§ 瀏覽學位論文書目資料
系統識別號 U0002-1209201911242100
DOI 10.6846/TKU.2019.00292
論文名稱(中文) 環境敏感性幾丁聚醣/嵌段共聚物奈米水膠顆粒的製備與其在藥物釋放的應用
論文名稱(英文) Preparation of environmentally sensitive nanoparticles from chitosan/block copolymer and their application in drug release
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 林昱維
研究生(英文) Yu-Wei Lin
學號 605400471
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-15
論文頁數 91頁
口試委員 指導教授 - 董崇民
委員 - 糜福龍
委員 - 黃意真
關鍵字(中) 溫度敏感型
可逆加成-斷裂鏈轉移聚合
奈米藥物載體
藥物釋放系統
關鍵字(英) thermal-responsive
Reversible addition-fragmentation chain transfer polymerization
Nano carrier
Drug delivery system
第三語言關鍵字
學科別分類
中文摘要
本研究利用丙烯酸(Acrylic acid, AA)與氮-異丙基丙烯醯胺 (N-isopropylamide, NIPAAm)以可逆加成-斷裂鏈轉移聚合(Reversible addition- fragmentation chain transfer polymerization,RAFT)活性自由基聚合方法合成出具環境應答性質的嵌段共聚物PAA-b-PNP,利用紅外線光譜儀(FTIR)及核磁共振光譜儀(1H-NMR)對產物作結構鑑定,分別求出共聚物的AA和NIPAAm的聚合度、轉化率及分子量。調整反應時間可使AA和NIPAAm的單體轉化率都可達到100%,並讓具有溫度及 pH 值雙重敏感性的PAA-b-PNP微胞複合載體,加入幾丁聚醣增加其生物相容性,得到具有溫度及 pH 值雙重敏感性質之PAA-b-PNP/CS奈米藥物載體(50~400 nm)。利用此藥物載體包覆疏水性藥物喜樹鹼(Camptothecin,CPT),藥物包覆率(Encapsulation efficiency, EE)及 、藥物負載率(Loading capacity, LC)會根據不同的PAA-b-PNP/CS組成而有變化。最後本研究發現PAA-b-PNP/CPT/CS奈米顆粒於強酸環境下可以穩定的存在,而在人體體液(pH = 7.4)的環境下,其奈米水膠顆粒會不穩定而膨潤或是瓦解,PAA-b-PNP/CPT/CS奈米藥物載體可適用於口服藥物之遞送系統,亦即在胃酸(pH 2.0)裡面不會讓藥物釋出,並保護藥物不會在強酸環境下被破壞,最後可以在小腸(pH = 7.4)的環境下快速釋放藥物。
英文摘要
In this study, acrylic acid (Arylic acid, AA) and N-isopropylamide (NIPAAm) were polymerized to prepare environmentally-responsive block copolymers using  reversible addition-fragmentation chain transfer polymerization (RAFT) living radical polymerization. Structure of the prepared PAA-b-PNP block copolymers was identified by infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H-NMR), as well as the polymerization, degree of conversion and molecular weight. Both monomer conversions of AA and NIPAAm could reach 100%. Furthermore, chitosan was added to PAA-b-PNP gel particals above its LCST to prepare environmentally-sensitive PAA-b-PNP/CS nano drug carrier (50~400 nm). For increasing biocompatibility, a hydrophobic drug camptothecin (CPT) was then encapsulated into the drug carrier, and the encapsulation efficiency (EE) the loading capacity (LC) according to different were varied formulations in PAA-b-PNP/CS. Finally, this study found