§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1301201720303100
DOI 10.6846/TKU.2017.00400
論文名稱(中文) 利用X光能譜及顯像技術探討缺陷對奈米材料磁性的誘發機制
論文名稱(英文) Defect Induced Magnetism in Nano-materials Studied by X-ray-based Spectroscopic and Microscopic Techniques
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系博士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 1
出版年 106
研究生(中文) 王玉富
研究生(英文) Yu-Fu Wang
學號 801210013
學位類別 博士
語言別 英文
第二語言別
口試日期 2017-01-13
論文頁數 200頁
口試委員 指導教授 - 彭維鋒
委員 - 薛宏中
委員 - 陳家浩
委員 - 董崇禮
委員 - 邱昭文
關鍵字(中) 掃描式穿透X光顯像術
X光磁圓偏振二向性
X光吸收近邊結構
衍生X光吸收精細結構
X光光電子能譜術
X光激發螢光
關鍵字(英) STXM
XMCD
XANES
EXAFS
XPS
XEOL
第三語言關鍵字
學科別分類
中文摘要
X光顯像及相關能譜實驗技術提供了具備高空間解析度及元素針對性的電子、原子結構資訊於基礎科學研究、材料研發及產業應用上,包括X光吸收近邊結構(X-ray Absorption Near Edge Structure, XANES)、X光光電子能譜術(X-ray Photoelectron Spectroscopy, XPS)、X光磁圓偏振二向性(X-ray Magnetic Circular Dichroism, XMCD)、X光激發螢光(X-ray Excited Optical Luminescence, XEOL)、衍生X光吸收精細結構(Extended X-ray Absorption Fine Structure, EXAFS)及掃描式穿透X光顯像術(Scanning Transmission X-ray Microscopy, STXM)等,這些新穎技術提供了研究非磁性材料之室溫鐵磁現象誘發機制更豐富多元的實驗證據及方法。
    藉由掃描式穿透X光顯像術在碳的K邊上所量測到之X光吸收近邊結構顯示,在利用光熱法還原氧化石墨烯後所發生的室溫鐵磁轉順磁現象,與碳原子缺陷或空缺相關的2p(σ*)電子軌域有很強的關連性,而非與在石墨烯表面處所形成之官能基相關的2p(π*)電子軌域有關。密度泛函理論計算結果更顯示,當石墨烯中碳原子空缺所造成的局域缺陷結構發生楊-泰勒扭曲現象時,將有助於磁矩的產生,如同在氧化石墨烯中所量測到的室溫鐵磁現象。
    結合掃描式穿透X光顯像術與X光磁圓偏振二向性等能譜術發現,在氧化鋅奈米線中所觀測到的室溫鐵磁現象,與奈米線近表面處的氧2p軌域磁矩有很強的關連性,而非與鋅3d軌域有關。局域密度近似理論計算結果也證實,鋅原子空缺會誘發最鄰近氧原子位置上的未鍵結2p電子產生局域化磁矩,導致室溫鐵磁現象的發生。另外,磁性量測結果顯示,氧化鋅奈米線的室溫飽和磁矩強度,在經過碳離子佈值後,被大幅度的增強。藉由掃描式穿透X光顯像術及X光相關能譜術的實驗結果推測,磁矩增強的主要原因,是來自於佔據在晶格間隙中的碳原子所貢獻。
英文摘要
X-ray microscopic and spectroscopic techniques provide highly spatial-resolved and element-specific information of electronic and atomic structures for fundamental researches, material studies and industrial applications. Techniques include X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), X-ray magnetic circular dichroism (XMCD), X-ray excited optical luminescence (XEOL), extended X-ray absorption fine structure (EXAFS) and scanning transmission X-ray microscopy (STXM) provide fruitful experimental evidences which are using to unravel the mechanism of room temperature ferromagnetism in non-magnetic materials.
     The results of C K-edge STXM-XANES provide clear evidence that the higher number of C 2p(σ*)-derived defect/vacancies states, rather than of the C 2p(π*) states that are bound with oxygen-containing and/or hydroxyl groups on the graphene oxide (GO) surface, is related to the change of magnetic behavior from that of ferromagnetic GO to that of paramagnetic photo-thermal reduced GO observed from experimentally. The spin-polarized density functional theory calculations of graphene with monovacancy further support the finding that the magnetism originates in defects/vacancies, and in particular that the J-T distortion of the local defect structure is responsible for magnetic moments in GO.
     Results of O K-edge STXM-XANES and XMCD confirm the argument that the magnetic moments are arising from the O 2p orbitals in the surface of ZnO nanostructures rather than from Zn d orbitals. Local density approximation calculations further support the conclusion that the presence of defects and/or vacancies or dangling/unpaired 2p bonds at O sites around cation vacancy centers is responsible for room temperature ferromagnetism in ZnO. Furthermore, the C-implanted ZnO nanowires shows strongly enhanced in saturation magnetization, results of X-ray-based spectroscopy and microscopy suggest interstitial C is responsible for the enhancement.
第三語言摘要
論文目次
Acknowledgement ................................................................................... i
Abstract ................................................................................................... ii
Table of Contents .................................................................................... v
List of Figures ....................................................................................... vii
	Introduction
	Defect Induced Magnetism ........................................................ 1
	Need for X-ray Microscopic and Spectroscopic Techniques .................................................................................. 2
	Study the Mechanism of Room Temperature Ferromagnetism in Non-magnetic Materials ............................................................. 4
	Experimental Techniques
	Synchrotron Radiation ................................................................ 7
	X-ray Absorption Spectroscopy (XAS) ..................................... 9
	X-ray Photoelectron Spectroscopy (XPS) ................................ 12
	X-ray Magnetic Circular Dichroism (XMCD) ......................... 14
	X-ray Excited Optical Luminescence (XEOL) ........................ 16
	Scanning Transmission X-ray Microscopy (STXM) ............... 19
	DIM in Graphene Oxides
	Introduction .............................................................................. 22
	Experimental ............................................................................ 25
	Results and Discussion ............................................................. 27
	Conclusion ................................................................................ 61
	DIM in Zinc Oxides
	Introduction .............................................................................. 62
	Experimental ............................................................................ 65
	Results and Discussion ............................................................. 67
	Conclusion .............................................................................. 101
	DIM in Carbon implanted Zinc Oxide
	Introduction ............................................................................ 102
	Experimental .......................................................................... 106
	Results and Discussion ........................................................... 109
	Conclusion .............................................................................. 155
	Summary ......................................................................... 157
Reference ............................................................................................. 159
Appendix ............................................................................................. 193
List of Figures
Figure 2-1 Transitions of X-ray absorption edges.  ..........................  10
Figure 2-2 Regions of XAS data.  ....................................................  11
Figure 2-3 Schematic of XPS process.  ............................................  14
Figure 2-4 (a) Conventional L-edge XANES, and (b,c) XMCD, illustrated in a one-electron model. The transitions occur from the spin-orbit split 2p core shell to empty conduction band states. In conventional x-ray absorption the total transition intensity of the two peaks is proportional to the number of d holes (first sum rule). By use of circularly polarized x-rays the (b) spin moment and (c) orbital moment can be determined from linear combinations of the dichroic difference intensities A and B, according to other sum rules.  ...........................  17
Figure 2-5 Schematic of the K- and L3,2-edge XEOL processes in matter.  ...............................................................................................  18
Figure 2-6 Schematic diagram of STXM.  .......................................  21
Figure 3-1 Field Emission SEM images of (a) GO, (b) M-rGO and (c) H-rGO. TEM images of (d) GO, (e) M-rGO and (f) H-rGO. (g) Raman spectra of GO, M-rGO and H-rGO; inset magnifies Raman spectrum of H-rGO.  ..............................................................................................  28
Figure 3-2 (a) PL spectra of GO, M-rGO and H-rGO. (b) Room-temperature [M(H)/M(1T)]-H curves of GO, M-rGO and H-rGO after subtraction of diamagnetic background that arises from silicon substrate. Inset in Fig. (b) plots M-H curves (without background subtraction) of GO, M-rGO and H-rGO.  ..........................................  30
Figure 3-3 OD images and corresponding stack mapping from STXM images of GO, M-rGO and H-rGO are shown in panels I and II. Panels III-VI present stack mappings from C K-edge STXM images of GO, M-rGO and H-rGO, which are decomposed into blue, yellow, red and green regions that are associated with the different thicknesses of samples. Spectra of all samples typically present background (blue), flat (yellow), medium (red) and wrinkle (green) regions.  ......................................  34
