................................... 54
Figure 20.腐蝕速率之效應貢獻圓餅圖 ............................................................. 60
Figure 21.總鐵濃度之效應貢獻圓餅圖 ............................................................. 66
Figure 22.腐蝕速率之主效應分析 ..................................................................... 69
Figure 23.總鐵濃度之主效應分析 ..................................................................... 70

Figure 24.腐蝕速率模型之殘差的常態機率圖 ................................................. 77
Figure 25.腐蝕速率模型之殘差對配適值的關係圖 ......................................... 77
Figure 26.腐蝕速率模型之殘差對實驗順序的關係圖 ..................................... 78
Figure 27.總鐵濃度模型之殘差的常態機率圖 ................................................. 81
Figure 28.總鐵濃度模型之殘差對配適值的關係圖 ......................................... 82
Figure 29.總鐵濃度模型之殘差對實驗順序的關係圖 ..................................... 82
Figure 30.腐蝕速率模型-實際值與預測值之比較 ......................................... 85
Figure 31.總鐵濃度模型-實際值與預測值之比較 ......................................... 86
Figure 32.腐蝕速率之反應曲面圖 ..................................................................... 87
Figure 33.總鐵濃度之反應曲面圖 ..................................................................... 87
Figure 34.在6℃的條件下,防蝕水質組合之最佳範圍 .................................. 89
Figure 35.在22℃的條件下,防蝕水質組合之最佳範圍 ................................ 89
Figure 36.在38℃的條件下,防蝕水質組合之最佳範圍 ................................ 90
Figure 37.水體有無搖晃的LSI 與腐蝕速率之分佈圖 ..................................... 92
Figure 38.水體有無搖晃的LSI 與總鐵濃度之分佈圖 ..................................... 92
參考文獻
1.	臺北自來水事業處 給水普及率與用水量. http://www.twd.gov.tw/ct.asp?xitem=989318&CtNode=23145&mp=114001 (July 10), 
2.	黃國永; 蘇政賢; 蔣丞哲; 林于程. 建置無線傳訊壓力監測系統應用於管網流量與測漏管理,以台灣自來水公司新莊服務所為例. 2009.
3.	台灣自來水公司 自來水處的管線汰換. http://waterpark.twd.gov.tw/www/upfiles/pipe_changed.pdf (July 20), 
4.	蔡文達, 生活環境中的腐蝕. 科學發展 2006, 406, 70-75.
5.	Sarin, P.; Snoeyink, V. L.; Lytle, D. A.; Kriven, W. M., Iron corrosion scales: Model for scale growth, iron release, and colored water formation. Journal of Environmental Engineering 2004, 130, (4), 364-373.
6.	Goh, K. H.; Lim, T. T.; Chui, P. C., Evaluation of the effect of dosage, pH and contact time on high-dose phosphate inhibition for copper corrosion control using response surface methodology (RSM). Corrosion Science 2008, 50, (4), 918-927.
7.	Imran, S. A.; Dietz, J. D.; Mutoti, G.; Taylor, J. S.; Randall, A. A.; Cooper, C. D., Red water release in drinking water distribution systems. Journal / American Water Works Association 2005, 97, (9).
8.	張伯鴻. 海水淡化廠出水最佳防蝕方式研究. 成功大學, 2004.
9.	駱尚廉; 楊萬發, 環境工程(一)自來水工程 2ed.; 茂昌圖書有限公司: 2000.
10.	Hong, P. K. A.; Macauley, Y. Y., Corrosion and leaching of copper tubing exposed to chlorinated drinking water. Water, Air, and Soil Pollution 1998, 108, (3-4), 457-471.
11.	Rahman, S.; McDonald, B. C.; Gagnon, G. A., Impact of secondary disinfectants on copper corrosion under stagnation conditions. Journal of Environmental Engineering 2007, 133, (2), 180-185.
12.	Li, X.; Gu, D. M.; Qi, J. Y.; Ukita, M.; Zhao, H. B., Modeling of residual chlorine in water distribution system. Journal of Environmental Sciences 2003, 15, (1), 136-144.
13.	Tam, Y. S.; Elefsiniotis, P., Corrosion control in water supply systems: Effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing. Journal of Environmental Science & Health, Part A: Toxic/Hazardous Substances & Environmental Engineering 2009, 44, (12), 1251-1260.
