淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1209201708440200
中文論文名稱 奈米錳/石墨烯複合材料應用於電容去離子技術
英文論文名稱 Application of Nano Manganese/Graphene Composite for Capacitive Deionization (CDI)
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 105
學期 2
出版年 106
研究生中文姓名 林志穎
研究生英文姓名 Chih-Ying Lin
學號 604480193
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2017-06-29
論文頁數 124頁
口試委員 指導教授-彭晴玉
委員-侯嘉洪
委員-李奇旺
中文關鍵字 電容去離子    石墨烯 
英文關鍵字 Capacitive Deionization  Manganese  Graphene 
學科別分類 學科別應用科學環境工程
中文摘要   因人口增加、經濟發展與氣候變遷等因素,造成全球水資源匱乏。地球水資源中,海水佔97%,因此,海水淡化技術成為近年來各國重點開發之技術。電容去離子技術 (capacitive deionization, CDI) 是一種利用電吸附程序去除水中離子的電化學水處理技術,CDI具低成本、低能耗、無二次污染等優點,可應用於去除水中之鹽分。CDI 基本原理是將兩電極間施加電場,使帶電荷之離子吸附於相反電荷之電極表面,形成電雙層,藉以達到去除水子離子之目的。本研究目的為開發新穎電極材料,以應用於電容去離子技術。
  電極材料為CDI系統之核心,比電容、導電性、比表面積及濕潤性等,都是良好電極材料之關鍵因素;石墨烯(graphene (rGO))為近年來倍受矚目之導電材料,因其具有高的比表面積、良好導電性及良好的化學惰性,所以適合應用於 CDI 系統。本研究中以X-ray繞射分析、掃描式電子顯微鏡、穿透式電子顯微鏡、比表面積分析儀(BET)、接觸角量測及電化學分析(循環伏安法、計時電位、計時電流、電極阻抗)等方法,探討電極材料表面特徵及電化學特性。
  使用改良式Hummer法製備氧化石墨烯(graphene oxide (GO)),並以還原劑Dithionite進行還原GO生成rGO。並添加環境友善之錳金屬,使用Ex-situ、In-situ、Mn@C核殼材料三種方法改質石墨烯;Ex-situ法為使用已還原好之石墨烯加入奈米錳金屬,製成Mn/rGO複合材料;In-situ法則是使用氧化石墨烯於不添加還原劑情況下,利用錳還原氧化石墨烯還原,錳同步被氧化為奈米錳並複合為Mn/rGO複合材料;此外,添加Mn@C核殼顆粒形成Mn@C/rGO複合材料,三種方法皆可提升電極之比電容,比電容與未改質的rGO相比,從原始rGO的 42.19 F/g,三種方法在最佳配比狀況下,分別提升至178.23 F/g、179.64 F/g、107.33 F/g,而比電容的增加主要是因為錳金屬的法拉第虛擬電容(Faradic pseudocapacitance)所貢獻。
  將三種複合材料應用於CDI系統,進行鹹水中NaCl之電吸附研究,使用還原劑Dithionite之石墨烯每克可吸附0.22毫克NaCl,而三種改質(Ex-situ、In-situ、Mn@C)分別為4.12 mg/g、1.54 mg/g、2.86 mg/g,吸附量皆大幅提升,而Ex-situ改質吸附量提升最多。
英文摘要   Because of population growth, economic development and climate change, global water resources are scarce. The oceans contain 97 percent of the Earth's water, so desalination has become a key technology in recent years. Capacitive Deionization (CDI) is a technique for removing ions from water by electrosorption. The advantages of CDI system include low cost, low energy consumption and without secondary pollution.
  The basic principle of CDI is that an electric field is applied between two electrodes, so that the charged ions are electro-adsorbed on the electrode with opposite charge.
  The purpose of this study is to develop a novel electrode material for CDI system. The key factors for an outstanding electrode material are specific capacitance, specific surface, conductivity and wettability.
  Graphene is one of the most popular carbon based material in recent years. Due to its high specific surface area, great electrical conductivity and good chemical inertness, it is a good candidate for electrode material of CDI system.