Figure 3-4 C K-edge STXM-XANES spectra of GO, M-rGO and H-rGO at (a) flat and (b) wrinkle region respectively. These are the sums of XANES spectra of yellow and green regions of flat and wrinkle regions in panels IV and VI of Fig. 2. Insets magnify 284–290 eV region of STXM-XANES spectra of flat and wrinkle regions.  ...................  37
Figure 3-5 VB-PES spectra of GO, M-rGO and H-rGO with HOPG as reference. Inset magnifies the rising edges of VB-PES spectra. Lower panel displays difference between VB-PES of M-rGO and H-rGO and that of GO.  ........................................................................................  44
Figure 3-6 C K-edge XANES spectra of GO with photo-helicity of incident X-rays parallel (μ+) and anti-parallel (μ−) to direction of magnetization, respectively. Inset magnifies π-σ (σ) region of C K-edge XANES spectra with incident X-rays μ+ and μ− to direction of magnetization. Bottom panel presents C K-edge XMCD spectrum of GO.  ...................................................................................................  47
Figure 3-7 O K-edge XANES spectra of GO with photo-helicity of incident X-rays parallel (μ+) and anti-parallel (μ−) to direction of magnetization, respectively. Inset magnifies π-σ (σ) region of O K-edge XANES spectra with incident X-rays μ+ and μ− to direction of magnetization. Bottom panel presents C K-edge XMCD spectrum of GO.  ...................................................................................................  50
Figure 3-8 The local (a) symmetric structure and (b) J-T defect structure around a single vacancy in graphene with corresponding spin-density projections are shown. Local distortions and corresponding C-C distances (in Å) of carbon triangles that surround vacancy centers are highlighted.  .......................................................................................  55
Figure 3-9 Spin-polarized electronic band structures of (a) symmetric and (b) J-T defect structures are also illustrated. Majority and minority spins are indicated by blue and red curves, respectively. Band structures of pristine graphene are denoted as black curves for reference. Fermi level (EF), indicated as a dashed line, is set to 0 eV for alignment.  .........................................................................................  57
Figure 3-10 Total DOS, spin-polarized PDOS, and spin density of symmetric structure. Contributions from π and σ electrons in defect (pristine) structure are represented in blue (black) and red (green) curves, respectively. Fermi level (EF) is set to 0 eV for alignment.  .............  59
Figure 3-11 Total DOS, spin-polarized PDOS, and spin density of J-T defect structure. Contributions from π and σ electrons in defect (pristine) structure are represented in blue (black) and red (green) curves, respectively. Fermi level (EF) is set to 0 eV for alignment.  .............  60
Figure 4-1 Fourier-transformed k3χ data of Zn K-edge EXAFS measurements from k = 3.0 to 13.0 Å (not shown here). The insets show top-view and cross-sectional SEM images and the XRD patterns of ZnO NC, NW and powder samples.  .........................................................  68
Figure 4-2 PL spectra and M-H plots of ZnO NCs and NWs. Insets I and II present the magnetic field applied parallel to the growth direction (c axis) and the magnified M-H loops of ZnO NCs and NWs, respectively, at 300 K.  ...........................................................................................  71
Figure 4-3 (a and b) O K-edge XEOL spectra of ZnO NCs and NWs, respectively, under excitation at various energies in the range of 520-580 eV. (c and d) Zn L3,2-edge XEOL spectra of ZnO NCs and NWs, respectively, under excitation at various energies in the range of 1010–1050 eV.  .................................................................................  73
Figure 4-4 Schematic of the O K-edge and Zn L3,2-edge XEOL processes in ZnO nanostructures.  .....................................................................  75
Figure 4-5 (a and b) O K-edge STXM and the corresponding XANES spectra of ZnO NCs and NWs, respectively. The top left panels in (a) and (b) present stacked images of the target region with different thickness indices (blue, green and red), which correspond to the maps of the thick, thin and impurity/edge regions in the left-hand sides of the lower panels, respectively. The right-hand sides of (a) and (b) present the sums of the XANES spectra of the differently colored (blue, green and red) regions.  .............................................................................................  78
Figure 4-6 Comparison of the O K-edge STXM-XANES spectra of the thick, thin and impurity/edge regions of ZnO NCs with those of the NWs.  .................................................................................................  82
Figure 4-7 (a)-(d) O K-edge STXM images of two selected regions in ZnO NCs (NC-1 and NC-2) and NWs (NW-1 and NW-2), respectively.  ......................................................................................  85
Figure 4-8 O K-edge STXM-XANES spectra of regions bordered by yellow dashed lines in ZnO NCs and NWs. The insets show the corresponding SEM images.  .............................................................  86
Figure 4-9 Spatially resolved valence-band SPEM spectra of the ZnO NC and NW, obtained from three selected areas (A, B and C). The solid lines that smoothly fit the SPEM spectra of the ZnO NC were guided by eye. Inset shows Zn 3d SPEM images of cross-sectional views of ZnO NC and NW, respectively.  .............................................................................  88
Figure 4-10 Normalized O K-edge XANES spectra with the photon helicity of the incident X-rays parallel (μ+) and anti-parallel (μ-) to the direction of magnetization for ZnO NCs and ZnO NWs. The insets display the magnified O K-edge XANES spectra and the magnified O K-edge XMCD spectra of ZnO NCs and ZnO NWs, respectively.  ......................................................................................  91
Figure 4-11 Normalized Zn L3,2-edge XANES spectra with the photon helicity of the incident X-rays parallel (μ+) and anti-parallel (μ-) to the direction of magnetization for ZnO NCs and ZnO NWs. The insets display the magnified Zn L3,2-edge XMCD spectra of ZnO NCs and ZnO NWs, respectively.  ............................................................................  92
Figure 4-12 Total electronic density of states (TDOS, in top panel) and partial density of states (PDOS) of Zn 3d, Zn 3p and Zn 4s (middle panel) and O 2p (bottom panel) of bulk wurtzite ZnO with oxygen anion vacancies (VO) (Zn36O35, indicated by solid lines). TDOS of defect-free bulk ZnO (Zn36O36, indicated by dotted lines) is also presented in top panel for comparison. EF (denoted as a dashed line) is aligned to 0 eV. Notably, VO in Zn36O35 does not contribute to any local net spin moment.  ............................................................................................  94
Figure 4-13 TDOS (top panel) and PDOSs of Zn 3d (middle panel) and O 2p (bottom panel) of wurtzite ZnO with VZn (Zn35O36). The TDOS of defect-free bulk ZnO (Zn36O36, indicated by dotted lines) is also shown in the top panel for comparison. EF, denoted by the dashed line, is aligned to 0 eV.  .................................................................................................  95
Figure 4-14 Jahn–Teller distortion of the native defect VZn in a 72-atom supercell of wurtzite ZnO. The net spin density (defined as the difference between the majority spin density and the minority spin density) is indicated by yellow isosurfaces near the defect center. Zn and O atoms are depicted as blue and red spheres, respectively.  ..........................  97
Figure 4-15 TDOS obtained from nonmagnetic (LDA + U, black curve) and ferromagnetic (LSDA + U, blue and red curves) calculations, respectively. EF denoted as the dashed line is aligned to 0 eV.  ........  99