14.	Boulay, N.; Edwards, M., Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water. Water Research 2001, 35, (3), 683-690.
15.	Jung, H.; Kim, U.; Seo, G.; Lee, H.; Lee, C., Effect of Dissolved Oxygen (DO) on Internal Corrosion of Water Pipes. Korean Society of Environmental Engineers 2009, 14, (3), 195-199.
16.	Shi, B.; Taylor, J. S., Iron and copper release in drinking-water distribution systems. Journal of Environmental Health 2007, 70, (2), 29-36.
17.	Lasheen, M. R.; Sharaby, C. M.; El-Kholy, N. G.; Elsherif, I. Y.; El-Wakeel, S. T., Factors influencing lead and iron release from some Egyptian drinking water pipes. Journal of Hazardous Materials 2008, 160, (2-3), 675-680.
18.	Li, Y.; Jiang, B.; Zhao, H.; Tao, C., Experimental study on internal corrosion of grey cast iron pipeline in water distribution. Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science) 2010, 26, (2), 321-325.
19.	Niu, Z. B.; Wang, Y.; Zhang, X. J.; Chen, C.; Wang, S. H., Effect on iron release in drinking water distribution systems. Huanjing Kexue/Environmental Science 2007, 28, (10), 2270-2274.
20.	D'Antonio, L.; Fabbricino, M.; Nasso, M.; Trifuoggi, M., Copper release in low and high alkaline water. Environmental Technology 2008, 29, (4), 473-478.
21.	McNeill, L. S.; Edwards, M., Iron pipe corrosion in distribution systems. Journal / American Water Works Association 2001, 93, (7), 88-100.
22.	Cantor, A. F.; Park, J. K.; Vaiyavatjamai, P., Effect of chlorine on corrosion in drinking water systems. Journal / American Water Works Association 2003, 95, (5), 112-122.
23.	Zhang, Y.; Edwards, M., Anticipating effects of water quality changes on iron corrosion and red water. Journal of Water Supply: Research and Technology - AQUA 2007, 56, (1), 55-68.
24.	Eisnor, J. D.; Gagnon, G. A., Impact of secondary disinfection on corrosion in a model water distribution system. Journal of Water Supply: Research and Technology - AQUA 2004, 53, (7), 441-452.
25.	Niu, Z. B.; Wang, Y.; Zhang, X. J.; He, W. J.; Han, H. D.; Yin, P. J., Analysis of influence factors and control methods on iron release phenomenon in drinking water distribution system. Huanjing Kexue/Environmental Science 2006, 27, (2), 310-314.
26.	台北自來水事業處 98年台北自來水事業統計年報. http://www.twd.gov.tw/ct.asp?xItem=1018480&ctNode=23157&mp=114001 (August 24), 
27.	McNeill, L. S.; Edwards, M., Phosphate inhibitor use at US utilities. Journal / American Water Works Association 2002, 94, (7), 57-63.
28.	Edwards, M.; Hidmi, L.; Gladwell, D., Phosphate inhibition of soluble copper corrosion by-product release. Corrosion Science 2002, 44, (5), 1057-1071.
29.	Lytle, D. A.; Snoeyink, V. L., Effect of ortho- and polyphosphates on the properties of iron particles and suspensions. Journal / American Water Works Association 2002, 94, (10), 87-99.
30.	Alshehri, A. A. Impact of corrosion inhibitor blended orthophosphate on water quality in water distribution systems. University of Central Florida, Orlando, Florida, 2008.
31.	Alshehri, A. A.; Duranceau, S. J.; Taylor, J. S.; Stone, E. D., Investigating iron release in distribution systems with blend variations of source waters and phosphate inhibitors. Desalination and Water Treatment 2009, 8, (1-3), 211-220.
32.	McNeill, L. S.; Edwards, M., Phosphate inhibitors and red water in stagnant iron pipes. Journal of Environmental Engineering 2000, 126, (12), 1096-1102.
33.	(AWWA), A. W. W. A., Internal Corrosion of Water Distribution Systems. 2nd ed.; American Water Works Association (AWWA): 1996.
34.	財團法人中興工程顧問社 降低自來水腐蝕性淨水處理改善對策探討; 2008.
35.	McNeill, L. S.; Edwards, M., The importance of temperature in assessing iron pipe corrosion in water distribution systems. Environmental Monitoring and Assessment 2002, 77, (3), 229-242.
