§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1301201609272300
DOI 10.6846/TKU.2016.00327
論文名稱(中文) 化學還原法回收廢水中的重金屬鎳
論文名稱(英文) Recovery of nickel ions from wastewater by chemical reduction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系博士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 1
出版年 105
研究生(中文) 余瑞軒
研究生(英文) Jui-Hsuan Yu
學號 898480032
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2015-12-31
論文頁數 97頁
口試委員 指導教授 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 陳孝行(f10919@ntut.edu.tw)
委員 - 劉志成(liu1958@mail.ntust.edu.tw)
委員 - 李柏青(pclee@mail.tku.edu.tw)
委員 - 彭晴玉(cypeng@mail.tku.edu.tw)
關鍵字(中) 化學還原

檸檬酸
低亞硫酸鈉
錯合物
關鍵字(英) Chemical reduction
Nickel
Citric acid
Dithionite
Complex
第三語言關鍵字
學科別分類
中文摘要
印刷電路板業(PCB)為製程繁雜用水需求極高的產業,製造過程會排出大量重金屬廢液與廢水,這些廢液與廢水若未經妥善處理即排放,對人體及自然環境皆會造成重大影響。
化學沉澱法是將工業廢水調整至鹼性環境下,使重金屬離子沈澱分離,產生之化學污泥(例如:Ni(OH)2)是屬於廢棄物。本研究利用還原劑dithionite將Ni(II)轉換成金屬鎳或其他有價值的形式,達到回收鎳離子之目的。本研究探討dithionite劑量、pH值及反應溫度對鎳回收的影響。不含螯合劑(例如:檸檬酸鹽)時,鎳的還原效率會隨dithionite:Ni莫耳比增加而上升,dithionite:Ni莫耳比在3:1,可達到99%以上的回收率。pH值對鎳還原效率的影響,與dithionite的標準氧化還原電位(pe0)有關,當pH值增加時,dithionite的還原電位愈大,使得鎳的還原效率愈好。
當含有檸檬酸的環境下,由於Ni-檸檬酸錯合物的形成,鎳的還原反應被嚴重的抑制。提升反應pH值或溫度,可增加dithionite的還原電位,因此可改善鎳的還原效率。
儘管降低溶液的pH值,可使Ni-檸檬酸錯合物解離產生較多的自由鎳離子,然而,pH值下降會使dithionite的還原力降低,並無法改善鎳的還原效率。鎳還原反應的最佳pH值為8.0。此外,以金屬銅顆粒為核種,可改善鎳的去除速率與效率。除了金屬鎳之外,固體物經XRD分析後顯示為NiS和Ni3S2。
實廠含鎳廢液於dithionite:Ni=1.5:1、溫度40℃、pH 4.5-4.8之條件下,分三次添加dithionite,Ni之去除率為57.4%;實廠含鎳廢水以實廠含鎳廢液稀釋10倍進行試驗,dithionite:Ni為4:1、8:1、12:1時,Ni之去除率則分別為84.3%、94.5%、98.1%。
英文摘要
Printed circuit board (PCB) production involves extremely complex processes and demands large amount of water, generating huge amount of heavy metal-containing waste liquids and wastewaters. Without proper wastewater treatment, discharge of these heavy metal-containing waste liquids and wastewaters poses profound impact to human body and the natural environment. Chemical precipitation, a common practice to treat heavy metal-containing industrial wastewater, generates hazardous chemical sludge (e.g., Ni(OH)2) through precipitation of metal ions at alkaline pH values. In this study, the recovery of Ni by converting Ni(II) to its elemental or other valuable forms through chemical reduction using dithionite was investigated,. The effects of dithionite dose, solution pH, and reaction temperature on Ni reduction were investigated.

Synthetic wastewaters containing Ni(II) with and without ligands were studied first. Without the presence of chelators (e.g., citrate), the nickel reduction efficiency increased with increasing dithionite:Ni molar ratio, reaching ~99% at ratios above 3:1. The effect of pH on Ni reduction was in agreement with the standard redox potentials (pe0) of dithionite, which became more negative with an increase in pH, thus leading to greater Ni reduction efficiencies.In the presence of citrate, however, the Ni reduction reaction was severely inhibited due to the formation of Ni-citrate chelates. Elevated pH and temperature increased the reducing power of dithionite and improved nickel reduction. Although a decrease in the solution pH freed nickel ions from the nickel-citrate complex, the reducing power of dithionite decreased as well, and so Ni(II) reduction was not enhanced. The optimal pH value for Ni(II) reduction was thus found to be pH 8. Furthermore, seeding with preformed Cu particles improved the rate and amount of Ni removed. In addition to elemental Ni, both NiS and Ni3S2 were identified in the crystal by X-ray analysis of the resulting solids.