Figure 5-1 PL spectra and cross-sectional SEM images of ZnO-C:NW and ZnO-NW. The insets show the magnified PL spectra of ZnO-C:NW and ZnO NW in defects transition region.  ......................................  110
Figure 5-2 The room temperature M-H curves of the ZnO-C:NW and ZnO-NW. Insets present the magnetic field applied parallel to the growth direction (c axis) and the magnified M-H loops of ZnO-C:NW and ZnO-NW at 300 K.  .........................................................................  112
Figure 5-3 RRBS spectra recorded at ~4.27 MeV energy (α-particles) for verifying the elemental ratio depth profile in ZnO-C:NW and ZnO-NW. The elements include in the spectra are C (~200 keV), O (~350 keV), Zn (~750 keV) and Sn (~850 keV) atoms.  ...........................................  114
Figure 5-4 The elemental ratio depth profile of ZnO-C:NW and ZnO-NW.  ........................................................................................  116
Figure 5-5 The FT spectra of Zn K-edge EXAFS of ZnO-C:NW and ZnO-NW, and their corresponding k3χ data (lower insets). The upper insets show the angles θ between surface normal and the direction of incident X-ray are selected to obtain the local atomic structure in specific regions, θ= 800 and 00 for primarily probing surface- and bulk-depth regions, respectively.  ......................................................................  117
Figure 5-6 (a)-(d) Inverse FT spectra and (e)-(h) phase-derived analysis of NN Zn-O and NN Zn-Zn bonds in near-surface (θ= 80o) and bulk-depth (θ= 0o) region of ZnO-NW and ZnO-C:NW.  ...............  119
Figure 5-7 Two-dimensional atomic structure of surface and bulk regions of ZnO-NW and ZnO-C:NW.  ........................................................  123
Figure 5-8 The core-level XPS spectra of C, O 1s and Zn 3d states along with their de-convoluted bonding states of ZnO-C:NW and ZnO-NW, for obtaining the binding states on implanted C atoms in ZnO-C:NW.  ....................................................................................  124
Figure 5-9 The (a) O K-edge and (b) Zn L3,2-edge XANES and XMCD spectra of ZnO-C:NW and ZnO-NW.  ............................................  128
Figure 5-10 The valence-band DOSs at/below the EVBM or EF of ZnO-C:NW and ZnO-NW.  .............................................................  131
Figure 5-11 The C K-edge XANES and XMCD spectra of ZnO-C:NW.  ....................................................................................  134
Figure 5-12 Optical density images (panel I), O K-edge STXM stack mapping (panel II) and decomposed STXM mapping (panels III-V) of randomly selected regions of ZnO-C:NW and ZnO-NW. The stack mappings (panel II) are decomposed into impurity (panel III), thin (panel IV) and thick (panel V) regions.  .....................................................  138
Figure 5-13 The O K-edge STXM-XANES spectrum of impurities/surface-depth and thick/bulk-depth regions of ZnO-C:NW and ZnO-NW.  ........................................................................................  140
Figure 5-14 Wurtzite ZnO crystal structure in the configuration of (a) bulk and (b) surface with a [112 ̅0] surface orientation. Zn and O atoms are represented as large-grey and small-red, respectively.  .............  144
Figure 5-15 Spin-resolved total DOS (TDOS) of (a) vacancy-free bulk ZnOB, (b) VZnB and (c) CZnB.  ..........................................................  145
Figure 5-16 The spin density of interstitial-vacancy complex (Ci +VZn) in (a) bulk and (b) surface regions. The net spin-up/spin-down density is indicated by yellow/cyan isosurfaces near defect centers. Zn, O and C atoms are depicted as large-grey, small-red, and middle-blue spheres, respectively.  ....................................................................................  148
Figure 5-17 Spin-resolved total DOS (TDOS) of (a) defect complex CiB+VZnB, (b) individual CiB(2p) and (c) ONNB(2p) of individual VZnB.  ...............................................................................................  149
Figure 5-18 Spin-resolved total DOS (TDOS) of (a) vacancy-free ZnOS, (b) VZnS and (c) CZnS in the [112 ̅0] surface.  .................................  151
Figure 5-19 Spin-resolved total DOS (TDOS) of (a) defect complex CiS+VZnS, (b) individual CiS(2p) and (c) ONNS(2p) of individual VZnS in the [112 ̅0] surface.  ..............................................................................  153
Fig. 5-20 (color online) Calculated formation energy of vacancy (VZn), interstitial-vacancy complex (Ci+VZn), C-substitution (CZn) in the bulk (solid lines) and surface (dashed lines) at different experimental growth conditions (Zn-rich and Zn-poor). The formation of C interstitial (Ci) defect in bulk region is denoted as a green dot-dashed line for reference.  ........................................................................................  154
參考文獻
1.	M. Stoneham, The strange magnetism of oxides and carbons, Journal of Physics: Condensed Matter 22, 074211 (2010).
2.	S. B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxides systems, Advanced Materials 22, 3125-3155 (2010).
3.	P. Esquinazi, W. Hergert, D. Spemann, A. Setzer and A. Ernst, Defect-induced magnetism in solids, IEEE Transaction on Magnetics 49, 4668 (2013).
4.	H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, A. Setzer and T. Butz, The role of hydrogen in room-temperature ferromagnetism at graphite surfaces, New Journal of Physics, 12 3012 (2010).
5.	H. Xia, W. Li, Y. Song, X. Yang, X. Liu, M. Zhao, Y. Xia, C. Song, T. Wang, D. Zhu, J. Gong and Z. Zhu, Tunable magnetism in carbon-ion-implanted highly oriented pyrolytic graphite, Advanced Materials 20, 4679-4683 (2008).
6.	B. H. Yeh, J. Chen, P. K. Tseng and S. H. Fang, Magnetization measurements of Pd-Fe alloys in the intermediate Fe concentration region, Chinese Journal of Physics 13, 1-5 (1975).
7.	P. O. Lehtinen, A. S. Foster, Y. Ma, A. V. Krasheninnikov and R. M. Nieminen, Irradiation-induced magnetism in graphite: A density functional study, Physical Review Letters 93, 187202 (2004). 
8.	Y. Ma, P. O. Lehtinen, A. S. Foster and R. M. Nieminen, Magnetic properties of vacancies in graphene and single-walled carbon nanotubes, New Journal of Physics 6, 68 (2004).
9.	O. V. Yazyev, Magnetism in disordered graphene and irradiated graphite, Physical Review Letters 101, 037203 (2008).
10.	E. J. Duplock, M. Scheffler and P. J. D. Lindan, Hallmark of perfect graphene, Physical Review Letters 92, 225502 (2004).
11.	O. F. Schirmer, O- bounded small polarons in oxide materials, Journal of Physics: Condense Matter 18, R667-R704 (2006).
12.	L. E. Halliburton, D. L. Cowan, W. B. J. Blake and J. E. Wertz, Magnesium-25 hyperfine confirmation of the localized-ground-state model of the V- center in MgO, Physical Review B 8, 1610-1616 (1973).
13.	D. Galland and A. Herve, ESR spectra of the zinc vacancy in ZnO, Physics Letters A 33, 1-2 (1970).
14.	M. Khalid, A. Setzer, M. Ziese, P. Esquinazi, D. Spemann, A. Pöppl and E. Goering, Ubiquity of ferromagnetic signals in common diamagnetic oxide crystals, Physical Review B 81, 214414 (2010).
15.	W. A. Adeagbo, G. Fischer and W. Hergert, First-principles investigations of electronic and magnetic properties of SrTiO3 (001) surfaces with adsorbed ethanol and acetone molecules, Physical Review B 83, 195428 (2011).
16.	G. Fischer, N. Sanchez, W. Adeagbo, M. Lüders, Z. Szotek, W. M. Temmerman, A.Ernst, W. Hergert and M. C. Muñoz, Room-temperature p-induced surface ferromagnetism: First-principles study, Physical Review B 84, 205306 (2011).
17.	T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides, Nature Materials 9, 965-974 (2010).
18.	O. Volnianska and P. Boguslawski, Magnetism of solids resulting from spin polarization of p orbitals, Journal of Physics: Condensed Matter 22, 073202 (2010).
19.	P. V. Kamat, Meeting the clean energy demand: Nanostructure architectures for solar energy conversion, Journal of Physical Chemistry 111, 2834-2860 (2007).
20.	M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore amd A. E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure, Physical Review Letters 60, 535-537 (1988).