  In this study, X-ray diffraction, scanning electron microscope , transmission electron microscope, surface area analyzer, contact angle analyzer and electrochemical analyzer (cyclic voltammetry, chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy) to observe the characteristics of electrode material.
  Graphene oxide (GO) was prepared by modified Hummer's method, and then reduced by dithionite to produce graphene (rGO).
  The additions of environmental friendly manganese with graphene were synthesized by ex-situ method, in-situ synthesis and mixing with Mn@C core-shell nanoparticles.
  Ex-situ method mixed graphene and nano-manganese particles to form Mn/rGO composite.While for in-situ method, the preparation of manganese nanoparticles/graphene composites was conducted with manganese serving as reductant to reduce GO. In the in-situ procedure, manganese is oxidized and GO is reduced to rGO simultaneously. In addition, Mn@C/rGO composites were prepared by the addition of Mn@C core-shell particles to graphene.
These three methods significantly enhance the specific capacitance of the electrode from 42.19 F/g (original rGO) to 178.23 F/g (ex-situ), 179.64 F/g (in-situ), and 107.33 F/g (Mn@C), respectively. The increase in specific capacitance is mainly due to the manganese Faradic pseudocapacitance contribution.
  Applying three kinds of composite materials to CDI system, study on the electroadsorption of NaCl in brackish water.
  Using of reduced by dithionite to produce graphene electrode presents a electrosorption capacity of 0.22 mg/g NaCl,three methods of MnO2/graphene (Ex-situ, In-situ, Mn@C) composite electrode presents a superior electrosorption capacity respectively 4.12 mg/g, 1.54 mg/g and 2.86 mg/g, the adsorption capacity increased greatly, and the adsorption capacity of Ex-situ was the highest.
論文目次 目錄
第一章 緒論.......................................................................................... 1
1.1 研究起源......................................................................................... 1
1.2 研究目的......................................................................................... 2
第二章 文獻回顧................................................................................... 3
2.1 海水淡化技術................................................................................. 3
2.1.1 多效蒸發法 (Multiple-effect distillation, MED)............................ 3
2.1.2 多級閃蒸法 (Multi-stage flash, MSF) ......................................... 5
2.1.3 逆滲透 (Reverse osmosis, RO)................................................. .6
2.1.4 電透析 (Electrodialysis, ED)....................................................... 7
2.1.5 電容去離子(Capacitive deionization, CDI).................................. 8
2.2 電容去離子技術(Capacitive Deionization, CDI)............................. 9
2.2.1 電容去離子技術之發展............................................................... 9
2.2.2 電容去離子技術之特色............................................................. 11
2.2.3 電容去離子技術之原理............................................................. 12
2.3 電雙層理論 (Electrical double layer, EDL) ................................ 13
2.4 電容去離子電極材料................................................................... 15
2.4.1 活性碳 (Activated Carbon, AC) .............................................. 15
2.4.2 活性碳纖維(布) (Activated Carbon Fiber(Cloth), ACF、
ACC).................................................................................................. 16
2.4.3 碳氣凝膠(Carbon aerogels) ..................................................... 19
2.4.4 奈米碳管 (Carbon nanotubes, CNTs) ..................................... 22
2.4.5 石墨烯 (Graphene) ................................................................. 24
2.5 電化學性能分析之原理................................................................ 28
2.5.1 循環伏安法(Cyclic Voltammetry, CV) ..................................... 28
2.6 金屬複合材料.............................................................................. 31
第三章 實驗材料與方法.................................................................... 32
3.1 實驗架構..................................................................................... 32
3.2 實驗藥品與設備.......................................................................... 34
