淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1306200517340900
中文論文名稱 具有浴缸型退化率之分配的產品壽命及隨著存貨水準變動的需求率之存貨模式
英文論文名稱 Inventory model with stock-dependent demand rate for product life with bathtub-shaped distributed deterioration
校院名稱 淡江大學
系所名稱(中) 統計學系碩士班
系所名稱(英) Department of Statistics
學年度 93
學期 2
出版年 94
研究生中文姓名 盧油伸
研究生英文姓名 You-Shen Lu
學號 692460016
學位類別 碩士
語文別 中文
口試日期 2005-05-27
論文頁數 72頁
口試委員 指導教授-吳忠武
委員-吳錦松
委員-吳忠武
委員-李汶娟
委員-李秀美
中文關鍵字 存貨模型  需求率與存貨水準有關  浴缸型退化率分配 
英文關鍵字 Inventory Model  Stock-Dependent Demand Rate  Bathtub-Shaped Distributed Deterioration 
學科別分類 學科別自然科學統計
中文摘要 在存貨系統中,最常使用傳統EOQ模式,但是傳統EOQ模式,未考慮退化性因素,與一般現實狀況不合。關於退化性產品的存貨系統模式之探討,最早是由Ghare和Schrader在1963年提出來的,他們建立了一個退化率與需求率為常數的存貨模式。事實上,對於很多的產品或複雜的系統而言,大部分的產品或系統的壽命都是具有浴缸型退化率函數。此外,在傳統EOQ模式中,我們經常假設需求率為固定已知的常數。然而,在Ouyang et al. (2003)和Teng et al. (2005)中我們可以觀察到需求率通常與存貨水準有關。因此,基於上述理由,本研究考慮在有限的計畫期間內,分別建構產品壽命為Xie等人(2002)、Hjorth (1980)與Mudholkar 和 Srivastava (1993)所定義的浴缸型退化率及隨著存貨水準變動的需求率之存貨模式。

最後,本文將建立三個含有持有成本、退化成本、訂購成本、缺貨成本及產品銷售損失成本的浴缸型退化性之存貨模式。並且利用數值範例來說明求解的程序,以決定最佳訂購策略。
英文摘要 Classical EOQ model is used most frequently in the inventory system, but it is not considered deteriorated factor. It is not conformed with the general realistic state. First, Ghare and Schrader (1963) suggest an inventory model for deteriorating items with fixed deteriorated rate and demand rate. In fact, most products or system life all have bathtub-shaped distributed deterioration for many products or complicated system. In addition, it is generally assumed that the demand rate is constant in the classical EOQ model. However, we could observe that the demand rate usually depends on inventory-level in Ouyang et al. (2003) and Teng et al. (2005). So, in this thesis, we will consider product life with bathtub-shaped distributed deterioration by Xie et al. (2002), Hjorth (1980), Mudholdar and Srivastava (1993) defined and inventory model with stock-dependent demand rate over a fixed planning horizon, respectively.
Finally, we construct three bathtub-shaped distributed deterioration inventory models with holding cost, deteriorating cost, ordering cost, shortage cost, and sale loss cost. We give some numerical examples to illustrate solution procedure and decide the optimal replenishment policy.
論文目次 目錄
目錄 ………………………………………………………………. I
表目錄 ……………………………………………………………. III
圖目錄 ……………………………………………………………. VI

第一章 緒論 ………………………………………………… 1
1-1 研究動機與目的 …………………………………………. 1
1-2 文獻探討 …………………………………………………. 3
1-3 本文結構 ........................................ 4


第二章 具有浴缸型退化率及隨著存貨水準變動的需求率之
. 存貨模式 ……………………………………… 5
2-1符號說明與假設 ………………………………………… 5
2-2模式建立 ……………………………………………… 12
2-2-1具有Xie等人(2002)定義的退化率之存貨模式 ……… 12
2-2-2 具有Hjorth (1980)定義的退化率之存貨模式 ……… 19
2-2-3 具有Mudholkar和Srivastava(1993)定義的退化率
之存貨模式 …………………………………………… 24
2-3模式的求解程序 …………………………………………… 30