21.	F. P. Netzer, F. Allegretti and S. Surnev, Low-dimensional oxide nanostructures on metals: Hybrid systems with novel properties, Journal of Vacuum Science and Technology B 28, 3268503 (2010).
22.	Z. L. Wang, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Applied Physics A 88, 7-15 (2007).
23.	See, http://www.nsrrc.org.tw/
24.	See, https://www.uvsor.ims.ac.jp/eng/index.html
25.	See, http://www.lightsource.ca/
26.	Y. F. Wang, S. B. Singh, M. V. Limaye, Y. C. Shao, S. H. Hsieh, L. Y. Chen, H. C. Hsueh, H. T. Wang, J. W. Chiou, Y. C. Yeh, C. W. Chen, C. H Chen, S. C. Ray, J. Wang, W. F. Pong, Y. Takagi, T. Ohigashi, T. Tokoyama and N. Kosugi, Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy, Scientific Reports 5, 15439 (2015).
27.	S. B. Singh, Y. F. Wang, Y. C. Shao, H. Y. Lai, S. H. Heish, M. V. Limaye, C. H. Chuang, H. C. Hseuh, H. T. Wang, J. W. Chiou, H. M. Tsai, C. W. Pao, C. H. Chen, H. J. Lin, J. F. Lee, C.T. Wu, J. J. Wu, W. F. Pong, T. Ohigashi, N. Kosugi, J. Wang, J. Zhou, T. Rogier and T. K. Sham, Observation of the origin of d0 magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques, Nanoscale 6, 9166-9176 (2014).
28.	Y. F. Wang, Y. C. Shao, S. H. Heish, P. H. Yeh,Y. K. Chang, H. C. Hsueh, S. C. Ray, H. T. Wang, J. W. Chiou, H. M. Tsai, C. W. Pao, C. H. Chen, H. J. Lin, J. F. Lee, C. T. Wu, J. J. Wu, K. Asokan, K. H. Chae, T. Ohigashi, Y. Takagi, T. Yokoyama, N. Kosugi and W. F. Pong, Various magnetization behaviors between surface- and bulk-depth regions in Carbon-implanted ZnO nanowires, To Be Submitted... (2017).
29.	D. W. Boukhvalov and M. I. Katsnelson, Sp-electron magnetic clusters with a large spin in graphene, ACS Nano 5, 2440-2446 (2011).
30.	O. V. Yazyev and M. I. Katsnelson, Magnetic correlations at graphene edges: Basis for novel spintronics devices, Physical Review Letters 100, 047209 (2008).
31.	N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman and B. J. van. Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448, 571-574 (2007).
32.	L. Kou, C. Tang, W. Guo and C. Chen, Tunable magnetism in strained graphene with topological line defect, ACS Nano 5, 1012-1017 (2011).
33.	Y. Li, Z. Zhou, P. Shen and Z. Chen, Electronic and magnetic properties of hybrid graphene nanoribbons wioth zigzag-armchair heterojunctions, The Journal of Physical Chemistry C 116, 208-213 (2012).
34.	Q. Feng, N. Tang, F. Liu, Q. Cao, W. Zheng, W. Ren, X. Wan and Y. Du, Obtaining high localized spin magnetic moments by fluorination of reduced graphene oxide, ACS Nano 7, 6729-6734 (2013).
35.	F. Banhart, J. Kotakoski and A. V. Krasheninnikov, Structural defects in graphene, ACS Nano 5, 26-41 (2011).
36.	N. M. R. Peres, F. Guinea and A. H. C. Neto, Coulomb interactions and ferromagnetism in pure and doped graphene, Physical Review B 72, 174406 (2005).
37.	R. Singh and P. Kroll, Magnetism in graphene due to single-atom defects: Dependence on the concentration and packing geometry of defects, Journal of Physics: Condensed Matter 21, 196002 (2009).
38.	M. A. Akhukov, A. Fasolino, Y. N. Gornostyrev and M. I. Katsnelson, Dangling bonds and magnetism of grain boundaries in graphene, Physical Review B 85, 115407 (2012).
39.	Y. Kobayashi, K. Fukui, T. Enoki and K. Kusakabe, Edge state on hydrogen-terminated graphite edges investigated by scanning turnneling microscopy, Physical Review B 73, 125415 (2006).
40.	M. Wimmer, A. R. Akhmerov and F. Guinea, Robustness of edge states in graphene quantum dots, Physical Review B 82, 045409 (2010).
41.	L. Chen, L. Guo, Z. Li, H. Zhang, J. Lin, J. Huang, S. Jin and X. Chen, Towards intrinsic magnetism of graphene sheets with irregular zigzag edges, Scientific Reports 3, 02599 (2013).
42.	J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe and P. Jena, Ferromagnetism in semihydrogenated graphene sheet, Nano Letters 9, 3867-3870 (2009).
43.	J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nature Materials 4, 173-179 (2005).
44.	S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch and T. Dietl, Origin and control of high-temperature ferromagnetism in semiconductors, Nature Materials 6, 440-446 (2007).
45.	J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. LeClair, T. S. Santos and J. S. Moodera, Carrier-controlled ferromagnetism in transparent oxide semiconductor, Nature Materials 5, 298-304 (2006).
46.	S. Chambers, Is it really intrinsic ferromagnetism? Interview by Fabio Pulizzi, Nature Materials 9, 956-957 (2010).
47.	M. Venkatesan, C. B. Fitzgerald and J. M. D. Coey, Thin films: Unexpected magnetism in a dielectric oxide, Nature 430, 630 (2004).
48.	S. Z. Deng, H. M. Fan, M. Wang, M. R. Zheng, J. B. Yi, R. Q. Wu, H. R. Tan, C. H. Sow, J. Ding, Y. P. Feng and K. P. Loh, Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature, ACS Nano 4, 495-505 (2010).
49.	J. I. Hong, J. Choi, S. S. Jang, J. Gu, Y. Chang, G. Wortman, R. L. Snyder and Z. L. Wang, Magnetism in dopant-free ZnO nanoplates, Nano Letters 12, 576-581 (2012).
50.	L. Kou, C. Li, Z. Zhang and W. Guo, Tuning magnetism in zigzag ZnO nanoribbons by transverse electric fields, ACS Nano 4, 2124-2128 (2010).
51.	J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng and J. Ding, Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO, Physical Review Letters 104, 137201 (2010).
52.	H. Pan, J. B. Yi, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van and J. H. Yin, Room-temperature ferromagnetism in carbon-doped ZnO, Physical Review Letters 99, 127201 (2007).
53.	S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann and H. Schmidt, Room temperature ferromagnetism in carbon-implanted ZnO, Applied Physics Letter 93, 232507 (2008).
54.	F. B. Zheng, C. W. Zhang, P. J. Wang and H. X. Luan, Tuning the electronic and magnetic properties of carbon-doped ZnO nanosheet: First-principles prediction, Journal of Applied Physics 111, 044329 (2012).
55.	T. S. Herng, S. P. Lau, L. Wang, B. C. Zhao, S. F. Yu, M. Tanemura, A. Akaike and K. S. Teng, Magnetotransport properties of p-type carbon-doped ZnO thin films, Applied Physics Letter 95, 012505 (2009).
56.	X. Peng and R. Ahuja, Non-transition-metal doped diluted magnetic semiconductors, Applied Physics Letter 94, 102504 (2009).
57.	Z. Dai, A. Nurbawono, A. Zhang, M. Zhou, Y. P. Feng, G. W. Ho and C. Zhang, C-doped ZnO nanowires: Electronic structures, magnetic properties, and a possible spintronic device, The Journal of Chemical Physics 134, 104706 (2011).
58.	S. K. Nayak, M. E. Gruner, S. Sakong, S. Sil, P. Kratzer, S. N. Behera and P. Entel, Anisotropic ferromagnetism in carbon-doped zinc oxide from first-principles studies, Physical Review B 86, 054441 (2012).
59.	S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo and D. L. Kwong, P-type conduction in unintentional carbon-doped ZnO thin films, Applied Physics Letter 91, 072101 (2007).