3.2.1 實驗藥品.................................................................................. 34
3.2.2 實驗設備.................................................................................. 35
3.3 電極材料之製備.......................................................................... 36
3.3.1 氧化石墨烯製備....................................................................... 36
3.3.2 還原氧化石墨烯的製備........................................................... 38
3.3.3 Ex-situ 錳/石墨烯複合材料之製備 ......................................... 40
3.3.4 In-situ 錳/石墨烯複合材料之製備 .......................................... 42
3.3.5 Mn@C/石墨烯 ....................................................................... 44
3.4 電吸附電極之製作..................................................................... 46
3.5 電極材料儀器分析....................................................................... 46
3.5.1 X-ray Diffraction(XRD) ............................................................. 46
3.5.2 Scanning Electron Microscope(SEM) ...................................... 46
3.5.3 Transmission Electron Microscopy(TEM) ................................ 47
3.5.4 BET 孔徑與表面積分析 .......................................................... 47
3.5.5 Contact angle .......................................................................... 48
3.5.6 Cyclic Voltammetry ................................................................. 48
3.5.7 Chronopotentiometry .............................................................. 50
3.5.8 Chronoamperometry ............................................................... 50
3.5.9 Electrochemical Impedance Spectrum ................................... 50
3.6 電容去離子................................................................................. 51
第四章 結果與討論........................................................................... 53
4.1 Ex-situ 錳/石墨烯複合材料應用於電容去離子 .......................... 53
4.1.1 Ex-situ 錳/石墨烯複合材料表面特性分析 .............................. 53
4.1.2 Ex-situ 錳/石墨烯複合材料電化學分析 ................................. 61
4.1.3 複合材料用於電容去離子技術................................................ 71
4.2 In-situ 錳/石墨烯複合材料應用於電容去離子 .......................... 73
4.2.1 In-situ 錳/石墨烯複合材料表面特性分析 .............................. 73
4.2.2 In-situ 錳/石墨烯複合材料電化學分析 .................................. 82
4.2.3 複合材料用於電容去離子技術............................................... 93
4.3 Mn@C/石墨烯複合材料應用於電容去離子 .............................. 96
4.3.1 Mn@C/石墨烯複合材料表面特性分析 .................................. 96
4.3.2 Mn@C 複合材料電化學分析 .............................................. 101
4.3.3 複合材料用於電容去離子技術.............................................. 112
4.4 奈米錳/石墨烯複合材料之電吸附能力比較 ............................ 115
第五章 結論與建議........................................................................ 116
Reference ..................................................................................... 118
List of Figure
Figure 2.1.1.1 Flow of steam from boiler to MED unit.(Sen et al., 2011) … 4
Figure 2.1.2.1 Schematic diagram of the evaporating section of an MSF
desalination plant.(Choi, 2016) ................................................................... 5
Figure 2.1.3.1 Mechanism of reverse osmosis.(Gasmi et al., 2010) .......... 6
Figure 2.1.4.1 The schematic setup of ED stack.(Khan et al., 2017).......... 7
Figure 2.2.1.1 Timeline of developments of CDI (Porada et al., 2013)..... 10
Figure 2.2.3.1 Purification (a) and regeneration (b) processes in CDI
(AlMarzooqi et al., 2014) ........................................................................... 12
Figure 2.2.3.1 (a) Helmholtz(b) Gouy and Chapman electric double layer
mode.(C.H.Hamann, 1998) ....................................................................... 14
Figure 2.2.3.2 Stern electric double layer mode.(C.H.Hamann, 1998) ..... 14
Figure 2.4.2.1 SEM images of activated carbon cloth (a). Pore structures of
non-treated carbon fiber (b), chemically modified carbon fiber in KOH
(c), and HNO3 (d) solutions(Oh et al., 2006). ........................................... 17
Figure 2.4.2.2 Comparison of simulated isotherms with experimental data in
the adsorption of NaCl on the ACC and Ti-ACC electrodes at 25 °C.