  
A PCB waste liquid containing Ni(II) and organic ligands was collected from a PCB manufacturer and treated with chemical reduction process. At dithionite:Ni molar ratio of 1.5:1,temperature of 40℃, and without pH adjustment (original pH of 4.5-4.8), the removal efficiency of Ni was about 57.4% with dithionite being divided into three equal portions and dosed 5 min apart. The PCB waste liquid was diluted 10 times to simulate the wastewater generated from PCB manufacturing process. It was found that the removal efficiencies of Ni from the simulated wastewater were 84.3%,94.5% and 98.1%, respectively, with dithionite:Ni molar ratio of 4:1,8:1,and 12:1.
第三語言摘要
論文目次
目錄.......................................................I
List of Figure............................................IV
List of Table.............................................XI
第一章 研究緣起............................................1
1.1研究背景................................................1
1.2研究目的................................................3
第二章 文獻回顧............................................5
2.1印刷電路板廢水特性......................................5
2.2重金屬廢水的處理方法....................................8
2.2.1化學混凝沈澱法........................................8
2.2.2電解法...............................................10
2.2.3逆滲透及電透析.......................................11
2.2.4離子交換法...........................................13
2.2.5離子浮選法...........................................13
2.2.6MEUF及PEUF程序.......................................14
2.3化學還原法.............................................19
2.3.1低亞硫酸鈉(Na2S2O4, dithionite)......................19
2.3.2硼氫化鈉(NaBH4)......................................22
2.3.3聯氨.................................................23
2.4螯合作用...............................................24
2.4.1檸檬酸(Citrate)......................................24
2.4.2乙二胺四乙酸二鈉鹽(EDTA).............................26
2.5Dithionite化學還原法回收廢水中銅之研究.................27
2.5.1EDTA與氨水對Dithionite處理含銅廢水之影響.............27
2.5.2PEI與銅離子結合對Dithionite處理含銅廢水之影響........32
2.5.3混合條件對銅去除率之影響.............................38
2.5.4固體物分析...........................................39
2.5.5含銅實廠廢水試驗.....................................40
第三章材料與方法..........................................42
3.1研究流程...............................................42
3.2實驗材料與方法.........................................43
3.2.1實驗藥品與材料.......................................43
3.2.2實驗設備.............................................44
3.2.3儲備液製備及實驗流程.................................45
3.3低亞硫酸鈉(Na2S2O4)之保存及分裝........................51
3.4實驗分析方法...........................................53
3.4.1鎳離子分析方法.......................................53
3.4.2掃描式電子顯微鏡分析(Scanning Electron Microscope,SEM.......................................................54
3.4.3X光繞射法(X-ray Diffraction,XRD)..................55
第四章 結果與討論.........................................57
4.1不含螯合劑時化學還原法對鎳去除的影響...................57
4.1.1不同dithionite:Ni(II)莫耳比的影響....................57
4.1.2不含螯合劑時pH的影響.................................62
4.2螯合劑濃度對鎳去除的影響...............................66
4.3含螯合劑時溫度的影響...................................75
4.4含螯合劑時pH的影響.....................................77
4.5有核種存在時對鎳去除率的影響...........................81
4.6XRD分析................................................83
4.7實廠廢液測試結果.......................................84
4.8實廠廢水測試結果.......................................88
第五章 結論及建議.........................................90
5.1結論...................................................90
5.2建議...................................................91
參考文獻..................................................92
Figure 1. International nickel trading prices for the past eight years (obtained from London metal Exchange)..........2
Figure 2. International copper trading prices for the past eight years (obtained from London metal Exchange)..........3
Figure 3. Schematic of RO separation......................12
Figure 4. Schematic of electrodialysis [30]...............12
Figure 5. A schematic diagram of MEUF for the removal of metal ions [39]...........................................16
Figure 6. Schematic of PEUF...............................18
Figure 7. Molecular structure of citric acid.	............24
Figure 8. Distributions of citrate species as a function of pH........................................................25
Figure 9. (a) Molecular structure of EDTA, (b) Molecular structure of heavy metal chelated EDTA....................26