60.	D. Q. Fang, R. Q. Zhang, Y. Zhang and S. L. Zhang, Effect of oxygen and zinc vacancies in ferromagnetic C-doped ZnO: Density-functional calculations, Journal of Magnetism and Magnetic Materials 354, 257-261 (2014).
61.	S. Sakong and P. Kratzer, Density functional study of carbon doping in ZnO, Semiconductor Science and Technology 26, 014038 (2011).
62.	F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, H. C. Pollock, Radiation from electrons in a synchrotron, Physical Review 71, 829-830 (1947).
63.	D. Attwood, Soft X-rays and extreme ultraviolet radiation: Principles and application, (Cambridge University press, New York, 1999).
64.	See, https://en.wikipedia.org/wiki/Synchrotron_radiation
65.	See, http://photon-science.desy.de/research/studentsteaching/primers/synchrotron_radiation/index_eng.html
66.	J. Stöhr, NEXAFS spectroscopy, (Springer-Verlag, Berlin Heidelberg,1992).
67.	B. K. Teo, EXAFS: Basic principles and data analysis, (Spinger-Verlag, Berlin Heidelberg, 1986)
68.	See, https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy
69.	See, https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
70.	Stefan Hüfner, Photoelectron spectroscopy, (Spinger-Verlag, Berlin Heidelberg, 1996)
71.	E. Beaurepaire, F. Scheurer, G. Krill and J. P. Kappler, Magnetism and synchrotron radiation, (Spinger-Verlag, Berlin Heidelberg, 2010)
72.	See, http://www.diamond.ac.uk/Beamlines/Surfaces-and-Interfaces/Techniques/XMCD.html
73.	J. Stöhr, Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy, Journal of Magnetism and Magnetic Materials 200, 470-497 (1990).
74.	J. Stöhr, X-ray magnetic circular dichroism spectroscopy of transition metal thin films, Journal of Electron Spectroscopy and Related Phenomena 75, 253-272 (1995).
75.	B. T. Thole, P. Carra, F. Sette and G. van der Laan, X-ray circular dichroism as a probe of orbital magnetization, Physical Review Letters 68, 1943-1946 (1992).
76.	C. T. Chen, Y. U. Idzerda, H. J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin and F. Sette, Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt, Physical Review Letters 75, 152-155 (1995).
77.	See, https://www-ssrl.slac.stanford.edu/stohr/xmcd.htm
78.	T. K. Sham, R. Sammynaiken, Y. J. Zhu, P. Zhang, I. Coulthard and S. J. Naftel, X-ray excited optical luminescence (XEOL): A potential tool for OELD studies, Thin Solid Films 363, 318-321 (2000).
79.	T. K. Sham, D. T. Jiang, I. Coulthard, J. W. Lorimer, X. H. Feng, K. H. Tan, S. P. Frigo, R. A. Rosenberg, D. C. Houghton and B. Bryskiewicz, Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence, Nature 363, 331-334 (1993).
80.	D. T. Jiang, I. Coulthard, T. K. Sham, J. W. Lorimer, S. P. Frigo, X. H. Feng and R. A. Rosenberg, Observations on the surface and bulk luminescence of porous silicon, Journal of Applied Physics 74, 6335-6340 (1993).
81.	I. Coulthard and T. K. Sham, Luminescence from porous silicon: An optical X-ray absorption fine structures study at the Si L3,2-edge, Solid State Communications 110, 203-208 (1999).
82.	T. Warwick, K. Franck, J. B. Kortright, G. Meigs, M. Moronne, S. Myneni, E. Rotenberg, S. Seal, W. F. Steele, H. Ade, A. Garcia, S. Cerasari, J. Denlinger, S. Hayakawa, A. P. Hichcock, T. Tyliszczak, J. Kikuma, E. G. Rightor, H. J. Shin and B. P. Tonner, A scanning transmission X-ray microscope for materials science spectromicroscopy at the advanced light source, Review of Science Instruments 69, 2964-2972 (1998).
83.	Y. Takeichi, N. Inami, H. Suga, T. Ueno, S. Kishimoto, Y. Takahashi and K. Ono, Development of a compact scanning transmission X-ray microscope, Journal of Physics: Conference Series 502, 012009 (2014).
84.	See, http://unicorn.mcmaster.ca/research/stxm-intro/polySTXMintro-all.html
85.	D. W. Boukhvalov, Modeling of hydrogen and hydroxyl group migration on graphene, Physical Chemistry Chemical Physics 12, 15367-15371 (2010).
86.	N. Ghaderi and M. Peressi, First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide, The Journal of Physical Chemistry C 114, 21625-21630 (2010).
87.	D. W. Boukhvalov, DFT modeling of the covalent functionalization of graphene: From ideal to realistic models, RSC Advances 3, 7150-7159 (2013).
88.	E. J. G. Santos, A. Ayuela and D. Sánchez-Portal, Universal magnetic properties of sp3-type defects in covalently functionalized graphene, New Journal of Physics 14, 043022 (2012).
89.	M. Wang, W. Huang, M. B. Chan-Park and C. M. Li, Magnetism in oxidized graphenes with hydroxyl groups, Nanotechnology 22, 105702 (2011).
90.	T. Tang, N. Tang, Y. Zheng, X. Wan, Y. Liu, F. Liu, Q. Xu and Y. Du, Robust magnetic moments on the basal plane of the graphene sheet effectively induced by OH groups, Scientific Reports 5, 8448 (2015).
91.	S. C. Ray, N. Soin, T. Makgato, C. H. Chuang, W. F. Pong, S. S. Roy, S. K. Ghosh, A. M. Strydom and J. A. McLaughlin, Graphene supported graphone/graphane bilayer nanostructure material for spintronics, Scientific Reports 4, 3862 (2014).
92.	K. Bagani, M. K. Ray, B. Satpati, N. R. Ray, M. Sardar and S. Banerjee, Contrasting magnetic properties of thermally and chemically reduced graphene oxide, The Journal of Physical Chemistry C 118, 13254-13259 (2014).
93.	C. H. Chuang, Y. F. Wang, Y. C. Shao, Y. C. Yeh, D. Y. Wang, C. W. Chen, J. W. Chiou, S. C. Ray, W.F. Pong, L. Zhang, J. F. Zhu and J. H. Guo, The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides, Scientific Reports 4, 4525 (2014).
94.	S. William, J. R. Hummers and R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80, 1339 (1958).
95.	G. Kresse and J. Hafner, Ab initial molecular dynamics for liquid metal, Physical Review B 47, 558-561 (1993).
96.	G. Kresse and J. Hafner, Ab initial molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Physical Review B 49, 14251-14269 (1994).
97.	G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6, 15-50 (1996).
98.	J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77, 3865-3868 (1996).
99.	H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integration, Physical Review B 13, 5188-5192 (1976).
100.	A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Raman spectrum of graphene and graphene layers, Physical Review Letters 97, 187401 (2006).
101.	A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61, 14095-14107 (2000).
102.	Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen Wang and A. T. S. Wee, Raman studies of monolayer graphene: The substrate effect, The Journal of Physical Chemistry C 112, 10637-10640 (2008).
103.	C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Tamaguchi, M. Chhowalla and C. W. Chen, Tunable photoluminescence from graphene oxide, Angewandte Chemie International Edition 51, 6662-6666 (2012).
104.	J. W. Chiou, S. C. Ray, S. I. Peng, C. H. Chuang, B. Y. Wang, H. M. Tsai, C. W. Pao, H. J. Lin, Y. C. Shao, Y. F. Wang, S. C. Chen, W. F. Pong, Y. C. Yeh, C. W. Chen, L. C. Chen, K. H. Chen, M. H. Tsai, A. Kumar, A. Ganguly, P. Papakonstantinou, H. Yamane, N. Kosugi, T. Regier, L. Liu and T. K. Sham, Nitrogen-functionalized graphene nanoflakes (GNFs:N): Tunable photoluminescence and electronic structure, The Journal of Physical Chemistry C 116, 16251-16258 (2012).