that PAA-b-PNP/CPT/CS nanoparticles be stably present in a strong acid environment, while in the body fluid (pH = 7.4), the nano gel particles became unstable and swoiien or Is disintegrated, Therefore, PAA-b-PNP/CPT/CS nano drug carrier can be applied to the oral drug delivery system.The nano drug carrier would not allow the drug to be released in the stomach (pH 2.0), protecting the drug from being released in a strong acid environment. The drug would be finally released the drug rapidly in the environment of the small intestine (pH = 7.4).
第三語言摘要
論文目次
目錄
中文摘要:	I
Abstract	II
目錄	IV
圖目錄	VII
表目錄	X
第一章 序論	1
1.1 前言	1
1.2 研究動機與目的	2
第二章 文獻回顧	3
2.1可逆加成-斷裂鏈轉移聚合法(Reversible addition-fragmentation chain transfer polymerization,RAFT)	3
2.2 環境敏感型水膠	8
2.2.1溫度敏感型水膠	9
2.2.2 酸鹼敏感型水膠	9
2.3 奈米藥物載體	11
2.4 幾丁聚醣簡介與於奈米藥物載之應用	14
第三章 實驗方法與步驟	15
3.1 實驗藥品	15
3.2 實驗儀器	19
3.3 實驗步驟	22
3.3.1  PAA-b-PNP之合成	22
3.3.1.1 合成PNP-CTA高分子	22
3.3.1.2 合成PAA-CTA高分子	23
3.3.1.3 利用RAFT法合成PAA-b-PNP嵌段共聚物	24
3.3.1.4  PAA-b-PNP嵌段共聚物之性質與結構分析	28
3.3.2  PAA-b-PNP/CS之自組裝	30
3.3.3 藥物包覆之研究	32
3.3.3.4  PAA-b-PNP包覆CPT之步驟與分析	32
3.3.3.5  PAA-b-PNP/ CPT/CS之自組裝步驟	34
3.3.3.6  PAA-b-PNP/CPT/CS之結構分析	37
3.3.4 藥物釋放	38
第四章 結果與討論	40
4.1  PAA-b-PNP嵌段共聚物之合成與其自組裝顆粒分析	40
4.1.1 合成PNP-CTA高分子與其分子量	40
4.1.2 合成PAA-CTA高分子與其分子量	42
4.1.3  PAA-b-PNP嵌段共聚物之合成與結構分析(FTIR)	43
4.1.4  PAA-b-PNP在不同pH值下的LCST	47
4.1.5  PAA-b-PNP微胞粒徑分析	50
4.1.6  形態分析(TEM)	51
4.2  PAA-b-PNP/CS之複合載體與其顆粒性質	53
4.2.1 醋酸-醋酸鈉緩衝液(pH = 5.0)濃度對PAA-b-PNP自組裝之影響	53
4.2.2  在不同條件下的PAA-b-PNP/CS之自組裝研究	54
4.3 藥物包覆	58
4.3.1  DMSO對PAA-b-PNP自組裝之影響	58
4.3.1.1  LCST相轉移溫度之探討	59
4.3.1.2  DMSO對PAA-b-PNP的微胞形態之影響	60
4.3.2  PAA-b-PNP包覆CPT之步驟與分析	61
4.3.2.1  PAA-b-PNP/CPT自組裝顆粒之粒徑分析	61
4.3.2.2  PAA-b-PNP/CPT自組裝顆粒形態	63
4.3.2.3  PAA-b-PNP/CPT的包覆效率與藥物負載率	64
4.3.3  AA21-b-NP70 /CPT/CS藥物包覆系統與其藥物釋放之研究	65
4.3.3.1  AA21-b-NP70 /CPT /CS自組裝形成奈米顆粒	65
4.3.3.2  AA21-b-NP70 /CPT /CS奈米顆粒之形態觀察	66
4.3.3.3  P0.86CP0.1C0.07奈米顆粒於不同環境下之變化	69
4.3.3.4  藥物包覆與釋放之應用	70
4.3.3.5  增加藥物包覆量	71
4.3.3.6  P1.50CP0.05C0.125於不同pH植下的顆粒變化	73
4.3.4  AA21-b-NP100 /CPT/CS藥物包覆系統與其藥物釋放之研究	75
4.3.4.1  AA21-b-NP100 /CPT /CS自組裝形成奈米顆粒	75
4.3.4.2  AA21-b-NP100 /CPT /CS奈米顆粒之形態觀察	77
4.3.4.3  環境中的pH對奈米顆粒之形態變化之影響	77
4.3.4.4  AA21-b-NP100 /CPT /CS奈米顆粒性質與結構分析	79
4.3.4.5  藥物釋放之應用	84
第五章 結論	85
第六章 參考文獻	87
第七章 附錄	91