Figure 10. Effect of pH on reduction/removal of copper in the solution with Cu:ligand: dithionite molar ratio of 1:8:3 and 1:4:3 for ammonia system and of 1:1:3 for EDTA system, respectively. Initial Cu concentration of 2.25 mM with magnetic stirring. Reaction time of 30 min. Error bars represent one standard deviation from the average of triplicate experiments with the exception of those for pH 7.0–11.0, for which five replicate experiments were conducted [62]............................................27
Figure 11. Distribution of Cu(II) species in ammonia system modeled by Mineql+ with assumption of close system. Cu:ammonia molar ratios of 1:4 and 1:8, respectively. Total copper concentration of 2.25 mM...........................29
Figure 12. Photograph of solution taken at the end of 30-min reaction for Cu(II) : ammonia :dithionite molar ratio of 1:4:3 and 1:8:3. Initial Cu concentration of 2.25 mM. Mixed with magnetic stirring with pH fixed at 9.0[62].....30
Figure 13. Photos of (A) solution and (B) filtrate with various reaction pH values. Cu(II) : ammonia : dithionite molar ratio of 1:8:3. Initial Cu concentration of 2.25 mM with magnetic stirring. Reaction time of 30 min[61].......30
Figure 14. (A) TEM of particles in the sample filtered through 0.45 μm filter, (B) close-up view of TEM picture to show lattice spacing of copper, and (C) TEM of particles before filtration. Experimental conditions: Cu(II):ammonia: dithionite molar ratio of 1:8:3. Reaction pH of 9.0. Initial Cu concentration of 2.25 mM. Reaction time of 30 min[61]......................................................31
Figure 15. Copper removal efficiency by chemical reduction as a function of copper concentration. Cu:PEI monomer:dithionite molar ratio = 1:1.5:3. pH = 3.5. Reaction time = 30 min. Error bar represents one standard deviation from the mean[63]...............................32
Figure 16. Copper removal efficiency in three different PEI monomer:Cu molar ratios. Initial copper concentration = 5 mmol/L, pH = 6.0, reaction time = 60 min, and Cu:dithionite molar ratio = 1:3[63].....................................33
Figure 17. TEM analysis of particles produced in three different PEI monomer:Cu molar ratios of (A) 1.5:1, (B) 3:1, and (C) 6:1 from Figure 16[63] ......................33
Figure 18. Copper removal efficiency by chemical reduction as a function of time and pH. Cu:PEI monomer:Dithionite molar ratio of 1:1.5:3. Initial copper concentration of 5 mmol/L[63]................................................35
Figure 19. Size analysis of particles produced at (A) pH of 3.5 and (B) 8.5. Experimental condition: Cu:PEI monomer:Dithionite molar ratio of 1:1.5:3. Initial copper concentration of 5 mmol/L[63].............................36
Figure 20. Removal efficiency of copper by chemical reduction and PEUF integrated process as a function of pH and reaction time. Cu:PEI monomer:dithionite molar ratio of 1:1.5:3. Initial copper concentration of 5 mmol/L[63].....37
Figure 21. Effect of gas purging or mixing with magnetic stirring on copper removal efficiency at pH 9.0. Experimental conditions: Cu:Ligand: dithionite molar ratio of 1:8:3 and 1:1:3 for ammonia and EDTA systems, respectively. Initial Cu concentration of 2.25 mM. Reaction time of 30 min[61].......................................38
Figure 22. XRD analysis of dried copper particles collected from experiments with only magnetic stirring at pH 9.0 (a) Particles from ammonia system. (b) Particles from EDTA system[61]................................................39
Figure 23. Metal removal efficiency as a function of time for copper sulfate liquid waste collected from PCB production process. Cu(II): dithionite molar ratio of 1:3[61]......................................................41
Figure 24. Chemical reduction of copper sulfate liquid waste collected from PCB production process. (A) Right after dithionite added. (B) Sedimentation of reduced particles after 5 min without mixing. (C) Filtrate (0.45 µm filter) of treated samples................................41
Figure 25. Research flowchart.............................42
Figure 26. Before conducting experiment, the prepared solution was heated to the desired temperature with a water bath......................................................45
Figure 27. Mixing with nitrogen purging and maintaining temperature with water bath...............................46
Figure 28. Flowchart for experiments without ligands......47
