淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1306200616411200
中文論文名稱 在偏斜常態資料下的允收管制圖設計
英文論文名稱 Design of Acceptance Control Chart for Skew Normal Data
校院名稱 淡江大學
系所名稱(中) 統計學系碩士班
系所名稱(英) Department of Statistics
學年度 94
學期 2
出版年 95
研究生中文姓名 江俊佑
研究生英文姓名 Jyun-You Chiang
學號 693460080
學位類別 碩士
語文別 中文
口試日期 2006-05-18
論文頁數 65頁
口試委員 指導教授-蔡宗儒
委員-吳碩傑
委員-吳柏林
中文關鍵字 計量管制圖  允收管制圖  型一誤差  型二I誤差 
英文關鍵字 Variable control charts  Acceptance control chart  Type I error  Type II error 
學科別分類 學科別自然科學統計
中文摘要 在計量管制圖中,最廣為各界使用的就是X-bar管制圖和$R$管制圖,X-bar管制圖管制製程平均數mu是否維持在一給定的水準mu_0上,當製造商生產的紀錄非常良好時,我們可以允許其製程平均可以在一個小範圍(mu_L,mu_U)中偏移,而不至於產生過多的不良品,因此,可將統計假設H_0:mu=mu_0轉換成H_0:mu_L<=mu<=mu_U,結合規格界限、生產者風險及消費者風險,發展出另一個新的管制圖,此即為允收管制圖。傳統的允收管制圖只能適用在常態分配資料下,如果應用在非常態資料中,將會高估型一或型二誤差。Chou et al. (2005)利用Burr分配設計出適用於非常態資料的允收管制圖,不過此一管制圖在資料呈對稱分配時,無法退化到一般常態分配下之允收管制圖,進而限制其實用性。本論文利用Skew
Normal分配設計允收管制圖, 因為Skew Normal分配可以完全退化到常態分配,所以Skew Normal允收管制圖也適用於常態分配資料的平均數監控。
英文摘要 In variable control charts, the X-bar and R charts are widely used to monitor the process mean and variability of the quality characteristic. When manufacturer's record was very well, we can accept the process mean shifts between a predetermined interval (mu_L,mu_U), and will not produce many nonconforming units. In this design, an acceptance control chart can be constructed by combining with the specifications, producer's risk and consumer's risk. Conventional acceptance control chart is designed to monitor the process mean of normal data. But it always results in a higher probabilities of type I or type II errors when the chart is used to monitor the non-normal data. Chou et al. (2005)developed an acceptance control chart based on the Burr distribution and they used it to monitor the process mean of non-normal data. The main disadvantage of Burr acceptance control chart is that it can not reduce to the conventional acceptance control chart when it is used to monitor symmetric data. The thesis develops a new acceptance control chart based on the Skew Normal distribution to overcome the problem. The Skew Normal acceptance control chart can be used to monitor the process mean whenever the process data is symmetric and it can reduce to the conventional acceptance control chart when the data is symmetric.
論文目次 目錄

第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 2
第二章 文獻探討與相關研究3
2.1 X-bar管制圖與允收管制圖的文獻探討 3
2.2 各種X-bar管制圖介紹 5
2.2.1 Shewhart X-bar管制圖 5
2.2.2 WV X-bar管制圖 5
2.2.3 WSD X-bar管制圖 8
2.2.4 SC X-bar管制圖 12
2.2.5 Burr X-bar管制圖 16
2.3 相關的允收管制圖 20
2.3.1 常態允收管制圖 20
2.3.2 Burr允收管制圖 25
第三章 Skew Normal X-bar管制圖及允收管制圖 34
3.1 Skew Normal分配 34
3.2 SN X-bar管制圖 37
3.3 SN允收管制圖 38
第四章 模擬研究 46
第五章 實例 54
第六章 結論 62
參考文獻 63