圖目錄
圖2-1 鏈轉移劑的結構示意圖[2]	3
圖2-2鏈轉移劑結構示意圖[3]	4
圖2-3  RAFT聚合反應機制 [4]	5
圖 2-4 共聚物的 RAFT 反應機制圖	7
圖 2-5 各種不同刺激反應高分子之示意圖[5]	8
圖2-6 各種奈米粒子適用於奈米尺寸之應用示意圖 [12]	13
圖2-7 口服幾丁聚醣奈米粒子之示意圖 [19]	14
圖3-1 以 RAFT 法聚合 PNP-CTA 流程圖	22
圖 3-2 以RAFT聚合 PAA-CTA流程圖	24
圖 3-3  RAFT合成 PAA-b-PNP 嵌段共聚物流程圖	26
圖 3-4  以 RAFT 法合成 PAA-b-PNP 嵌段共聚物反應機制	26
圖3-5 P0.86CP0.1C0.07自組裝之流程圖	36
圖3-6 P1.50CP0.05C0.125、P1.50CP0.10C0.125、P1.50CP0.10C1.25自組裝之流程圖	37
圖4-1 利用RAFT聚合法合成PNP-CTA之1H-NMR圖	41
圖4-2  利用RAFT聚合法合成PAA-CTA之1H-NMR	42
圖4-3 (a) PAA-CTA (b) PNP-CTA (c) PAA-b-PNP 紅外線吸收光譜圖	44
圖 4-4  AA21-b-NP70 之 1H-NMR 光譜圖	46
圖4-5  不同 pH 值下 AA21-b-NP70 高分子溶液(0.1%,w/v)在	49
 λ= 450 nm 穿透率與溫度的關係圖	49
圖4-6  不同 pH 值下 AA21-b-NP100 高分子溶液(0.1%,w/v)在	49
 λ= 450 nm 穿透率與溫度的關係圖	49
圖4-7  AA21-b-NP70於不同環境下的自組裝微胞顆粒,(a) 高分子分散於水中,pH = 4.5、45 oC;(b) 高分子分散於水中用NaOH(aq)調整至pH = 5.0、25 oC;(c) 高分子分散於水中用NaOH(aq)調整至pH = 6.0、45 oC;(d) 高分子分散於水中調用NaOH(aq)整至pH = 7.0、45 oC	52
圖4-8  不同比例AA21-b-NP70/CS複合載體之粒徑與表面電位變化趨勢圖 (37 oC、pH = 5.0)	57
圖4-9  AA21-b-NP100/CS複合載體之粒徑與表面電位變化趨勢圖 (37 oC、pH = 5.0)	57
圖4-10  DMSO對PNIPAAm自組裝之影響示意圖 [21]	58
圖4-10  不同環境下PAA-b-PNP高分子溶液在 λ= 450 nm 穿透率與溫度的關係圖	59
圖4-11  AA21-b-NP70 及AA21-b-NP70/CPT在DMSO/0.1 %醋酸-醋酸鈉緩衝液(1/10, v/v)環境下之粒徑分佈圖,37 oC、pH = 5.2	62
圖4-12  AA21-b-NP100 及AA21-b-NP100/CPT在DMSO/0.1 %醋酸-醋酸鈉緩衝液(3/10, v/v)環境下之粒徑分佈圖37 oC、pH = 5.6	62
圖4-14  (a) P0.86於40 oC時在DMSO/HAc-NaAc (pH 5.0,0.1 % HAc, v/v) 形成的自組裝顆粒;(b) P0.86CP0.1於60 oC時在DMSO/HAc-NaAc (pH 5.0,0.1 % HAc, v/v) 形成的自組裝顆粒;(c) P0.86CP0.1C0.07於60 oC時在DMSO/HAc-NaAc (pH 5.0,0.1 % HAc, v/v) 形成的自組裝顆粒 ;(d) P0.86C0.07於40 oC時在DMSO/HAc-NaAc (pH 5.0,0.1 % HAc, v/v)形成的自組裝顆粒之TEM圖	68
圖4-15  P0.86CP0.1C0.07 在(a) PBS緩衝液(pH = 7.4);(b) 1%醋酸-醋酸鈉緩衝液(pH = 5.0) 於40 oC真空乾燥後的水膠顆粒之TEM圖	69
圖4-16  P0.86CP0.1C0.07於不同pH值下之藥物釋放結果	71
圖4-17 (a) P1.50C0.125;(b) P1.50CP0.05C0.125於40 oC下之TEM圖(AA21-b-NP70)	72
圖4-18  P1.50CP0.05C0.125 水膠顆粒於40 oC環境中的TEM圖(AA21-b-NP70)	74
(a) pH 7.4;(b) pH 2.0	74
圖4-19  AA21-b-NP100 /CPT /CS顆粒變化示意圖	76
圖4-20 (a) P1.50C0.125;(b) P1.50CP0.05C0.125於40 oC下之TEM圖 (AA21-b-NP100)	77
圖4-21  P1.50CP0.10C0.125 水膠顆粒於40 oC環境中的TEM圖(AA21-b-NP100)	78
(a) pH 7.4;(b) pH 2.0;(c) H2O	78
圖4-22 於37 oC時 P1.50CP0.05C0.125 顆粒系統變化之粒徑分佈圖(AA21-b-NP100)	81
圖4-23 於37 oC時 P1.50CP0.10C0.125 顆粒系統變化之粒徑分佈圖(AA21-b-NP100)	81
圖4-24 於37 oC時 P1.50CP0.10C1.25 顆粒系統變化之粒徑分佈圖(AA21-b-NP100)	82
圖4-25 純AA21-b-NP100、P1.50CP0.05C0.125與P1.50C0.125水膠顆粒之FTIR圖	83
圖4-26  P1.50CP0.10C0.125於不同pH值下之藥物釋放結果	84
圖7-1  PAA-CTA之反應動力之關係	91