Figure 29. Flowchart for experiments with ligands.........48
Figure 30. Flowchart for experiments with seeding particles.................................................49
Figure 31. Flowchart for experiments with real wastewater test......................................................50
Figure 32. ORP of dithionite in water as a function of time and pH. Dithionite=0.015 M, and temperature = 30℃........51
Figure 33. Dithionite dispensing equipment................52
Figure 34. Flame atomic apectrometer, GBC-AA932 plus, Australia.................................................53
Figure 35. The calibration curve of Ni concentration measured spectrophotometerly..............................54
Figure 36. Scanning Electron Microscope, LEO-1530, Japan..55
Figure 37. X-ray diffraction, Bruker AXS-D8A, Germany.....56
Figure 38. Effect of dithionite:Ni(II) molar ratio on residual Ni(II) for solution without ligands. The error bar represents one standard deviation from the mean of triplicate experiments. Experimental conditions: pH = 6.0, temperature = 30℃, and initial nickel concentration = 0.005 M...................................................59
Figure 39. Electron activity in pe scale as a function of the fraction of the residual Ni(II) in solution...........59
Figure 40. Pseudo-first order reaction kinetic model of the effect of dithionite:Ni(II) molar ratio on residual Ni(II) for solution without ligands. Experimental conditions: pH = 6.0, temperature = 30℃, and initial nickel concentration = 0.005 M...................................................60
Figure 41. The first order kinetic constant as a function of dithionite:Ni(II) molar ratio..........................61
Figure 42. Residual Ni(II) concentration as a function of time for various pH conditions. Experimental condition: dithionite:Ni(II) molar ratio = 3:1. Temperature of 30℃..63
Figure 43. The ORP for solution without ligands...........64
Figure 44. Pseudo-first order reaction kinetic model of the effect of pH on residual Ni(II) for solution without ligands. Experimental conditions: pH = 6.0, temperature = 30℃, and initial nickel concentration = 0.005 M..........65
Figure 45. Distributions of nickel species as a function of pH for solutions containing nickel and citrate acids: Ni(II):citrate molar ratio = 1:2.67 and total nickel concentration = 0.005 M...................................67
Figure 46. Distributions of nickel species as a function of pH for solutions containing nickel and citrate acids: Ni(II):citrate molar ratio = 1:4 and total nickel concentration = 0.005 M...................................67
Figure 47. Ni reduction as a function of time for various Ni(II): citrate molar ratios. Experimental conditions: initial nickel concentration = 0.005 M, pH 6.0, dithionite:Ni(II) = 4:1, and temperature = 30℃. The error bars represent one standard deviation from the mean of triplicate experiments....................................71
Figure 48. Free Ni2+ concentration as a function of Ni(II): citrate molar ratio and pH modeled by Mineql+. Initial nickel concentration = 0.005 M............................72
Figure 49. Removal efficiency of Ni(II) as a function of Ni(II): citrate molar ratio and times. Initial nickel concentration = 0.005 M, pH=4.0, temperature =30℃, Ni(II): dithionite =1:4...........................................73
Figure 50. Removal efficiency of Ni(II) as a function of Ni(II): citrate molar ratio and times. Initial nickel concentration = 0.005 M, pH=10.0, temperature =60℃, Ni(II): dithionite =1:4.....................................74
Figure 51. Ni reduction as a function of time and temperature. Experimental conditions: pH 6, initial nickel concentration = 0.005 M, and Ni(II):dithionite: Citrate molar ratio = 1:4:2.67. The error bars represent one standard deviation from the mean of triplicate experiments..............................................76
Figure 52. Ni reduction as a function of time for various pH. Experimental conditions: Ni(II): dithionite : citrate molar ratio = 1:4:2.67, temperature = 60℃, and initial nickel concentration = 0.005 M. The error bars represent one standard deviation from the mean of triplicate experiments...............................................77
Figure 53. Ni reduction as a function of pH. Experimental conditions: Ni(II): dithionite : citrate molar ratio = 1:4:2.67, temperature = 60℃, and initial nickel concentration = 0.005 M. The error bars represent one standard deviation from the mean of triplicate experiments...............................................78