第三章 存貨模式之數值範例及敏感度分析 …………… 31
3-1有關Xie等人(2002)定義的浴缸型退化率之存貨模式 32
3-1-1數值範例 ………………………………………… 32
3-1-2敏感度分析 .……………………………………… 36
3-2有關Hjorth (1980)定義的浴缸型退化率之存貨模式 … 39
3-2-1數值範例 …………………………………………… 39
3-2-2敏感度分析 ………………………………………… 46
3-3有關Mudholkar和Srivastava(1993)定義的浴缸型
退化率之存貨模式 ……………………………………… 49
3-3-1數值範例 …………………………………………… 49
3-3-2敏感度分析 ……………………………………… 59

第四章 結論與未來研究方向 ………………………………… 62
4-1 結論 …………………………………………………… 62
4-2 未來研究方向 ………………………………………… 65

參考文獻 …………………………………………………… 67

表目錄
表3-1-1:Xie等人(2002)定義的退化率( )之存貨模式的
求解程序 ……………………………………… 34
表3-1-2:Xie等人(2002)定義的退化率( )
之存貨模式的求解程序 ……………………… 34
表3-1-3:Xie等人(2002)定義的退化率( )
之存貨模式.的求解程序 …………………… 35
表3-1-4:Xie等人(2002)定義的退化率( )
之存貨模式的求解程序 ………………………… 35
表3-1-5:Xie等人(2002)定義的浴缸型退化率之存貨模式
的敏感度分析 ……………………………………… 37
表3-2-1:Hjorth(1980)定義的退化率( )
之存貨模式.的求解程序 ………………………… 42
表3-2-2:Hjorth(1980)定義的退化率( )
之存貨模式.的求解程序 ………………………… 42
表3-2-3:Hjorth(1980)定義的退化率( )
之存貨模式的求解程序 ………………………… 43
表3-2-4:Hjorth(1980)定義的退化率( )
之存貨模式的求解程序 ………………………… 43
表3-2-5:Hjorth(1980)定義的退化率( )
之存貨模式的求解程序 …………………………… 44
表3-2-6:Hjorth(1980)定義的退化率( )
之存貨模式的求解程序 …………………………… 44
表3-2-7:Hjorth(1980)定義的退化率( )
之存貨模式的求解程序 ………………………… 45
表3-2-8:Hjorth(1980)定義的退化率( )
之存貨模式的求解程序 …………………………… 45

表3-2-9:Hjorth(1980)定義的浴缸型退化率之存貨模式
的敏感度分析 ……………………………………… 47
表3-3-1:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 53
表3-3-2:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 53
表3-3-3:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 54
表3-3-4:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 54
表3-3-5:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 55
表3-3-6:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 55
表3-3-7:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 56
表3-3-8:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 56
表3-3-9:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 57
表3-3-10:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 57
表3-3-11:Mudholkar和Srivastava (1993)定義的退化率
( )之存貨模式的求解程序 ……………………… 58
表3-3-12:Mudholkar和Srivastava (1993)定義的浴缸型
退化率之存貨模式的敏感度分析 …………… 60

表4-1:Xie等人(2002)定義的浴缸型退化率之存貨模式
參數值變動與最佳訂購策略之關係 ……………… 64
表4-2:Hjorth(1980)定義的浴缸型退化率之存貨模式
參數值變動與最佳訂購策略之關係 ………………… 64
表4-3:Mudholkar和Srivastava (1993)定義的浴缸型退化率
之存貨模式參數值變動與最佳訂購策略之關係 …… 65

圖目錄
圖2-1:Xie等人(2002)定義的退化率 ………………………… 9
圖2-2:Hjorth (1980)定義的退化率 ………………………… 10
圖2-3:Mudholkar和Srivastava(1993)定義的退化率 …… 12
參考文獻 參考文獻
中文部分
[1] 許桀瑋,2003,「產品壽命為混合分配且具有可控制的欠撥
率之存貨模式研究」,淡江大學統計學系應用統計研究所碩
士論文。
[2] 黃士逢,2001,「產品壽命為混合分配的存貨模式之研究」,
淡江大學統計學系應用統計研究所碩士論文。
[3] 游俊彥,2002,「需求率與存貨水準有關且考慮部分欠撥之
退化性產品的生產存貨模型」,淡江大學管理科學研究所碩
士論文。