表目錄
表3-1 合成PNIPAAm之進料莫耳比	23
表3-2 合成PAA-CTA 之進料莫耳比	24
表 3-3 合成 PAA-b-PNP 之進料莫耳比	25
表3-4  PAA-b-PNP醋酸-醋酸鈉緩衝液(pH = 5.0,0.1% HAc, v/v)+DMSO之DLS配方	30
表3-5  PAA-b-PNP/CS在醋酸-醋酸鈉緩衝液(pH = 5.0,0.1% HAc)中進行自組裝之配方	31
表3-6  PAA-b-PNP/CS在10 mL醋酸-醋酸鈉緩衝液(pH = 5.0,0.1% HAc)+DMSO中進行自組裝之配方	32
表3-7  各種不同PAA-b-PNP/ CPT/CS之配方	34
表3-8  釋放方法表	39
表4-1  PNP-CTA高分子轉化率、聚合度及分子量	40
表4-2  PAA-CTA高分子轉化率、聚合度及分子量	43
表4-3  PAA-b-PNP嵌段共聚物各基團的紅外線光譜吸收位置[24]	45
表 4-4  PAA-b-PNP 嵌段共聚物 1H-NMR 光譜的吸收位置	46
表4-5  PAA-b-PNP 高分子的聚合度及分子量	47
表4-6  AA21-b-NP70 在不同pH值的水溶液下的粒徑變化	50
表4-7  AA21-b-NP100 在不同pH值的水溶液下的粒徑變化	51
表4-8  PAA-b-PNP在不同濃度的醋酸-醋酸鈉緩衝液(pH = 5.0)下之LCST	54
表4-9  不同比例的PAA-b-PNP/CS複合載體在50 oC下的溶液狀態	55
表4-10 不同比例的PAA-b-PNP/CS複合載體在溶液中37 oC的粒徑及表面電位	56
表4-11  DMSO對PAA-b-PNP在醋酸-醋酸鈉緩衝液(pH = 5.0,0.1% HAc, v/v)中的LCST之影響	60
表4-12  DMSO對PAA-b-PNP微胞顆粒之影響	61
表4-13  PAA-b-PNP / CPT顆粒之鑰物包覆效率(EE%)及藥物負載率(EE%)	64
表4-14 不同成份比例的PxCPyCz之形態的變化表	66
表4-15  不同自組裝顆粒之粒徑大小及表面電位	67
表4-16  P0.86CP0.1C0.07之藥物包覆結果	70
表4-17  AA21-b-NP70 /CPT /CS系統的顆粒形態變化	72
表4-18  環境中的pH對P1.50CP0.05C0.125自組裝形成的顆粒的影響 (AA21-b-NP70)	73
表4-19  所有AA21-b-NP100 /CPT /CS系統的顆粒形態變化	80
表4-20  AA21-b-NP100 /CPT /CS系統之包覆結果比較	83
參考文獻
[1]	Ying Zhang Hon, Fai Chan Kam and W. Leong. Advanced materials and processing for drug delivery: The past and the future. Journal of Advanced Research; ,January 2013, Volume 65, Issue 1, Pages 104-120.

