§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1301202020212700
DOI 10.6846/TKU.2020.00323
論文名稱(中文) 有限頻段H∞輸出回授控制器設計
論文名稱(英文) On the Design of Finite Frequency H∞ Output Feedback Controllers
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 1
出版年 109
研究生(中文) 魏聖峰
研究生(英文) Sheng-Fong Wei
學號 606460086
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2020-01-07
論文頁數 73頁
口試委員 指導教授 - 周永山
委員 - 吳政郎
委員 - 蔡奇謚
關鍵字(中) 內模型
比例-積分-微分控制
強穩定
部分極點配置
分散式控制
廣義KYP引理
線性矩陣不等式
關鍵字(英) Internal model
proportional–integral–derivative(PID) control
strong stabilization
partial pole placement
decentralized control
generalized KYP lemma
linear matrix inequality (LMI)
第三語言關鍵字
學科別分類
中文摘要
本論文研究有限頻段H∞輸出回授控制器合成問題,提出一套甚具彈性的設計方法。首先,結合有限頻段H∞控制與內模型,提出新型窄頻雜訊抑制的方法。接下來,考慮控制器的極點具有其他限制,將前述設計以一致性的方式,延伸推廣至PID控制、強穩定控制,以及閉回路系統主副極點配置問題。本方法的動態控制器結構可設定為單輸入單輸出形式、亦可為多輸入多輸出形式,更可為任意指定結構。數值例子將舉例證實所提方法之效能。
英文摘要
This thesis is concerned with the problem of synthesizing finite frequency H∞ output feedback controllers. A very flexible design method is presented. First, the finite frequency H∞ control and internal model principle are combined to yield a novel method for attenuating narrow-band disturbances. Next, other types of constraints on the poles of the controllers are considered. Extensions to the design of PID controllers, strong stabilizing controllers, and the placement of primary and secondary closed-loop poles are made in a unified manner. The dynamic controllers proposed by this method can be single-input single-output(SISO), multiple-input multiple-output(MIMO), and even of arbitrarily specifying structure. Numerical examples are provided that demonstrate the effectiveness of the proposed method.
第三語言摘要
論文目次
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
	1.1文獻回顧與研究動機 1
	1.2論文架構 3
第二章 背景知識與問題敘述 4
第三章 基於內模型之有限頻段H∞控制器設計 13
	3.1前言 13
	3.2問題轉換 13
	3.3含內模型的動態輸出回授控制器設計 20
	3.4 PID控制器設計 24
	3.5強穩定控制器設計 27
	3.6任意結構動態輸出回授控制器設計 31
第四章 指定頻段H∞性能暨閉回路系統極點配置設計 34
	4.1前言 34
	4.2問題敘述 34
	4.3動態輸出回授控制器設計 41
第五章 數值模擬及結果 47
	5.1前言 47
	5.2基於內模型之有限頻段H∞控制器 47
		5.2.1  內模型控制器之模擬結果 47
		5.2.2  MIMO內模型控制器之模擬結果 54
		5.2.3  PID控制器之模擬結果 56
		5.2.4  強穩定控制器之模擬結果 60
		5.2.5  任意結構動態控制器之模擬結果 63
	5.3指定頻段H∞性能暨閉回路系統極點配置設計 66
第六章 結論與未來研究方向 70
參考文獻 71
 
圖目錄
圖1.1	含內模型控制系統之振幅響應 1
圖1.2	指定頻段控制系統振幅響應 2
圖2.1	靜態輸出回授系統整體架構 6
圖3.1	動態輸出回授系統架構 14
圖3.2	靜態輸出回授系統架構I 15
圖3.3	靜態輸出回授系統架構II 18
圖3.4	任意結構動態輸出回授系統架構 31
圖3.5	控制器K的對角化 33
圖3.6	對角化後的系統架構 33
圖4.1	動態輸出回授系統整體架構 34
圖4.2	動態控制器的尤拉參數化 36
圖4.3	尤拉參數化的控制器架構 37
圖4.4	動態輸出回授架構 37
圖4.5	靜態輸出回授架構 38
圖5.1	傳統控制系統 47
圖5.2	轉移函數Tzp_wp的波德圖振幅大小 50
圖5.3	量測訊號zp的時域響應 51
圖5.4	轉移函數Tzp_wp的波德圖振幅大小 53
圖5.5	量測訊號zp的時域響應 53
圖5.6	轉移函數Tzp_wp的波德圖振幅大小 56
圖5.7	轉移函數Tzp_wp的波德圖振幅大小 58
圖5.8	量測訊號zp的時域響應 59
圖5.9	輸出訊號c的時域響應 59
圖5.10	閉回路轉移函數的波德圖振幅大小 66
圖5.11	閉回路轉移函數的波德圖振幅大小 69
圖5.12	閉回路系統極點分布圖 69

表目錄
表5.1	基於內模型之有限頻段控制器設計的結果 49
表5.2	控制器(5.1)、(5.4)與(5.5)的結果 52
表5.3	控制器(5.6)的結果 55
表5.4	控制器(5.7)~(5.9)的結果 57
表5.5	與[21]之全階控制器比較 61
表5.6	與[21]之降階控制器比較 62
表5.7	控制器(5.14)的結果 68
參考文獻
[1]T. Airimiţoaie and I. D. Landau, “Indirect adaptive attenuation of multiple narrow-band disturbances applied to active vibration control,” in IEEE Transactions on Control Systems Technology, vol. 22, no. 2, pp. 761-769, Mar. 2014.