36.	Wollmann, M.; Jacobi, H.; Follner, H., Corrosion of copper in cold-water plumbing systems. Chemical Engineering and Technology 1998, 21, (3), 264-267.
37.	Sarin, P.; Snoeyink, V. L.; Bebee, J.; Jim, K. K.; Beckett, M. A.; Kriven, W. M.; Clement, J. A., Iron release from corroded iron pipes in drinking water distribution systems: Effect of dissolved oxygen. Water Research 2004, 38, (5), 1259-1269.
38.	歐陽嶠暉, 下水道工程學. 長松文化興業股份有限公司: 2004; p 625.
39.	Niu, Z. B.; Wang, Y.; Zhang, X. J.; He, W. J.; Han, H. D.; Yin, P. J., Iron stability in drinking water distribution systems in a city of China. Journal of Environmental Sciences 2006, 18, (1), 40-46.
40.	Sarin, P. Iron release from corrosion scales in old iron/steel drinking water distribution pipes. 3070045, University of Illinois at Urbana-Champaign, United States -- Illinois, 2002.
41.	Lytle, D. A.; Schock, M. R., Impact of stagnation time on metal dissolution from plumbing materials in drinking water. Journal of Water Supply: Research and Technology - AQUA 2000, 49, (5), 243-257.
42.	Matheson, L. J.; Tratnyek, P. G., Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology 1994, 28, (12), 2045-2053.
43.	柯賢文, 腐蝕及其防制. 全華科技圖書股份有限公司: 2001.
44.	Niu, Z. B.; Wang, Y.; Zhang, X. J.; He, W. J.; Han, H. D.; Yin, P. J., Analysis of the characteristics of corrosion scale in drinking water distribution systems. Huanjing Kexue/Environmental Science 2006, 27, (6), 1150-1154.
45.	Huang, Y. H.; Zhang, T. C., Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research 2005, 39, (9), 1751-1760.
46.	Zhang, T. C.; Huang, Y. H., Profiling iron corrosion coating on iron grains in a zerovalent iron system under the influence of dissolved oxygen. Water Research 2006, 40, (12), 2311-2320.
47.	James E. Smith, Upgrading existing or designing new drinking water treatment facilities. United States Environmental Protection Agency: 1991; p 399.
48.	石濤, 環境化學. 鼎茂圖書出版股份有限公司: 2007.
49.	周裕晃; 楊慧宗, 淺談海水淡化設備設計實務. 環保產業雙月刊 2004, 第26期, (經濟部工業局), 7-9.
50.	Montgomery, D. C., 實驗設計與分析. 3 ed.; 高力圖書有限公司: 2008.
51.	Fries, A.; Hunter, W. G., Minimum Aberration 2k-p Designs. Technometrics 1980, 22, (4), 601-608.
52.	林李旺, 快速精通實驗設計-邁向Six Sigma的關鍵方法. 1 ed.; 全華圖書股份有限公司: 2009.
53.	Nawrocki, J.; Raczyk-Stanisławiak, U.; Świetlik, J.; Olejnik, A.; Sroka, M. J., Corrosion in a distribution system: Steady water and its composition. Water Research 2010, 44, (6), 1863-1872.
54.	Sung, W.; Huang, X.; Wei, I. W., Treatment and distribution system effects on chloramine decay, pH, nitrification, and disinfection by-products: Case study. Journal of Water Resources Planning and Management 2005, 131, (3), 201-207.
55.	Seigel, A. F., 實用統計學. 5 ed.; 新文京: 2003.
56.	趙志領, 生長環作用下的給水管網水質特征. 哈爾濱商業大學學報(自然科學版) 2008, 24, (5).
57.	曹楚南, 悄悄進行的破壞─金屬腐蝕. 牛頓出版股份有限公司: 2001.
58.	Holm, T. R.; Edwards, M., Metaphosphate reversion in laboratory and pipe-rig experiments. Journal / American Water Works Association 2003, 95, (4), 172-178.
59.	Benjamin, M. M., Water Chemistry. McGraw-Hill College: 2002.
60.	Wang, Y.; Li, N.; Lu, Y., Comparison of the effects of chlorine dioxide, sodium hypochlorite and their combination on simulative water disinfection. Wei sheng yan jiu = Journal of hygiene research 2008, 37, (3), 285-289.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信