英文部分
[1] Abad, P. L.(1996), “Optimal pricing and lot-sizing
under conditions of perishability and partial
backordering”, Management Sciences, 42, 1093-1104.
[2] Abad, P. L.(2000), “Optimal lot size for a
perishable good under conditions of finite production
and partial backordering and lot sale”, Computers &
Industrial Engineering, 38, 457-465.
[3] Abad, P. L.(2001), “Optimal price and order size
for a reseller under partial backordering”,
Computers & Operations Research, 28, 53-65.
[4] Aggarwal, S. P. and Goel, V. P.(1982), “Order
level inventory systems with demand pattern for
deteriorating items”, Econ. Comput. Econ Cyb. Stud.
Res. , 17, 57-69.
[5] Baker, R. C. and Urban, L. A.(1988),
“Deterministic inventory systems with an inventory-
level-dependent demand rate”, Journal of the
Operational Research Society, 39, 823-831.
[6] Benkherouf, L.(1998), “Note on a deterministic lot-
size inventory model for deteriorating items with
shortages and a declining market”, Computers &
Operations Research, 25, 63-65.
[7] Bhunia, A. K. and Maiti, M.(1999), “An inventory
model of deteriorating items with lot-size dependent
replenishment cost and a linear trend in demand”,
Applied Mathematical Modelling, 23, 301-308.
[8] Chang, C. T.(2004), “Inventory Models with stock-
dependent demand and nonlinear holding costs for
deteriorating items”, Journal of Operational
Research, 21, 435-446.
[9] Chang, H. J. and Dye, C. Y.(1999a), “An EOQ Model
for Deteriorating Items with Exponential Time-Varying
Demand and Partial Backlogging”, International
Journal of Information and Management Sciences, 10,
1-11.
[10] Chang, H. J. and Dye, C. Y.(1999b), “An EOQ model
for deteriorating items with time-varying demand and
partial backlogging”, Journal of the Operational
Research Society, 50, 1176-1182.
[11] Compaq Visual Fortran Professional Edition version
6.6 Intel Version and IMSL (2000) , Compaq Computer
Corporation.
[12] Covert, R. P. and Philip, G. C.(1973), “An EOQ
model for items with Weibull distribution
deterioration”, AIIE Transactions, 5, 323-326.
[13] Datta, T. K. and Pal, A. K.(1990), “A note on an
inventory model with inventory-level-dependent demand
rate”, Journal of the Operational Research Society,
41, 971-975.
[14] Datta, T. K. and Pal, A. K.(1992), “A Note on a
Replenishment Policy for an Inventory Model with
Linear Trend in Demand and Shortages”, Journal of
the Operational Research Society, 43, 993-1001.
[15] Deb, M., and Chaudhuri, K. S.(1986), “An EOQ model
for items with finite rate of production and variable
rate of deterioration”, Journal of the Operational
Research Society of India, 23, 175-181.
[16] Donaldson, W. A.(1977), “Inventory Replenishment
Policy for a Linear Trend in Demand-An Analysis
Solution”, Operational Research Quarterly, 28, 663-
670.
[17] Ghare, P. M. and Schrder, G. H.(1963), “A
model for exponentially decaying inventory system”,
International Journal of Industrial Engineering,14
(5),238-243.
[18] Giri, B. C., Goswami, A. and Chaudhuri, K. S.
(1996), “An EOQ model for deteriorating items with
time varying demand and costs”, Journal of the
Operational Research Society, 47, 1398-1405.
[19] Goel, V. P. and Aggarwal, S. P.(1981), “Order
level inventory system with power demand pattern for
deteriorating items”, Proceedings all India Seminar
on Operational Research and Decision making,
University of Delhi, Delhi-110007.
[20] Goswami, A., and Chaudhuri, K. S.(1991), “An EOQ
model for deteriorating items with shortages and
linear trend in demand”, Journal of the Operational
Research Society, 42, 1105-1110.
[21] Goswami, A., and Chaudhuri, K. S.(1993), “An
deterministic inventory model for deteriorating items
with stock-dependent demand rate”, International
Journal of Production Economics
, 32, 291-299.
[22] Gupta, R. and Vrat, P.(1986), “Inventory models
for stock-dependent consumption rate”, Opsearch, 23,
19-24.