[2]	Jayanta Kumar Patra, Gitishree Das, Leonardo Fernandes Fraceto, Estefania Vangelie Ramos Campos, Maria del Pilar Rodriguez‑Torres, Laura Susana Acosta‑Torres, Luis Armando Diaz‑Torres , Renato Grillo, Mallappa Kumara Swamy, Shivesh Sharma, Solomon Habtemariam and Han‑Seung Shin. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology; September 2018, Number 71, ISSN: 1477-3155.-2

[3]	Daniel J. Keddie, Graeme Moad, Ezio Rizzardo and San H. Thang. Raft Agent Design and Synthesis. American Chemical Society; July 2012, Volume 45, Issue 13, Pages 5321-5620.-3

[4]	Graeme Moad, John Chiefari, (Bill) YK Chong, Julia Krstina, Roshan TA Mayadunne, Almar Postma, Ezio Rizzardo and San H Thang. Living free radical polymerization with reversible addition ? fragmentation chain transfer (the life od RAFT). Polymer International; September 2000, Pages 49:993-1001.-4

[5]	Graeme Moad and Christopher Barner-Kowollik. The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges Stimuli-responsive polymers and their applications. Handbook of RAFT Polymerization; September 2008.-5


[6]	A. S. Hoffman, P. S. Stayton, M. E. H. El-Sayed, N. Murthy, V. Bulmus, C. Lackey, and C. Cheung. Design of “smart” nano-scale delivery systems for biomolecular therapeutics. Biomedical Nanotechnology; September 2007, Volume 3, Number 3,Pages 213-217(5).-6

[7]	By Noriaki Matsuda, Tatsuya Shimizu, Masayuki Yamato, and Teruo Okano. Tissue engineering based on cell sheet technology. Advanced Materials; October 2007, Volume 19, Issue 20, Special Issue: Special Section on Bionanotechnology, Pages 3089-3099.

[8]	Johannes Pall Magnusson, Adnan Khan, George Pasparakis, Aram Omer Saeed, Wenxin Wang, and Cameron Alexander. Ion-sensitive “isothermal” responsive polymers prepared in water. American Chemical Society; July 2008, Volume 130, Issue 33, Pages 10852-10853.

[9]	Tsuyoshi Shimoboji, Edmund Larenas, Tim Fowler, Samarth Kulkarni, Allan S. Hoffman, and Patrick S. Stayton. Photoresponsive polymer–enzyme switches; December 2002, Volume 99, Issue 26, Pages 16592-16596.

[10]	F.Reyes-Ortega. pH-responsive polymers: properties, synthesis and applications. Smart Polymers and their Applications; December 2014, Smart Polymers and their Applications, Pages 45-92.

[11]	Agnieszka Z.Wilczewska, KatarzynaNiemirowicz, Karolina H, Markiewicz HalinaCar. Nanoparticles as drug delivery systems. Pharmacological Reports; 2012, Volume 64,  Issue 5, Pages 1020-1037, ISSN 1734-1140.

[12]	María Esperanza Ruiz and Sebastian Scioli Montoto. Routes of Drug Administration: Dosage, Design, and Pharmacotherapy Success. ADME Processes in Pharmaceutical Sciences; 2018, Pages 99-133.

[13]	SarwarHossen, M. KhalidHossain, M.K.Basher, M.N.H.Mia, M.T.Rahmanc, M. JalalUddin. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research; January 2019,  Volume 15, Pages 1-18.

[14]	Akbarzadeh A1, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Research Letters; February 2013, Volume 8, Number: 102.


[15]	Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs. Advanced Pharmaceutical Bulletin; Jun 2015, Volume  5, Issue  2, Pages 151-159.

[16]	Vishal R. Patel, Y. K. Agrawal. Nanosuspension: An approach to enhance solubility of drugs. Advanced Pharmaceutical Technology; Apr-Jun 2011, Volume  2, Issue  2, Pages 81–87.

[17]	Meijia Wu and Shengwu Huang. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Molecular and clinical oncology; Nov 2017, Volume 7, Issue 5, Pages 738–746.

[18]	Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics; Nov 2017, Volume 9, Issue 4.

[19]	S. Lankalapalli and V. R. M. Kolapalli. Polyelectrolyte Complexes: A Review of their Applicability in Drug Delivery Technology. Indian J Pharm Sci; Sep-Oct  2009, Volume 71, Issue 5, Pages 481–487.

[20]	Lvdan Liu, Tao Wang, Chang Liu, Ke Lin, Guangming Liu, Guangzhao Zhang. Specific Anion Effect in Water−Nonaqueous Solvent Mixtures: Interplay of the Interactions between Anion, Solvent, and Polymer. The Journal of Physical Chemistry B; August 2013, Volume 117, Issue 37, Pages 10936-10943.

[21]	楊士平、李慶國. 喜樹檢及其衍生物的歷史回顧與展望. 化學, 民國 98 年, 第六十七卷, 第一期, 45-60 頁.

[22]	Honglei Zhan and Jun F. Liang. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid. Scientific Reports; Dec 2016, Volume 6, Pages 38668.

[23]	林莉婕. 利用環境敏感性嵌段共聚物與幾丁聚醣自組裝形成奈米藥物釋放載體. 淡江大學 民國 104 年.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信