105.	Y. Liu, N. Tang, X. Wan, Q. Feng, M. Li, Q. Xu, F. Liu and Y. Du, Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen, Scientific Reports 3, 2566 (2013).
106.	J. G. Zhou, J. Wang, C. L. Sun, J. M. Maley, R. Sammynaiken, T. K. Sham and W. F. Pong, Nano-scale chemical imaging of a single sheet of reduced graphene oxide, Journal of Materials Chemistry 21, 14622-14630 (2011).
107.	H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry B 110, 8535-8539 (2006).
108.	X. Shen, X. Lin, N. Yousefi, J. Jia and J. K. Kim, Wrinkling in graphene sheets and graphene oxide papers, Carbon 66, 84-92 (2014).
109.	Z. Wang, J. Wang, T. K. Sham and S. Yang, Origin of luminescence from ZnO/CdS core/shell nanowire arrays, Nanoscale 6, 9783-9790 (2014).
110.	W. Hua, B. Gao, S. Li, H. Ågren and Y. Luo, X-ray absorption spectra of graphene from first-principle simulations, Physical Review B 82, 155433 (2010).
111.	H. K. Jeong, H. J. Noh, J. Y. Kim, L. Colakerol, P. A. Glans, M. H. Jin, K. E. Smith and Y. H. Lee, Comment on "Near-edge X-ray absorption fine-structure investigation of graphene", Physical Review Letters 102, 099701 (2009).
112.	D. Pacilé, M. Pagano, A. F. Rodríguez, M. Grioni and L. Pagano, Near-edge X-ray absorption fine-structure investigation of graphene, Physical Review Letters 101, 066806 (2008).
113.	D. Pacilé, M. Pagano, A. F. Rodríguez, M. Grioni, L. Pagano, Ç. Ö. Girit, J. C. Meyer, G. E. Begtrup and A. Zettle, Pacilé et al. Reply:, Physical Review Letters 102, 099702 (2009).
114.	A. Ganguly, S. Sharma, P. Papakonstantinou and J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, The Journal of Physical Chemistry C 115, 17009-17019 (2011).
115.	S. Y. Zhou, Ç. Ö. Girit, A. Scholl, C. J. Jozwiak, D. A. Siegel, P. Yu, J. T. Robinson, F. Wang, A. Zettl and A. Lanzara, Instability of two-dimensional graphene: Breaking sp2 bonds with soft X rays, Physical Review B 80, 121409(R) (2009).
116.	S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. A. D. Heer, A. Bongiorono, E. Riedo, Room temperature metastability of multilayer graphene oxide films, Nature Materials 11, 544-549 (2012).
117.	R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi and S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide, Journal of the American Chemical Society 133, 17315-17321 (2011).
118.	C Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel and M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Advanced Functional Materials 19, 2577-2583 (2009).
119.	A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nature Chemistry 2, 581-587 (2010).
120.	S. B. Singh, M. V. Limaye, S. K. Date, S. Gokhale and S. K. Kulkarni, Iron substitution in CdSe nanoparticles, magnetic and oprical properties, Physical Review B 80, 235421 (2009).
121.	J. W. Chiou, C. L. Yueh, J. C. Jan, H. M. Tsai, W. F. Pong, I. H. Hong, R. Klauser, M. H. Tsai, Y. K. Chang, Y. Y. Chen, C. T. Wu, K. H. Chen, S. L. Wei, C. Y. Wen, L. C. Chen and T. J. Chuang, Electronic structure of the carbon nanotube tips studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy, Applied Physics Letters 81, 4189-4191 (2002).
122.	S. C. Ray, J. W. Chiou, W. F. Pong and H. M. Tsai, The electronic properties of nanomaterials elucidated by synchrotron radiation based spectroscopy, Critical Reviews in Solid State and Materials Sciences 31, 91-110 (2006).
123.	D. S. Sutar, G. Singh and V. D. Botcha, Electronic structure of graphene oxide and reduced graphene oxide monolayers, Applied Physics Letters 101, 103103 (2012).
124.	J. Díaz, G. Paolicelli, S. Ferrer and F. Comin, Separation of the sp3 and sp2 components in the C 1s photoemision spectra of amorphous carbon films, Physical Review B 54, 8064-8069 (1996).
125.	T. Hemraj-Benny, S. Banerjee, S. Sambasivan, M. Balasubramanian, D. A. Fischer, G. Eres, A. A. Puretzky, D. B. Geohegan, D. H. Lowndes, W. Han, J. A. Misewich and S. S. Wong, Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials, Small 2, 26-35 (2006).
126.	P. Skytt, P. Glans, D. C. Mancini, J. H. Guo, N. Wassdahl and J. Nordgren, Angle-resolved soft-X-ray fluorescence and absorption study of graphite, Physical Review B 50, 10457-10461 (1994).
127.	A. Toyoshima, T. Kikuchi, H. Tanaka, J. Adachi, K. Mase and K. Amemiya, In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation, Journal of Synchrotron Radiation 19, 722-727 (2012).
128.	F. Wilhelm, P. Poulopoulop, H. Wende, A. Scherz, K. Baberschke, M. Angelakeris, N. K. Flevaris and A. Rogalev, Systematics of the induced magnetic moments in 5d layers and the violation of Hund's third rule, Physical Review Letters 87, 207202 (2001).
129.	X. Qian and W. Hübner, Ab initial magnetocrystalline anisotropy calculations for Fe/W (110) and Fe/Mo (110), Physical Review B 64, 092402 (2009).
130.	A. I. Figueroa, F. Bartolomé, J. Bartoloé and L. M. García, Breakdown of Hund's third rule in amorphous Co-W nanoparticles and crystalline Co3W alloys, Physical Review B 86, 064428 (2012).
131.	J. Herrero-Albillos, L. M. García, F. Bartolomé and A. T. Young, Breakdown of Hund's third rule for intrinsic magnetic moments, Europhysics Letters 93, 17006 (2011).
132.	H. Peng, H. J. Xiang, S. H. Wei, S. S. Li, J. B. Xia and J. Li, Origin of enhancement of hole-induced ferromagnetism in first-row d0 semiconductor, Physical Review Letters 102, 017201 (2009).
133.	B. R. K. Nada, M. Sgerafati, Z. S. Popović and S. Satpathy, Electronic structure of the substitutional vacancy in graphene: Density-functional and Green's function studies, New Journal of Physics 14, 083004 (2012).
134.	A. H. C. Neto and F. Guinea, Impurity-induced spin-orbit coupling in graphene, Physical Review Letters 103, 026804 (2009).
135.	M. Wu, E. Liu and J. Z. Jiang, Magnetic behavior of graphene absorbed with N, O, and F atoms: A first-principle study, Applied Physics Letters 93, 082504 (2008).
136.	J. Yan and M. Y. Chou, Oxidation functional groups on graphene: Structural and electronic properties, Physical Review B 82, 125403 (2010).
137.	H. A. Mizes and J. S. Foster, Long-range electronic perturbations caused by defects using scanning turnneling microscopy, Science 244, 559-562 (1989).
138.	A. Hashimoto, K. Suenaga, A. Gloter, K. Urita and S. Iijima, Direct evidence for atomic defects in graphene layers, Nature 430, 870-873 (2004).
139.	H. C. Hsueh, C. C. Lee, C. W. Wang and J. Crain, Compression mechanism in the anisotropically bonded elements Se and Te, Physical Review B 61, 3851-3856 (2000).
140.	J. J. Chen, H. C. Wu, D. P. Yu and Z. M. Liao, Magnetic moments in graphene with vacancies, Nanoscale 6, 8814-8821 (2014).
141.	A. Sundaresanm R. Bhargavi, N. Rangarajan, U. Siddesh and C. N. R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides, Physical Review B 74, 161306(R) (2006).
142.	M. S. Seehra, P. Dutta, S. Neeleshwar, Y. Y. Chen, C. L. Chen, S. W. Chou, C. C. Chen, C. L. Dong and C. L. Chang, Size-controlled ex-nihilo ferromagnetism in capped CdSe quantum dots, Advanced Materials 20, 1656-1660 (2008).