Under an applied electric potential of 1.0 V.(Ryoo & Seo, 2003) ............ 18
Figure 2.4.2.3 Total surface area available on ZnO nanorods coated glass
substrates over different precursor concentrations during hydrothermal
process(Myint & Dutta, 2012). ................................................................ 18
Figure 2.4.3.1 Electrical conductivity of CSA and CA. The inset in the
figure shows the variation of specific capacitance with respect to scan
rate(Zuo et al., 2015). ............................................................................. 20
Figure 2.4.3.2 Cyclic voltammograms of (a) pyrolised and (b) activated
carbon aerogels obtained recorded at 0.5 mV/s in the 0.1 M NaCl
solution(Zafra et al., 2014). ..................................................................... 21
Figure 2.4.4.1 Electrochemical performance of different electrode materials
tested in a two-electrode system in an aerobic 1 M Na2SO4 aqueous
solution. CV curves of MnO2-CNT (6 h), pristine CNTs and MnO2
nanowires with a scan rate of 5 mVs-1 (Huang et al., 2015). ................ 23
Figure 2.4.5.1 C–V profiles of Gr/SnO2 15% at different scan rates and 1 M
NaCl concentration(El-Deen et al., 2014). ............................................ 26
Figure 2.4.5.2 Cyclic voltammetry(Trinh et al., 2016) ........................... 26
Figure 2.4.5.3 CV curves of the MnO2-NRs@graphene electrodes at various
scan rates(El-Deen et al., 2014). .......................................................... 27
Figure 2.5.1.1 Cyclic voltammetry circuit layout(Douglas A. Skoog 2007)
............................................................................................................... 29
Figure 2.5.1.2 Cyclic Voltammetry(Douglas A. Skoog 2007) ................ 30
Figure 2.5.1.3 Cyclic Voltammetry(Crow, 1994) ................................... 30
Figure 3.1.1 Schematic experimental structure for CDI system. .......... 33
Figure 3.3.1.1 Overall experimental flow chart for the fabrication of
graphene oxide. .................................................................................... 37
Figure 3.3.2.1 Overall experimental flow chart for the fabrication of
reduced graphene oxide. ...................................................................... 39
Figure 3.3.3.1 Experimental flow chart for the fabrication of ex-situ
Mn/rGO. ............................................................................................... 41
Figure 3.3.4.1 Experimental flow chart for the fabrication of in-situ
Mn/rGO. ............................................................................................... 43
Figure 3.3.5.1 Overall experimental flow chart for the fabrication of
Mn@C/graphene.(Cai et al., 2014) ...................................................... 45
Figure 3.5.6.1 Schematic of the cyclic voltammetry test setup(Ji, Xu, Zhao,
& Dai, 2014) ........................................................................................ 49
Figure 3.5.6.2 Cyclic voltanmmogram of an ideal capacitance. .......... 49
Figure 3.6.1 Schematic for the electrosorption experiment ................. 52
Figure 4.1.1.1 XRD patterns of the (a) graphene, (b) Mn:rGO (1:1), (c)
Mn:rGO (1:1.5), and (d) Mn:rGO (1:2). ..................................... 55
Figure 4.1.1.2 FE-SEM images of the (a, b) graphene, (c, d, e) Mn:rGO
(1:1.5) (f) EDS of the Mn:rGO (1:1.5). ......................................... 56
Figure 4.1.1.3 TEM images of the (a, b) graphene, (c, d) Mn:rGO (1:
1.5), (e) selected area electron diffraction (SAED) pattern of Mn:rGO
(1:1.5), and (f) EDS of the Mn:rGO (1:1.5). ................................. 57
Figure 4.1.1.4 Pore volume distribution for (a) rGO, (b) Mn:rGO (1:1.5).
............................................................................................................ 58
Figure 4.1.1.5 Contact angle images of the (a) graphene, (b) Mn:rGO (1:
1), (c) Mn:rGO (1:1.5), and (d) Mn:rGO (1:2). ......................... 60
Figure 4.1.2.1 Cyclic voltammograms of (a) graphene, (b) Mn:rGO (1:
1), (c) Mn:rGO (1:1.5), and (d)Mn:rGO (1:2). ......................... 62
Figure 4.1.2.2 Cyclic voltammograms of the graphene, Mn:rGO (1:1),
Mn:rGO (1:1.5), and Mn:rGO (1:2) at scan rate of 50 mV/s. . 63
Figure 4.1.2.3 Mass normalized specific capacitance of graphene and
Mn/rGO with respect to the scan rates. ........................................... 64
Figure 4.1.2.4 Charge-discharge curves of (a) graphene, (b) Mn:rGO (1:
1), (c) Mn:rGO (1:1.5), and (e)Mn:rGO (1:2) under differentcurrent densities. ......................................................................................... 67
Figure 4.1.2.5 Charge-discharge curves for the graphene, Mn:rGO (1:1),
Mn:rGO (1:1.5), and Mn:rGO (1:2) at current density of 1 A/g.