Figure 54. Ni reduction as a function of time by 0.45m and 10 kDa membrane filter. Experimental conditions: Ni(II): dithionite : citrate molar ratio = 1:4:2.67, pH=10.0 temperature = 60 ℃, and initial nickel concentration = 0.005 M...................................................79
Figure 55. The size of particle formed as a function of pH. Experimental conditions: Ni(II): dithionite : citrate molar ratio = 1:4:2.67, temperature = 60 ℃, and initial nickel concentration = 0.005 M...................................80
Figure 56. Ni reduction as a function of seeded particles concentration at (a) pH 9.0 and (b) pH 10.0. Experimental conditions: Ni(II): dithionite: citrate molar ratio = 1:4:2.67, temperature = 60 ℃, and initial nickel concentration = 0.005 M. The concentration of copper seed = 6.4 and 12.8 mg Cu(II)/L. The error bars represent one standard deviation from the mean of triplicate experiments...............................................82
Figure 57. XRD of the solid sample taken from the Ni reduction experiment conducted at pH 6.0 in the absence of citrate...................................................83
Figure 58. The test results of PCB wastewater.............85
Figure 59. Distributions of nickel species as a function of pH and Ni(II):citrate molar ratio = 1:1. Total nickel concentration (a) 0.0005 M, and(b) 0.05 M.................86
Figure 60. SEM analysis of particles produced by adding one time of dithionite........................................87
Figure 61. SEM analysis of particles produced by adding three times of dithionite.................................87
Figure 62. Residual Ni(II) concentration and Ni removal efficienecy as a function of dithionite: Ni molar ratio for treating simulated PCBwastewater..........................89
Table 1. Characteristics of typical wastewater from PCB industries[1]..............................................7
Table 2. Characteristics of typical wastewater from electroplating industries in Taiwan and foreign countries[1]........................................................7
Table 3. Standard redox potential of dithionite at different pH..............................................21
Table 4. Water quality parameters for wastewater collected from PCB production process before and after chemical reduction [61]............................................41
Table 5. Standard redox potential of complexes in Ni(II)-Citrate system............................................69
Table 6. Redox potential of complexes at different pH in Ni(II)-Citrate system.......................................70
參考文獻
[1]經濟部工業局, 印刷電路板製造業水污染防治技術, 1994.
[2] A.W. Bryson, K.A. Dardis, Treatment of dilute metal effluents in an electrolytic precipitator, Water SA, 6 (1980) 85-87.
[3] A. Khelifa, S. Aoudj, S. Moulay, M. De Petris-Wery, A one-step electrochlorination/electroflotation process for the treatment of heavy metals wastewater in presence of EDTA, Chem. Eng. Process. Process Intensif., 70 (2013) 110-116.
[4] 林坤明(民98)。羥乙基乙二胺(AEEA)對印刷電路板廢水銅離子處理效果之影響(碩士論文)。取自http://ir.lib.ncu.edu.tw/handle/987654321/3416
[5] R.D. Ludwig, C. Su, T.R. Lee, R.T. Wilkin, S.D. Acree, R.R. Ross, A. Keeley, In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation, Environ. Sci. Technol., 42 (2008) 7726-7726.
[6] H.K. Boparai, S.D. Comfort, P.J. Shea, J.E. Szecsody, Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments, Chemosphere, 71 (2008) 933-941.
[7] Y. Xie, D.M. Cwiertny, Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems, Environ. Sci. Technol., 44 (2010) 8649-8655.
[8] J.E. Szecsody, J.S. Fruchter, M.D. Williams, V.R. Vermeul, D. Sklarew, In situ chemical reduction of aquifer sediments: enhancement of reactive iron phases and TCE dechlorination, Environ. Sci. Technol., 38 (2004) 4656-4663.
[9] W.-I. Wu, C.F. Lin, S.C. Panchangam, C.H. Wu, A.P.K. Hong, Capture of metallic copper by high gradient magnetic separation system, Environ. Technol., 32 (2011) 1427-1433.
[10] W.-I. Wu, S.C. Panchangam, C.H. Wu, A.P.K. Hong, C.F. Lin, Recovery of metallic copper by integrated chemical reduction and high gradient magnetic separation, Environ. Technol., 32 (2011) 817-824.
[11] M. Hosseinkhania, M. Montazer, S. Eskandarnejada, M.K. Rahimic, Simultaneous in situ synthesis of nano silver and wool fiber fineness enhancement using sulphur based reducing agents, Colloids Surf., A, 415 (2012) 431-438.