[2]I. D. Landau, T. B. Airimitoaie, and A. C. Silva, “Adaptive attenuation of unknown and time-varying narrow band and broadband disturbances,” Int. J. Adapt. Control Signal Process., vol. 29, no. 11, pp. 1367-1390, Nov. 2015.
[3]Z. Wu, M. Zhang, E. Chen, and P. Wang, “Youla parameterized adaptive vibration suppression with adaptive notch filter for unknown multiple narrow band disturbances.” Journal of Vibration and Control, vol. 25, no. 3, pp. 685–694, Feb. 2019.
[4]C. Du, J. N. Teoh, L. Xie, “Positioning error minimization with specific narrowband disturbance rejections using a low-order H2 and KYP lemma based control,” Mechatronics, vol. 20, no. 2, pp. 293-302, 2010.
[5]A. Karimi, Z. Emedi, “  gain-scheduled controller design for rejection of time-varying narrow-band disturbances applied to a benchmark problem,” European Journal of Control, vol. 19, no. 4, pp. 279-288, 2013.
[6]X. Chen and M. Tomizuka, “Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing,” Int. J. Adapt. Control Signal Process., vol. 29, no. 11, pp. 1459-1474, Nov. 2015.
[7]B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976. 
[8]T. Iwasaki and S. Hara, “Generalized KYP lemma: unified frequency domain inequalities with design applications,” IEEE Trans. Autom. Control, vol. 50, no. 1, pp. 41-59, 2005. 
[9]S. Hara, T. Iwasaki, and D. Shiokata, “Robust PID control using generalized KYP synthesis: direct open-loop shaping in multiple frequency ranges,” IEEE Control Systems Magazine, vol. 26, no.1, pp. 80-91, 2006.
[10]T. Iwasaki and S. Hara, “Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma,” International Journal of Robust and Nonlinear Control, vol. 17, no. 5, pp. 415-434, 2007.
[11]A. Gündes and H. Özbay, “Strong stabilization of a class of MIMO systems,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1445-1452, 2011.
[12]S. Gumussoy, M. Millstone, and M. L. Overton, “  strong stabilization via HIFOO, a package for fixed-order controller design,” 2008 47th IEEE Conference on Decision and Control, Cancun, pp. 4135-4140, 2008.
[13]Y. S. Chou, J. L. Leu, and Y. C. Chu, “Stable controller design for MIMO systems: an LMI approach,” IET Control Theory & Applications, vol. 1, no. 3, pp. 817-829, May 2007.
[14]Y. S. Chou and Y. L. Chang, “Structurally constrained controller synthesis for general proper plants with application to vehicle platooning,” International Journal of Control, vol. 91, No. 7, pp.1588-1608, 2018.
[15]P. R. Sahoo, J. K. Goyal, S. Ghosh, and A. K. Naskar, “New results on restricted static output feedback   controller design with regional pole placement,” IET Control Theory & Applications, vol. 13, no. 8, pp. 1095-1104, 2019.
[16]C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI optimization,” IEEE Trans. Autom. Control, vol. 42, no. 7, pp. 896-911, Jul. 1997.
[17]K. Yang and R. Orsi, “Generalized pole placement via static output feedback: A methodology based on projections,” Automatica, vol. 42, no. 12, pp. 2143–2150, 2006.
[18]K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, 1998.
[19]Y. Ebihara and T. Hagiwara, “New dilated LMI characterizations for continuous-time multiobjective controller synthesis,” Automatica, vol. 40, no. 11, pp. 2003-2009, Nov. 2004.
[20]P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox For Use with Matlab, The Math Works Inc., Natick, MA, 1995.
[21]Y. S. Chou and Y. L. Chang, “Decentralised output-feedback controller syntheses with restricted frequency-domain specifications via generalised KYP lemma: A Unified Approach,” IET Control Theory & Applications, vol. 9, no. 10, pp. 1615-1628, 2015.
[22]J. Rubió-Massegú, J. M. Rossell, H. R. Karimi, and F. Palacios-Quiñonero, “Static output-feedback control under information structure constraints,” Automatica, vol. 49, no. 1, pp. 313-316, Jan. 2013.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信