143.	Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi and H. Hori, Direct observation of ferromagnetic spin polarization in gold nanoparticles, Physical Review Letters 93, 116801 (2004).
144.	J. Bartolomé, F. Nartolomé, L. M. García, A. I. Figueroa, A. Repollés, M. J. Martínez-Pérez, F. Luis, C. Magén, S. Selenska-Pobell, F. Pobell, T. Reitz, R. Schönemann, T. Herrmannsdörfer, M. Merroun, A. Geissler, F. Wilhelm and A. Rogalev, Strong paramagnetism of gold nanoparticles deposited on a sulfolobus acidocaldarius S layer, Physical Review Letters 109, 247203 (2012).
145.	M. A. Garcia, J. M. Merino, E. Fernández Pinel, A. Quesada, J. de la Venta, M. L. Ruíz González, G. R. Castro, P. Crespo, J. Llopis, J. M. González-Calbet and A. Hernando, Magnetic properties of ZnO nanoparticles, Nano Letters 7, 1489-1494 (2007).
146.	M. Gacic, G. Jakob, C. Herbort, H. Adrian, T. Tietze, S. Brück and E. Goering, Magnetism of Co-doped ZnO thin films, Physical Review B 75, 205206 (2007).
147.	X. Xu, C. Xu, J. Dai, J. Hu, F. Li and S. Zhang, Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles, The Journal of Physical Chemistry C 116, 8813-8818 (2012).
148.	K. R. Kittelstved, W. K. Liu and D. R. Gamelin, Electronic structure origins of polarity-dependent high-Tc ferromagnetism in oxide-diluted magnetic semiconductors, Nature Materials 5, 291-297 (2006).
149.	G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Feng and T. Wu, Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example, AIP Advances 1, 022152 (2011).
150.	M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. A. Adeagbo, W. Hergert and A. Ernst, Defect-induced magnetic order in pure ZnO films, Physical Review B 80, 035331 (2009).
151.	D. J. Keavney, D. B. Buchholz, O. Ma and R. P. H. Chang, Where does the spin reside in ferromagnetic Cu-doped ZnO?, Applied Physics Letters 91, 012501 (2007).
152.	J. Chaboy, R. Boada, C. Piquer, M. A. Laguna-Marco, M. García-Hernández, N. Carmona, J. Llopis, M. L. Ruíz-González, J. González-Calbet, J. F. Fernández and M. A. García, Evidence of intrinsic magnetism in capped ZnO nanoparticles, Physical Review B 82, 064411 (2010).
153.	C. Guglieri, M. A. Laguna-Marco, M. A. García, N. Carmona, E. Céspedes, M. García-Hernández, A. Espinosa and J. Chaboy, XMCD proof of ferromagnetic behavior in ZnO nanoparticles, The Journal of Physical Chemistry C 116, 6680-6614 (2012).
154.	Q. Wang, Q. Sun, G. Chen, Y. Kawazoe and P. Jena, Vacancy-induced magnetism in ZnO thin films and nanowires, Physical Review B 77, 205411 (2008).
155.	A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk and R. Blinc, Surface-induced magnetism of the solids with impurities and vacancies, Physica B 406, 1673-1688 (2011).
156.	I. S. Elfimov, S. Yunoki and G. A. Sawatzky, Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials, Physical Review Letters 89, 216403 (2002).
157.	C. Peng, Y. Liang, K. Wang, Y. Zhang, G. Zhao and Y. Wang, The Journal of Physical Chemistry C 116, 9709-9715 (2012).
158.	R. Podila, W. Queen, A. Nath, J. T. Arantes, A. L. Schoenhalz, A. Fazzio, G. M. Dalpian, J. He, S. J. Hwu, M. J. Skove and A. M. Rao, Origin of FM ordering in pristine micro- and nanostructured ZnO, Nano Letters 10, 1383-1386 (2010).
159.	C. T. Wu and J. J. Wu, Room-temperature synthesis of hierarchical nanostructures on ZnO nanowire anodes for dye-sensitized solar cells, Journal of Materials Chemistry 21, 13605-13610 (2011).
160.	S. C. Ray, Y. Low, H. M. Tsai, C. W. Pao, J. W. Chiou, S. C. Yang, F. Z. Chien, W. F. Pong, M. H. Tsai, K. F. Lin, H. M. Cheng, W. F. Hsieh and J. F. Lee, Size dependence of the electronic structures and electron-phonon coupling in ZnO quantum dots, Applied Physics Letters 91, 262101 (2007).
161.	Y. Xia, Y. Zhang, X. Yu and F. Chen, Direct solution phase fabrication of ZnO nanostructure arrays on copper at near room temperature, CrystEngComm 16, 5394-5401 (2014).
162.	G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T. C. Sum and T. Wu, Correlated d0 ferromagnetusm and photoluminescence in undoped ZnO nanowires, Applied Physics Letters 96, 112511 (2010).
163.	D. Wang, Q. Chen, G. Xing, J. Yi, S. R. Bakaul, J. Ding and T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays, Nano Letters 12, 3994-4000 (2012).
164.	A. Janotti and C. G. V. Walle, Native point defects in ZnO, Physical Review B 76, 165202 (2007).
165.	B. Lin, Z. Fu and Y. Jia, Green luminescenct center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters 79, 943-945 (2001).
166.	T. K. Sham and R. A. Rosenberg, Time-resuolved synchrotron radiation excited optical luminescence: Light-emission properties of silicon-based nanostructures, ChemPhysChem 8, 2557-2567 (2007).
167.	L. Liu, T. K. Sham, W. Han, C. Zhi and Y. Bando, X-ray excited optical luminescence from hexagonal boron nitride nanotubes: Electronic structures and the role of oxygen impurities, ACS Nano 5, 631-639 (2011).
168.	L. Armelao, F. Heigl, S. Brunet, R. Sammynaiken, T. Regier, R. I. R. Blyth, L. Zuin, R. Sankari, J. Vogt and T. K. Sham, The origin and dynamics of soft-X-ray-excited optical luminescence of ZnO, ChemPhysChem 11, 3625-3631 (2010).
169.	C. L. Sun, C. T. Chang, H. H. Lee, J. Zhou, J. Wang, T. K. Sham and W. F. Pong, Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electronichemical detection of ascorbic acid, dopamine, and uric acid, ACS Nano 5, 7788-7795 (2011).
170.	J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bai, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu and S. C. Liu, Electronic structure of ZnO nanorods studied by angle-dependent X-ray absorption spectroscopy and scanning photoelectron microscopy, Applied Physics Letters 84, 3462-3464 (2004).
171.	J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu and S. C. Liu, Diameter dependence of the electronic structure of ZnO nanorods determined by X-ray absorption soectroscopy and scanning photoelectron microscopy, Applied Physics Letters 85, 3220-3222 (2004).
172.	D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. D. Vita and R. Car, Electronic structure and localized states at carbon nanotube tips, Physical Review Letters 78, 2811-2814 (1997).
173.	P. Kim, T. W. Odom, J. L. Huang and C. M. Lieber, Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states, Physical Review Letters 82, 1225-1228 (1999).
174.	F. S. Hage, Q. M. Ramasse, D. M. Kepaptsoglou, Ø. Prytz, A. E. Gunnaes, G. Helgesen and R. Brydson, Topologically induced confinement of collective modes in multilayer graphene nanocones measured by momentum-resolved STEM-VELLS, Physical Review B 88, 155408 (2013).
175.	E. C. Stoner, Collective electron ferromagnetism, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 165, 372-414 (1938).
176.	E. C. Stoner, Collective electron ferromagnetism, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 169, 339-371 (1938).
177.	P. Dev, Y. Xue and P. Zhang, Defect-induced intrinsic magnetism in wide-gap III nitrides, Physical Review Letters 100, 117204 (2008).
178.	N. H. Hong, J. Sakai, N. Poirot and V. Brizé, Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films, Physical Review B 73, 132404 (2006).
179.	X. Wang, R. Zheng, Z. Liu, H. Ho, J. Xu and S. P. Ringer, Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases. Nanotechnology 19, 455702 (2008).