[12] N. Geoffroy, G.P. Demopoulos, Reductive precipitation of elemental selenium from selenious acidic solutions using sodium dithionite, Ind. Eng. Chem. Res., 48 (2009) 10240-10246.
[13] H. Hashemipour, M.E. Zadeh, R. Pourakbari, P. Rahimi, Investigation on synthesis and size control of copper nanoparticle via chemical reduction method, Int. J. Phys. Sci., 6 (2011) 4331-4336.
[14] Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl, G.V. Lowry, TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties, Environ. Sci. Technol., 39 (2005) 1338-1345.
[15] World PCB Production by Region. (2013). Retrieved November 8, 2013,form https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CD4QFjAA&url=http%3A%2F%2Fwww.tpca.org.tw%2Fdownload.aspx%3Fdlfn%3DTPCAShow_Market.pdf&ei=tTp8Uuz_FueSiAfYm4F4&usg=AFQjCNFRNQiKCdDnx6LmD9Vv7E3chTA5Qw&sig2=ApYj3zk4Q2auxHgSKqG7Uw
[16] 林進南(2013), 印刷電路板製造業景氣動態報告, Retrieved November 8, 2013, form
http://tie.tier.org.tw/db/content/index.asp?sid=0D235565772193231133&mainIndustryCategorySIds=0A007646515503733935
[17] 印刷電路板製造業空氣污染防制輔導. (2013). Retrieved November 8, 2013, form
http://ivy1.epa.gov.tw/agp/F/DM/aaaa/page2/life11.html#1
[18] 2010-2013 年全球及台灣廠商PCB 產值分析. (2013). Retrieved ovember 8, 2013, form
http://www.topology.com.tw/graph/graphcontent.asp?id=23HHRJBXLTEA8NPAGJ3 PXCF8S3
[19] 經濟部工業局, 行業製程減廢及污染防治技術-印刷電路板.
[20] T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83-98.
[21] N.H. Shaidan, U. Eldemerdash, S. Awad, Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique, J. Taiwan Inst. Chem. Eng., 43 (2012) 40-45.
[22] K. Bensadok, M. Belkacem, G. Nezzal, Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation, Desalination, 206 (2007) 440-448.
[23] M.F. Chang, J.C. Liu, Precipitation removal of fluoride from semiconductor wastewater, J. Environ. Eng., 133 (2007) 419-425.
[24] I. Kabdaşlı, T. Arslan, T. Ölmez-Hancı, I. Arslan-Alaton, O. Tünay, Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes, J. Hazard. Mater., 165 (2009) 838-845.
[25] S.H. Hu, M.S. Tsai, F.S. Yen, T. Onlin, Recovery of copper-contaminated sludge in a two-stage leaching process, Environ. Prog., 25 (2006) 72-78.
[26] M.C.C. Maguyon, C.G. Alfafara, V.P. Migo, J.L. Movillon, C.M. Rebancos, Recovery of copper from spent solid printed-circuit-board (PCB) wastes of a PCB manufacturing facility by two-step sequential acid extraction and electrochemical deposition, J. Environ. Sci. Manag., 15 (2012) 17-27.
[27] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92 (2011) 407-418.
[28] J.-J. Qin, M.H. Oo, F.-S. Wong, Effects of pH and antiscalant on fouling of RO membrane for reclamation of spent rinse water from metal plating, Sep. Purif. Technol., 46 (2005) 46-50.
[29] R.F. Dalla Costa, C.W. Klein, A.M. Bernardes, J. Zoppas Ferreira, Evaluation of the electrodialysis process for the treatment of metal finishing wastewater, J. Braz. Chem. Soc., 13 (2002) 540-547.
[30] 蔡明谷(民94)。研究電透析技術處理重金屬廢水之效率及其物化機制—以含銅廢水為例(碩士論文)。取自 http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22094CYUT5087013%22.&searchmode=basic
[31] 經濟部工業局污染防治技術服務團,工業污染防治技術手冊-工業廢水離子交換處理,經濟部工業局, 1993.
[32] L. Alvarado, I.R. Torres, A. Chen, Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater, Sep. Purif. Technol., 105 (2013) 55-62.