......................................................................................................... 68
Figure 4.1.2.6 The current-time response obtained at applied cyclic potential
on graphene, Mn:rGO (1:1), Mn:rGO (1:1.5), and Mn:rGO
(1:2). ............................................................................................. 69
Figure 4.1.2.7 The electrochemical impedance spectra (EIS) measured at
frequency range of 100 kHz to 0.01 Hz for graphene, Mn:rGO (1:
1), Mn:rGO (1:1.5), Mn:rGO (1:2) electrode, respectively. ... 70
Figure 4.1.3.1 Representative desalination performance of the rGO and Mn
/ rGO(1:1.5) electrodes in 250 ppm NaCl with an applied voltage of 1.0 V. . 72
Figure 4.1.3.2 Electrosorption/desorption profiles of the Mn / rGO(1:1.5) composite
electrode in 250 ppm NaCl (1.0 V).
. ......................................................................................... 72
Figure 4.2.1.1 XRD patterns of the (a) graphene oxide (GO), (b) graphene
generated by dithionite reduction, (c) Mn:GO (1:1), (d) Mn:GO
(1:2), (e) Mn:GO (1:3). ............................................................. 76
Figure 4.2.1.2 FESEM images of the (a) graphene generated by dithionite
reduction, (b, c) Mn:GO(1:2) (d) EDS of the Mn:GO (1:2)..... 77
Figure 4.2.1.3 TEM images of the (a, b) graphene generated by dithionite
reduction, (c, d) Mn:GO (1:2), (e) Nano beam electron diffraction
(NBED) of Mn:GO (1:2), (f) EDS of the Mn:GO (1:2). .......... 78
Figure 4.2.1.4 Pore volume distribution for (a) rGO, (b) Mn:GO (1:2). 79
Figure 4.2.1.5 Contact angle images of the (a) graphene generated by
dithionite reduction, (b) Mn:GO (1:1), (c) Mn:GO (1:2)
(e)Mn:GO (1:3). ............................................................................. 81
Figure 4.2.2.1 Cyclic voltammograms for the (a) graphene, (b) Mn:GO
(1:1), (c) Mn:GO (1:2), (e) Mn:GO (1:3) at various scan rates.
.............................................................................................................. 84
Figure 4.2.2.2 Cyclic voltammograms of graphene, Mn:GO (1:1), Mn:
GO (1:2), and Mn:GO (1:3) at scan rate of 50 mV/s. ................. 85
Figure 4.2.2.3 Mass normalized specific capacitance of graphene and
Mn/rGO composites with respect to the scan rates. ............................. 86
Figure 4.2.2.4 Charge-discharge curves of (a) graphene, (b) Mn:GO (1:
1), (c) Mn:GO(1:2), and (d) Mn:GO(1:3). ............................... 89
Figure 4.2.2.5 Charge-discharge curves of graphene or Mn/rGO composites
at current density of 1 A/g. ................................................................... 90
Figure 4.2.2.6 The current-time response obtained at applied cyclic potential
on graphene and Mn/rGO composites. ................................................ 91
Figure 4.2.2.7 The electrochemical impedance spectra (EIS) measured at
frequency range of 100 kHz to 0.01 Hz for the obtained electrodes:
graphene, Mn:GO(1:1), Mn:GO (1:2), and Mn:GO (1:3)
electrode, respectively. ......................................................................... 92
Figure 4.2.3.1 Representative desalination performance of the rGO and Mn
/ GO electrodes in 250 ppm NaCl with an applied voltage of 1.0 V. ... 95
Figure 4.2.3.2 Electrosorption-desorption cycles of the Mn / GO composite
electrode in 250 ppm NaCl (1.0 V).The change in solution
conductivity. ......................................................................................... 95
Figure 4.3.1.1 XRD patterns of the (a) graphene oxide (GO), (b) graphene
(rGO) generated by dithionite reduction, (c) Mn@C:rGO (1:5), (d)
Mn@C:rGO (1:10), (e) Mn@C:rGO (1:50). .............................. 98
Figure 4.3.1.2 FESEM images of the (a) graphene generated by dithionite
reduction, (b, c, and d) Mn@C:rGO (1:5)...................................... 99
Figure 4.3.1.3 Contact angle images of the (a) graphene generated by
dithionite reduction, (b) Mn@C:rGO (1:1), (c) Mn@C:rGO (1:
5), (d) Mn@C:rGO (1:50). ........................................................... 100
Figure 4.3.2.1 Cyclic voltammograms for the (a) graphene, (b) Mn@C:
rGO (1:5), (c) Mn@C:rGO (1:10), and (d)Mn@C:rGO (1:50).