180.	C. Zapata, M. Khalid, G. Simonelli, M. Villafuerte, S. P. Heluani and P. Esquinazi, Magnetic field influence on the transient photoresistivity of defect-induced magnetic ZnO films. Applied Physics Letters 99, 112503 (2011).
181.	S. Sugahara and J. Nitta, Spin-transistor electronics: An overview and outlook, Proceedings of the IEEE 98, 2124-2154 (2010).
182.	T. L. Phan, Y. D. Zhang, D. S. Yang, N. X. Nghia, T. D. Thanh and S. C. Yu, Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling, Applied Physics Letters 102, 072408:1-5 (2013).
183.	C. S. Ong, T. S. Herng, X. L. Huang, Y. P. Feng and J. Ding, Strain-induced ZnO spinterfaces, Journal of Physical Chemistry C 116, 610-617 (2012).
184.	D. Wang, Z. Q. Chen, D. D. Wang, N. Qi, J. Gong, C. Y. Cao and Z. Tang, Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism, Journal of Applied Physics 107, 023524 (2010).
185.	Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hockmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke and M. Grundmann, Room temperature ferromagnetism in ZnO films due to defects, Applied Physics Letters 92, 082508 (2008).
186.	L. Y. Li, Y. H. Cheng, X. G. Luo, H. Liu, G. H. Wen, R. K. Zheng and S. P. Ringer, Room-temperature ferromagnetism and the scaling relation between magnetization and average granule size in nanocrystalline Zn/ZnO core-shell structures prepared by sputtering, Nanotechnology 21, 145705:1-6 (2010).
187.	X. Lin, S. Yan, M. Zhao, S. Hu, C. Han, Y. Chen, G. Liu, Y. Dai and L. Mei, Possible origin of ferromagnetism in un-doped ZnO: First-principles calculations, Physics Letters A 375, 638-641 (2011).
188.	H. K. Chandra and P. Mahadevan, Defect induced local moment in ZnO as a consequence of Stoner mechanism, Solid State Communications 152, 762-766 (2012).
189.	K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki and R. Zeller, First-principles theory of dilute magnetic semiconductors, Reviews of Modern Physics 82, 1633-1690 (2010).
190.	K. Saravanan, B. K. Panigrahi, S. Amirthapandian and K. G. M. Nair, Resonant Rutherford backscattering spectrometry for carbon diffusion in silicon, Nuclear Instruments and Methods in Physical Research Section B 266, 1502-1506 (2008).
191.	M. Subramanian, P. Thakur, S. Gautam, K. H. Chae, M. Tanemura, T. Hihara, S. Vijayalakshmi, T. Soga, S. S. Kim and K. Asokan, Investigations on the structural, optical and electronic properties of Nd doped ZnO thin films, Journal of Physics D: Applied Physics 42, 105410 (2009).
192.	Y. Feng, Z. Zhou, Y. Zhou and G. Zhao, Cross sections for 165° backscattering of 2.0–9.0 MeV 4He from carbon, Nuclear Instruments and Methods in Physical Research Section B 86, 225-230 (1994).
193.	Y. H. Leung, K. H. Tam, A. B. Djurišić, M. H. Xie, W. K. Chan, D. Lu and W. K. Ge, ZnO nanoshells: Synthesis, structure, and optical properties, Journal of Crystal Growth 283, 134-140 (2005). 
194.	Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H. Yang, Deep-level emissions influenced by O and Zn implantations in ZnO, Applied Physics Letter 87, 211912 (2005).
195.	A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez and V. Muñoz-Sanjosé, Correlation between Zn vacancies and photoluminescence emission in ZnO films, Journal of Applied Physics 99, 053516 (2006).
196.	A. Urbieta, P. Fernández, J. Piqueras, C. Hardalov and T. Sekiguchi, Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals, Journal of Physics D: Applied Physics 34, 2945-2949 (2001).
197.	Y. Ohno, H. Koizumi, T. Taishi, I. Yonenaga, K. Fujii, H. Goto and T. Yao, Optical properties of dislocations in wurtzite ZnO single crystals introduced at elevated temperatures, Journal of Applied Physics 104, 073515 (2008).
198.	S. Xu, W. Guo, S. Du, M. M. T. Loy and N. Wang, Piezotronic effects on the optical properties of ZnO nanowires, Nano Letters 12, 5802-5807 (2012).
199.	K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding and W. K. Ge, Defects in ZnO nanorods prepared by a hydrothermal method, Journal of Physical Chemistry B 110, 20865-20871 (2006).
200.	Y. H. Lu, Z. X. Hong, Y. P. Feng, and S. P. Russo, Roles of carbon in light emission of ZnO, Applied Physics Letters 96, 091914 (2010).
201.	J. Haug, A. Chassé, M. Dubiel, Ch. Eisenschmidt, M. Khalid, and P. Esquinazi, Characterization of lattice defects by X-ray absorption spectroscopy at the Zn K-edge in ferromagnetic, pure ZnO films, Journal of Applied Physics 110, 063507 (2011).
202.	P. Pyykkö, S. Riedel and M. Patzschke, Triple-bond covalent radii, Chemistry  European Journal 11, 3511-3520 (2005).
203.	B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán and S. Alvarez, Covalent radii revisited, Dalton Transaction 21, 2832-2838 (2008).
204.	G. Martens, P. Rabe, N. Schwentner and A. Werner, Extended X-ray-absorbtion fine-structure beats: A new method to determine differences in bond lengths, Physical Review Letters 39, 1411-1414 (1977).
205.	C. Piamonteze, H. C. N. Tolentino, A. Y. Ramos, N. E. Massa, J. A. Alonso, M. J. Martínez-Lope and M. T. Casais, Short-range charge order in RNiO3 perovskites (R = Pr, Nd, Eu, Y) probed by X-ray-absorption spectroscopy, Physical Review B 71, 012104 (2005).
206.	B. Y. Wang, H. T. Wang, S. B. Singh, Y. C. Shao, Y. F. Wang, C. H. Chuang, P. H. Yeh, J. W. Chiou, C. W. Pao, H. M. Tsai, H. J. Lin, J. F. Lee, C. Y. Tsai, W. F. Hsieh, M. H. Tsai and W. F. Pong, Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroiccomposites, RSC Advances 3, 7884-7893 (2013).
207.	M. Descostes, F. Mercier, N. Thromat, C. Beaucaire and M. Gautier-Soyer, Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium, Applied Surface Science 165, 288-302 (2000).
208.	Z. Jiang, W. Zhang, L. Jin, X. Yang, F. Xu, J. Zhu and W. Huang, Direct XPS evidence for charge transfer from a reduced rutile TiO2 (110) surface to Au clusters, The Journal of Physical Chemistry C 111, 12434-12439 (2007).
209.	S. O. Kucheyev, J. Biener, Y. M. Wang, T. F. Baumann, K. J. Wu, T. van Buuren, A. V. Hamza and J. H. Satcher Jr., J. W. Elam and M. J. Pellin, Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths, Applied Physics Letters 86, 083108 (2005).
210.	V. Pardo and W. E. Pickett, Magnetism from 2p states in alkaline earth monoxides: Trends with varying N impurity concentration, Physical Review B 78, 134427 (2008).
211.	Z. L. Wang, Zinc oxide nanostructures: Growth, properties and applications, Journal of Physics: Condensed Mater 16, R829-R858 (2004).
212.	J. A. Chan, S. Lany and A. Zunger, Electronic correlation in anion p orbitals impedes ferromagnetism due to cation vacancies in Zn chalcogenides, Physical Review Letter 103, 016404 (2009).
213.	C. Peng, Y. Liang, K. Wang, Y. Zhang, G. Zhao and Y. Wang, Possible origin of ferromagnetism in an undoped ZnO d0 semiconductor, The Journal of Physical Chemistry C 116, 9709−9715 (2012).
214.	C. G. Van de Walle, Hydrogen as a cause of doping in zinc oxide, Physical Review Letter 85, 1012-1015 (2000).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信