2.1 f(x)ÖSè(a)Xp:d:f:=(b)f(x)7TUV ÍIçp:d:f:=
(c)f(x)ïTUV ÍIçp:d:f:= . . . . . . . . . . . . . . . . 9
2.2 f(x)WXYV:(a)f(x)7TUÍWX#4=(b)f(x)ïTUÍW
X#4=(c)Z[Ö3&WXÖ3= . . . . . . . . . . . . . . . . . . 10
2.3 2]÷X FX Ö3ïòó&(a)X » N(¹; ¾2)=(b)X »
N(¹; ¾2
n ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Ž¸ïÍSNÖ3(a)SN(0)=(b)SN(5)=(c)SN(-5)= . . . . . . . . 36
4.1 þxU^Xòô_8`ab(m=30) . . . . . . . . . . . . . . . 51
4.2 þxU^Xòô_8`ab(m=50) . . . . . . . . . . . . . . . 52
5.1 60cdefgíî(a)h¶ô=(b)QQ-plot= . . . . . . . . . . . 55
5.2 deíîh¶ô(a)SNFnormal32=(b)250cbootstrap
i

參考文獻 參考文獻

Azzalini, A. (1985), A class of distributions which includes the normal ones.Scandinavian
Journal of Statistics, 12, 171-178.

Burr, I. W. (1942), Cumulative frequency functions. Annals of Mathematical Statistics, 13, 215-232.

Burr, I. W. (1973), Parameters for a general system of distributions to match a grid of a3 and a4. Communications in Statistics, 2(1), 1-21.

Choobineh, F. and Branting D. (1986), A simple approximation for semivariance. European Journal of Operations Research, 27, 364-370.

Choobineh, F. and Ballard, J. L. (1987), Control-limits of QC charts for skewed
distributions using weighted variance. IEEE Transactions on Reliability, 36, 473-477.

Cornish, E. A. and Fisher, R. A. (1937), Moments and cumulants in the specifications of
distributions. Extrait de la Revue de l’Institute International de Statistique, f 4, 1-14.

Chang, Y. S. and Bai, D. S. (2001), Control charts for positively-skewed populations with
weighted standard deviations. Quality and Reliability Engineering International, 17, 397-406.

Cheng, S. W. (1994), Practical implementation of the process capability indices. Quality
Engineering, 7(2), 239-259.

Chang, Y. S. and Bai, D. S. (1995), X-bar and R control charts for skewed populations. Journal of Quality Technology, 27, 120-131.

Chou, C.-Y. and Chen, C.-H. and Liu, H.-R. (2005), Acceptance control charts for
non-normal data. Journal of Applied Statistics, 32, 25-26.

Chan, L. K. and Cui, H. J. (2003), Skewness correction X-bar and R charts for skewed
distributions. Naval Research Logistics, 50, 1-19.

Dodge, Y. and Rousson, V. (1999), The complications of the fourth central moment. The
American Statistician, 53, 267-269.

Ferrell, E. B. (1958), Control charts for log-normal universe. Industrial Quality Control,
15, 4-6.

Freund, R. A. (1957), Acceptance control charts. Industrial Quality Control, 12, 13-23.

Gupta, R. C.,Brown, N. (2001), Reliability studies of the skew-normal distribution and its
application to a strength-stress model. Communications in Statistics: Theory and Methods , 30, 2427-2445.

Geary, R. C. (1947), Testing for Normality. Biometrika, 34, 209-242.

Lucas, J. M. (1985), Counted data CUSUM's. Technometrics, 27, 129-144.

Montgomery, D.C. (2005), Introduction to Statistical Quality Control, 5th edn, Wiley, New York.

Mudholkar, G. S. and Hutson, A. D. (2000), The epsilon-skew-normal distribution for
analyzing near-normal data. Journal of Statistical Planning and Inference, 83, 291-309.

Nelson, P. R. (1979), Control charts for Weibull processes with standards given. IEEE
Transactions on Reliability, 28, 383-387.

Prentice, R. L. (1975), Discrimination among someparametric models. Biometrika, 62, 607-614.

Saniga, E. M. and Shirland, L. E. (1977), Quality control in practice: a survey. Quality Progress, 10, 30-33.

Tsai, T.-R. (2005), A study of skew normal process on quality control, Technical Report, No. 1, Department of Statistics, Tamkang University.

Vardeman, S. and Ray, D.(1985), Average run lengths for CUSUM schemes when observations are exponentially distributed. Technometrics, 27, 145-150.

Yourstone, S. A. and Zimmer, W. J. (1992), Non-normality and the design of control charts for averages. Decision Sciences, 23, 1099-1113.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-06-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信