............................................................................................................ 103
Figure 4.3.2.2 Cyclic voltammograms for the graphene, Mn@C:rGO (1:
5), Mn@C:rGO(1:10, Mn@C:rGO(1:50). ............................. 104
Figure 4.3.2.3 Capacitance retention of Mn@C/graphene in the potential range
of 0~0.8 V at the scan rate of 1, 5,10, 50, 100 mV/s. ........................ 105
Figure 4.3.2.4 Charge-discharge curves of the (a) graphene, (b) Mn@C:
rGO (1:5), (c) Mn@C:rGO (1:10), and (e)Mn@C:rGO (1:50)
under different current densities. ....................................................... 108
Figure 4.3.2.5 Charge-discharge curves for the graphene, Mn@C:rGO
(1:5), Mn@C:rGO (1:10), and Mn@C:rGO (1:50) at current
density of 1 A/g. ................................................................................. 109
Figure 4.3.2.6 The current-time response obtained at applied cyclic potential
on the surface of graphene, Mn@C:rGO (1:5), Mn@C:rGO (1:
10), and Mn@C:rGO (1:50). ........................................................ 110
Figure 4.3.2.7 The electrochemical impedance spectra (EIS) measured at
frequency range of 100 kHz to 0.01 Hz for graphene, Mn@C:rGO
(1:5), Mn@C:rGO (1:10), Mn@C:rGO (1:50) electrode,
respectively. ....................................................................................... 111
Figure 4.3.3.1 Representative desalination performance of the rGO and
Mn@C/rGO electrodes in 250 ppm NaCl with an applied voltage of
1.0 V. .................................................................................................. 114
Figure 4.3.3.2 Electrosorption-desorption cycles of the Mn@C/rGO
composite electrode in 250 ppm NaCl (1.0 V). ....................................................................................... 114
List of Table
Table 2.4.3.1 BET surface area and pore volume values derived from the
nitrogen isotherms measured for the doped and non-doped aerogel
samples(Zafra et al., 2014). .................................................................. 20
Table 3.2.1.1 Manufactures and purity of experimental medicines. ...... 34
Table 3.2.2.1 Manufacturers and model of instrument. ......................... 35
Table 4.1.1.1 Surface and porosity characteristics of rGO and Mn:rGO
(1:1.5). ............................................................................................... 59
Table 4.1.1.2 Contact angle analyses of the graphene, Mn:rGO (1:1),
Mn:rGO (1:1.5), and Mn:rGO (1:2). ........................................ 60
Table 4.2.1.1 Surface and porosity characteristics of rGO and Mn:GO
(1:2). .................................................................................................. 80
Table 4.2.2.1 Mass normalized specific capacitance (F/g) of graphene and
Mn/rGO composites with respect to the scan rates. ............................. 86
Table 4.3.1.1 Contact angle of the graphene generated by dithionite
reduction, Mn:GO (1:1), Mn:GO (1:2), Mn:GO(1:3) ...... 100
Table 4.3.2.1 Capacitance retention of Mn@C/graphene in the potential range
of 0~0.8 V at the scan rate of 1, 5, 10, 50, 100 mV/s. ....................... 105
Table 4.4.1 Comparison of electrosorption capacities of various carbon
electrodes reported in the literaturea. ................................................. 115
Table 5.1 Mass normalized specific capacitance (F/g) of graphene, ex-situ
Mn/rGO (1:1.5)、in-situ Mn/rGO (1:2) and Mn@C/rGO (1:5)
composites with respect to the scan rates. ......................................... 117
Table 5.2 Electrosorption capacity (mg/g) for ex-situ Mn/rGO (1:1.5),
in-situ Mn/rGO (1:2), and Mn@C/rGO (1:5) composites for CDI tests.