[33] 高瑩(2010)。溶氣浮選法處理重金屬離子廢水的研究(碩士論文)。取自http://60.16.24.36:8088/ShowDetail.aspx?d=1018&id=XW000002025125&m=XW000002025125&t=%E6%BA%B6%E6%B0%94%E6%B5%AE%E9%80%89%E6%B3%95%E5%A4%84%E7%90%86%E9%87%8D%E9%87%91%E5%B1%9E%E7%A6%BB%E5%AD%90%E5%BA%9F%E6%B0%B4%E7%9A%84%E7%A0%94%E7%A9%B6&y=2010
[34] C.-W. Li, C.-K. Liu, W.-S. Yen, Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions, Chemosphere, 63 (2006) 353-358.
[35] C.-K. Liu, C.-W. Li, C.-Y. Lin, Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands, Chemosphere, 57 (2004) 629-634.
[36] C.-K. Liu, C.-W. Li, Simultaneous recovery of copper and surfactant by an electrolytic process from synthetic solution prepared to simulate a concentrate waste stream of a micellar-enhanced ultrafiltration process, Desalination, 169 (2004) 185-192.
[37] J. Landaburu-Aguirre, E. Pongrácz, P. Perämäki, R.L. Keiski, Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation, J. Hazard. Mater., 180 (2010) 524-534.
[38] J. Landaburu-Aguirre, V. García, E. Pongrácz, R.L. Keiski, The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments, Desalination, 240 (2009) 262-269.
[39] E. Samper, M. Rodríguez, M.A. De la Rubia, D. Prats, Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS), Sep. Purif. Technol., 65 (2009) 337-342.
[40] X. Li, G.-M. Zeng, J.-H. Huang, C. Zhang, Y.-Y. Fang, Y.-H. Qu, F. Luo, D. Lin, H.-L. Liu, Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration, J. Membr. Sci., 337 (2009) 92-97.
[41] R. Camarillo, J. Llanos, L. García-Fernández, Á. Pérez, P. Cañizares, Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition, Sep. Purif. Technol., 70 (2010) 320-328.
[42] C.W. Li, C.H. Cheng, K.H. Choo, W.S. Yen, Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): Effects of organic ligands and solution pH, Chemosphere, 72 (2008) 630-635.
[43] H. Ouni, M. Dhahbi, Spectrometric study of crystal violet in presence of polyacrylic acid and polyethylenimine and its removal by polyelectrolyte enhanced ultrafiltration, Sep. Purif. Technol., 72 (2010) 340-346.
[44] R. Camarillo, Á. Pérez, P. Cañizares, A. de Lucas, Removal of heavy metal ions by polymer enhanced ultrafiltration: Batch process modeling and thermodynamics of complexation reactions, Desalination, 286 (2012) 193-199.
[45] A.B. Fradj, S.B. Hamouda, H. Ouni, R. Lafi, L. Gzara, A. Hafiane, Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultrafiltration, Sep. Purif. Technol., 133 (2014) 76-81.
[46] D.J. Ennigrou, M.B.S. Ali, M. Dhahbi, Copper and Zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration, Desalination, 343 (2014) 82-87.
[47] R. Molinari, T. Poerio, P. Argurio, Selective separation of copper(II) and nickel(II) from aqueous media using the complexation–ultrafiltration process, Chemosphere, 70 (2008) 341-348.
[48] R.-S. Juang, C.-H. Chiou, Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers, J. Membr. Sci., 177 (2000) 207-214.
[49] 任鏘諭(民88)。奈米金屬之製備及其性質研究(碩士論文)。取自http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22087NTHU0063014%22.&searchmode=basic
[50] S.G. Mayhew, The redox potential of dithionite and SO−2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase, Eur. J. Biochem., 85 (1978) 535-547.
[51] G.D. Watt, A. Burns, The thermochemical characterization of sodium dithionite, flavin mononucleotide, flavin adenine dinucleotide and methyl and benzyl viologens as low potential reductants for biological systems, Biochem. J, 152 (1975) 33-37.
[52] D.V. Goia, E. Matijevic, Preparation of monodispersed metal particles, New J. Chem., 22 (1998) 1203-1215.
[53] C. Gomez-Lahoz, F. Garcia-Herruzo, J.M. Rodriguez-Maroto, J.J. Rodriguez, Heavy metal removal by chemical reduction with sodium borohydride. A pilot-plant study, Sep. Sci. Technol., 27 (1992) 1569-1582.
[54] C. Gomez-Lahoz, F. Garcia-Herruzo, J.M. Rodriguez-Maroto, J.J. Rodriguez, Copper removal from water by chemical reduction with sodium borohydride, Sep. Sci. Technol., 27 (1992) 1449-1468.