[23] Hariga, M. A.(1995), “An EOQ model for
deteriorating items with shortages and time-varying
demand”, Journal of the Operational Research
Society, 46, 398-404.
[24] Hjorth, U.(1980), “ A reliability distribution
with increasing decreasing ,constant and bathtub-
shaped failure rates”,Technometrics, 22, 99-107.
[25] Kishan, H. and Mishra, P. N.(1995), “An inventory
model with exponential demand and constant
deterioration with shortages”,Indian Journal of
Mathematics, 37, 275-279.
[26] Levin, R. I., Mclaughlin, C. P., Lamone R. P. and
Kothas, J. F.(1972), “Production/Operations
Management: Contemporary Policy for Managing
Operating Systems”, McGraw-Hill, New York.
[27] Liao, H. C. and Su, C. T. (1998), “Inventory
Policies for Weibull Distribution Items When a Decay
in Payments is Permissible”, Proceedings of
Quantitative Management Techniques and Applications
in Taiwan Conference,80-85.
[28] Mandal , B. and Pal, A. K.(1998), “Order level
inventory system with ramp type demand rate for
deteriorating items”, Journal of Interdisciplinary
Mathematics, 1, 49-66.
[29] Mandal , B. N. and Phaujdar, S.(1989), “An
inventory model for deteriorating items and stock-
dependent consumption rate”, Journal of the
Operational Research Society, 40, 483-488.
[30] Mudholkar, G. S. and Srivastava, D. K.(1993),
“Exponentiated Weibull family for analyzing bathtub
failure-rate data”,IEEE Transactions on Reliability
,42, 299-302.
[31] Ouyang, L. Y., Hsieh, T. P., Dye C. Y. and Chang, H.
C.(2003), “An inventory model for deteriorating
items with stock-dependent demand under the
conditions of inflation and time-value of money”,
The Engineering Economist, 48, 52-68.
[32] Padmanabhan, G. and Vrat, P.(1990), “Inventory
model with a mixture of back orders and lot sales”,
International Journal of Systems Science, 21, 1721-
1726.
[33] Padmanabhan, G. and Vrat, P.(1995), “EOQ models
for perishable items under stock dependent selling
rate”, European Journal of Operational Research, 86,
281-292.
[34] Philip, G. C.(1974), ”A generalized EOQ model for
items with Weibull distribution deterioration”, AIIE
Transactions, 6, 159-162.
[35] Raffat, F.(1988), “An inventory model with a
monotonically increasing deterioration rate
function”, American Institute for Decision Sciences
Seventeenth Annual Meeting-Western Regional
Conference-Proceedings and Abstracts, 495-505.
[36] Silver, E. A. and Peterson, R.(1982), Decision
Systems for Inventory Management and Production
Planning, Wiley,New York.
[37] Tadikamalla, P. R.(1978), “An EOQ Inventory Model
for Items with Gamma Distributed Deterioration”,
AIIE Transactions, 10,100-103.
[38] Teng, J. T., Ouyang, L. Y., and Cheng, M. C.(2005),
“An EOQ Model for Deteriorating Items with Power-Form
Stock-Dependent Demand”, Information and Management
Sciences, 16, 1-16.
[39] Wang, F. K.(2000), “A new model with bathtub-
shaped failure rate using an additive Burr XII
distribution”, Reliability Engineering and System
Safety, 70, 305-312.
[40] Wu, K. S.(1998), “An ordering Policy for Items
with Weibull Distribution Deterioration under
Permissible Delay in Payments”, Tamsui Oxford
Journal of Management Science, 14, 39-54.
[41] Wu, K. S.(2002), “EOQ inventory model for items
with Weibull distribution deterioration, time-varying
demand and partial backlogging”, International
Journal of Systems Science, 33, 323-329.
[42] Xie, M. and Lai, C. D.(1996), “Reliability
analysis using an additive Weibull model with bathtub-
shaped failure rate function”, Reliability
Engineering and System Safety, 52, 87-93.
[43] Xie, M., Tang, Y. and Goh, T. N.(2002), “A
modified Weibull extension with bathtub-shaped
failure rate function”, Reliability Engineering and
System Safety, 76, 279-285.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-06-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-06-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信