............................................................................................................ 117
參考文獻 1.Caudle DD, T. J., Cooper JL, Arnold BB, Papastamataki A. (1966). Electrochemical demineralization of water with carbon electrodes. Washington U.S. Dept. of the Interior.
2.Hunter, R. J. (1981). Zeta Potential in Colloid Science –Principles and Applications, Academic Press (London), in: Colloid Science (edited by R. H. Ottewill and R. L. Rowell).
3.H, M. (2006). Activated carbon. (Vol. 1st ed. Boston (MA): Elsevier).
4.C.H.Hamann, A. (1998). A. Hamnett, and W. Vielstich, Electrochemistry, 1st ed., Wiley-VCH, Weinheim.
5.Reid GW, T. F., Stevens AM. (1968). Filed operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water.
6.Crow, D. R. (1994). Principles and Applications of Electrochemistry, 4th Edition.
7.Douglas A. Skoog , F. J. H. A., Stanley R. Crouch (2007). Principles of Instrumental Analysis.
8.Choi, S.-H. (2016). On the brine re-utilization of a multi-stage flashing (MSF) desalination plant. Desalination, 398, 64-76.
9.Gasmi, A., Belgaieb, J.,andHajji, N. (2010). Technico-economic study of an industrial reverse osmosis desalination unit. Desalination, 261(1-2), 175-180.
10.Khan, M. I., et al. (2017). Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis. Desalination, 402, 10-18.
11.Porada, S., et al. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442.
12.Johnson AM, V. A., Wilbourne RG, Newman J, Wong CM, Gilliam WS, et al. (1970). The electrosorb process for desalting water.
13.Johnson, A. M.andNewman, J. (1971). Desalting by Means of Porous Carbon Electrodes. Journal of The Electrochemical Society, 118(3), 510.
14.Oren Y, S. A. (1978). Electrochemical parametric pumping. Journal of The Electrochemical Society, 125(6), 869-875.
15.Joseph C. Farmer, D. V. F., Gregory V. Mack, Richard W. Pekala, and John F. Poco. (1996). Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes. Electrochemical Science and Technology, 143, 159-169.
16.AlMarzooqi, F. A., et al. (2014). Application of Capacitive Deionisation in water desalination: A review. Desalination, 342, 3-15.
17.El-Deen, A. G., Barakat, N. A. M.,andKim, H. Y. (2014). Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination, 344, 289-298.
18.Huang, C.-C., Chen, H.-M.,andChen, C.-H. (2010). Hydrogen adsorption on modified activated carbon. International Journal of Hydrogen Energy, 35(7), 2777-2780.
19.Park, K.-K., et al. (2007). Development of a carbon sheet electrode for electrosorption desalination. Desalination, 206(1-3), 86-91.
20.Zhang, D., et al. (2006). Removal of NaCl from saltwater solution using carbon nanotubes/activated carbon composite electrode. Materials Letters, 60(3), 360-363.
21.Chang, L. M., Duan, X. Y.,andLiu, W. (2011). Preparation and electrosorption desalination performance of activated carbon electrode with titania. Desalination, 270(1-3), 285-290.
22.Myint, M. T. Z.andDutta, J. (2012). Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination, 305, 24-30.
23.Han, L., et al. (2013). Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization. Electrochimica Acta, 90, 573-581.
24.Ryoo, M.-W.andSeo, G. (2003). Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Research, 37(7), 1527-1534.
25.Oh, H.-J., et al. (2006). Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films, 515(1), 220-225.
26.Mecklenburg, M., et al. (2012). Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. [Research Support, Non-U.S. Gov't]. Adv Mater, 24(26), 3486-90.
27.Zuo, L., et al. (2015). Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. Materials, 8(10), 6806-6848.
28.Zafra, M. C., et al. (2014). A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water. Electrochimica Acta, 135, 208-216.
29.Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354, 56-58.
30.Humplik, T., et al. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001.