[55] J.P. Chen, L.L. Lim, Key factors in chemical reduction by hydrazine for recovery of precious metals, Chemosphere, 49 (2002) 363-370.
[56] T.P. Phetla, F. Ntuli, E. Muzenda, Reduction crystallization of Ni, Cu, Fe and Co from a mixed metal effluent, J. Ind. Eng. Chem., 18 (2012) 1171-1177.
[57] S. Lan, F. Ju, X. Wu, Treatment of wastewater containing EDTA-Cu(II) using the combined process of interior microelectrolysis and Fenton oxidation-coagulation, Sep. Purif. Technol., 89 (2012) 117-124.
[58] O. Gyliene, J. Aikaite, O. Nivinskiene, Recovery of EDTA from complex solution using Cu(II) as precipitant and Cu(II) subsequent removal by electrolysis, J. Hazard. Mater., 116 (2004) 119.
[59] W. Maketon, C.Z. Zenner, K.L. Ogden, Removal efficiency and binding mechanisms of copper and copper - EDTA complexes using polyethyleneimine, Environ. Sci. Technol., 42 (2008) 2124-2129.
[60] M. Kaur, K.P. Muthe, S.K. Despande, S. Choudhury, J.B. Singh, N. Verma, S.K. Gupta, J.V. Yakhmi, Growth and branching of CuO nanowires by thermal oxidation of copper, J. Cryst. Growth, 289 (2006) 670-675.
[61] Y.-H. Chou, J.-H. Yu, Y.-M. Liang, P.-J. Wang, C.-W. Li, S.-S. Chen, Recovery of Cu(II) by chemical reduction using sodium dithionite, Chemosphere, 141 (2015) 183-188.
[62] Y.-H. Chou, J.-H. Yu, Y.-M. Liang, P.-J. Wang, C.-W. Li, S.-S. Chen, Recovery of Cu(II) by chemical reduction using sodium dithionite: Effect of pH and ligands, Water Sci. Technol., (2015).
[63] J.-H. Yu, Y.-H. Chou, Y.-M. Liang, C.-W. Li, Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery, Water Sci. Technol., 72 (2015) 1096-1101.
[64] 王稟然(民103)。低亞硫酸鈉化學還原法回收廢水中的銅:不同螯合劑的影響(碩士論文)。取自http://etds.lib.tku.edu.tw/etdservice/view_metadata?etdun=U0002-1407201417052000
[65] R.G. Rinker, T.P. Gordon, D.M. Mason, R.R. Sakaida, W.H. Corcoran, Kinerics and mechanism of the air oxidation of the dithionite ion (S2O4=) in aqueous solution., J. Phys. Chem., 64 (1960) 573-581.
[66] S.-H. Wu, D.-H. Chen, Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions, J. Colloid Interface Sci., 273 (2004) 165-169.
[67] K.C. Song, S.M. Lee, T.S. Park, B.S. Lee, Preparation of colloidal silver nanoparticles by chemical reduction method, Korean J. Chem. Eng., 26 (2009) 153-155.
[68] S.J. Chang, C.A. Tung, B.W. Chen, Y.C. Chou, C.C. Li, Synthesis of non-oxidative copper nanoparticles, RSC Advances, 3 (2013) 24005-24008.
[69] K. Tan, K. Cheong, Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route, J. Nanopart. Res., 15 (2013) 1-29.
[70] R. Sierra-Ávila, M. Pérez-Alvarez, G. Cadenas-Pliego, C.A. Ávila-Orta, R. Betancourt-Galindo, E. Jiménez-Regalado, R.M. Jiménez-Barrera, J.G. Martínez-Colunga, Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands, J Nanomater, 2014 (2014) 8.
[71] H. Zhu, M. Du, D. Yu, Y. Wang, L. Wang, M. Zou, M. Zhang, Y. Fu, A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu2O-Au hierarchical heterostructures with a series of morphological evolutions, J. Mater. Chem., 1 (2013) 919-929.
[72] M. Lee, Production of Nickel Metal Powder from a Spent Etching Solution by Solvent Extraction and Chemical Reduction, J. Nanosci. Nanotechnol., 11 (2011) 1621-1624.
[73] S. Raghavan, S. Fowler, Use of dithionite in the removal of nickel from ammoniacal solutions, Hydrometallurgy, 11 (1983) 125-129.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信