31.Mubarak, N. M., et al. (2014). An overview on methods for the production of carbon nanotubes. Journal of Industrial and Engineering Chemistry, 20(4), 1186-1197.
32.Huang, H., et al. (2015). Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors. Electrochimica Acta, 152, 480-488.
33.El-Deen, A. G., et al. (2014). Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceramics International, 40(9), 14627-14634.
34.Nair, R. R., et al. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308.
35.Tromp, R. M.andHannon, J. B. (2009). Thermodynamics and kinetics of graphene growth on SiC(0001). Phys Rev Lett, 102(10), 106104.
36.Mattevi, C., Kim, H.,andChhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper. J. Mater. Chem., 21(10), 3324-3334.
37.Bae, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. nature nanotechnology.
38.Trinh, N. T., et al. (2016). Development of high quality Fe3O4/rGO composited electrode for low energy water treatment. Journal of Energy Chemistry, 25(3), 354-360.
39.Sen, P. K., et al. (2011). A small scale Multi-effect Distillation (MED) unit for rural micro enterprises: Part I-design and fabrication. Desalination, 279(1-3), 15-26.
40.Ihm, S., et al. (2016). Energy cost comparison between MSF, MED and SWRO: Case studies for dual purpose plants. Desalination, 397, 116-125.
41.Kuo, S.-L.andWu, N.-L. (2006). Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2⋅nH2O Supercapacitors in Aqueous Electrolytes. Journal of The Electrochemical Society, 153(7), A1317.
42.Lei, Z., Shi, F.,andLu, L. (2012). Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. [Research Support, Non-U.S. Gov't]. ACS Appl Mater Interfaces, 4(2), 1058-64.
43.Mathieu Toupin, T. B., *,†,‡ and Daniel Be´langer*,†. (2004). Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. chemistry of materials, 16(16), 3184-3190.
44.Yang, Q., et al. (2014). High performance graphene/manganese oxide hybrid electrode with flexible holey structure. Electrochimica Acta, 129, 237-244.
45.Sakthivel, T., Gunasekaran, V.,andKim, S. J. (2014). Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Materials Science in Semiconductor Processing, 19, 174-178.
46.Zhou, T., et al. (2011). A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. [Research Support, Non-U.S. Gov't]. Nanotechnology, 22(4), 045704.
47.Zhao, B., et al. (2016). Self-assembly of ultrathin MnO2/graphene with three-dimension hierarchical structure by ultrasonic-assisted co-precipitation method. Journal of Alloys and Compounds, 663, 180-186.
48.Weng, S.-C., et al. (2017). Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries. Ceramics International.
49.Cai, P. F., et al. (2014). Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene. [Research Support, Non-U.S. Gov't]. Mar Pollut Bull, 85(2), 733-7.
50.R. Ryoo, S. H. J., M. Kruk,M. Jaroniec. (2001). Ordered Mesoporous Carbons. Advanced Materials, 13(9), 677-681.
51.Ji, K., et al. (2014). Electrodeposited lead-foam grids on copper-foam substrates as positive current collectors for lead-acid batteries. Journal of Power Sources, 248, 307-316.
52.Li, J., et al. (2017). Synthesis and electrochemical properties of Fe3O4/MnO2/RGOs sandwich-like nano-superstructures. Journal of Alloys and Compounds, 693, 373-380.
53.Li, Y., et al. (2011). KOH modified graphene nanosheets for supercapacitor electrodes. Journal of Power Sources, 196(14), 6003-6006.
54.El-Deen, A. G., et al. (2014). Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceramics International, 40(9), 14627-14634.
55.Wang, Z., et al. (2012). Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination, 299, 96-102.
56.Yang, J., et al. (2011). Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination, 276(1-3), 199-206.
57.Chen, B., et al. (2016). Enhanced capacitive desalination of MnO2 by forming composite with multi-walled carbon nanotubes. RSC Advances, 6(8), 6730-6736.
58.Yang, J., Zou, L.,andSong, H. (2012). Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation. Desalination, 286, 108-114.
59.Liu, Y.-H., et al. (2016). Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 4(9), 4762-4770.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2022-09-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2022-09-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信