§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1209201413303100
DOI 10.6846/TKU.2014.00346
論文名稱(中文) 二維準定常拍翼流場及其泡膜顯像
論文名稱(英文) 2D Quasi-Steady Flow around a Flapping Wing and Its Bubble-Film Flow Visualization
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 黃心綸
研究生(英文) Hsin-Lun Haung
學號 601370363
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-01
論文頁數 99頁
口試委員 指導教授 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 宛同(twan@mail.tku.edu.tw)
委員 - 鍾永強(ycchung@mail.mcut.edu.tw)
關鍵字(中) 拍翼
二維流場
泡膜
PVDF
關鍵字(英) flapping
two-dimensional flow field
bubble films
PVDF
第三語言關鍵字
學科別分類
中文摘要
本研究提出以10cm拍翼機進行二維準定常流模擬分析以及以立體攝影術擷取移動邊界。軌跡擷取使用SURFER和GAMBIT將立體攝影的三維軌跡擷取出二維的1/4翼展並生成網格。在Fluent中進行流場模擬,其中準定常CFD模擬在Fluent中被視為二維移動邊界。流場設定上,上風速度在拍翼流場中也得到新的考量。最後計算含有時變的二維流場與對應的升力係數。從拍翼頻率40Hz下一週期之升力係數呈現出與風洞數據及PVDF現地量測數據相似之結果。
本研究開發並測試出一套新的方法,即是利用泡膜觀察拍翼流場。此研究是基於泡膜干涉之概念,其中不同厚度的泡膜將呈現出不同色彩。10cm翼展拍翼機在泡膜中作動,並且以一台彩色CCD捕捉泡膜色彩變化圖案。將影像送入MATLAB來生成每個像素的RGB值,並且對應標準泡膜厚度色卡之厚度。MATLAB求解器也被用來求解Poisson方程的Neumann邊界條件問題,最終獲得了速度勢與拍翼流場的流線圖。
英文摘要
This thesis presents a 2D quasi-steady flow simulation of a 10 cm wingspan flapping wing with given moving boundary fed from stereo-photography measurement. This trajectory work used the softwares Surfer and Gambit to slice a 2D quarter-span cross section from the 3D trajectory by stereo photography. It’s then regarded as a 2D moving boundary for the quasi-steady CFD simulation by ANSYS/Fluent. The upwind direction changing of the flapping flow field has also been novelly considered herein. The computed time-varying outputs include the 2D flow fields and the corresponding lift coefficient. The one cycle history of lift coefficient subjected to 40 Hz flapping shows the qualitative similarity to the corresponding wind tunnel data and PVDF on-site measurement data.
A novel method utilizing bubble film to observe the flapping flow field has been also developed and tested in this thesis. This work is based on the concept of thin film interference where bubble film of different thickness exhibits different chromatic appearance. Herein, the bubble film was subjected to the flow field of a 10 cm wingspan flapping wing, and a color CCD camera was used to capture the chromatic patterns on the bubble film. The captured photograph was fed into MATLAB to generate RGB values per pixel and corresponding thickness values based on the standard color card for bubble thickness. The commercial finite difference solver in MATLAB was also used to solve the Neumann boundary value problem of Poisson equation to obtain the velocity potential field and the corresponding stream line pattern of the flapping flow field. Some technical difficulties were addressed finally.
第三語言摘要
論文目次
目錄
第一章	緒論	1
1-1	研究背景與目的	1
1-2	文獻回顧	5
1-3	論文架構	9
第二章	流場特性	12
2-1	卡門渦街	12
2-2	空氣動力中心	13
2-3	雷諾數	14
第三章	升力量測實驗	17
3-1	實驗設備	17
3-2	力規實驗架設	23
3-3	升力結果	24
第四章	拍翼軌跡流場模擬分析	31
4-1	實驗設備與資料處理軟體	31
4-2	拍翼軌跡擷取	36
4-3	拍翼流場模擬分析	44
4-4	CFD升力係數擷取	48
第五章	泡膜二維顯像實驗	49
5-1	實驗設備	49
5-2	泡膜影像擷取實驗	52
5-3	泡膜色彩場轉換厚度場	56
5-4	厚度場轉換二維流場之分析	57
第六章	PVDF升力量測實驗	68
6-1	實驗設備	68
6-2	實驗架設	73
6-3	升力壓電訊號	74
第七章	實驗結果與比對	76
7-1	煙線流場分析 vs. 泡膜流場分析	76
7-2	力規量測之升力 vs. CFD流場模擬之升力	79
7-3	力規量測之升力 vs. 壓電薄膜擷取之升力訊號	80
7-4	CFD流場模擬之升力vs. 壓電薄膜擷取之升力訊號	81
第八章	結論與未來展望	83
8-1	結論	83
8-2	未來展望	86
參考文獻	89
附錄A		96
 
圖目錄
圖1-1 渦度等高線示意圖	6
圖1-2 DARPA團隊設計之蜂鳥	7
圖1-3 拍翼模型示意圖	8
圖1-4 渦流矢量圖	8
圖1-5 von Karman第一個假設之對稱渦流	8
圖1-6 實驗架構圖	11
圖2-1 圓柱繞流,非定常流場之卡門渦街	12
圖2-2 泡膜流場	13
圖2-3 翼型參數示意圖	14
圖2-4 本研究拍翼之空氣動力中心線	14
圖3-1 小型吸入式風洞	18
圖3-2 PR8363型電源供應器	18
圖3-3 六軸力規	19
圖3-4 訊號放大器	19
圖3-5 訊號擷取器	20
圖3-6 金探子機構設計圖	21
圖3-7 本研究使用之拍翼機桿件與齒輪	21
圖3-8 本研究使用之拍翼機機座	21
圖3-9 微飛行器示意圖:(a)機構組裝圖;(b)Solidworks示意圖。	22
圖3-10 拍翼頻率擷取之架構	22
圖3-11 升力量測用之風洞	24
圖3-12 20°攻角下,對應不同電壓之升力隨風速變化	25
圖3-13 20°攻角下,對應不同電壓之推力隨風速變化	25
圖3-14 30°攻角下,對應不同電壓之升力隨風速變化	26
圖3-15 30°攻角下,對應不同電壓之推力隨風速變化	26
圖3-16 50°攻角下,對應不同電壓之升力隨風速變化	27
圖3-17 50°攻角下,對應不同電壓之推力隨風速變化	27
圖3-18 60°攻角下,對應不同電壓之升力隨風速變化	28
圖3-19 60°攻角下,對應不同電壓之推力隨風速變化	28
圖3-20 翼展10cm金探子升力訊號圖	30
圖3-21 翼展20cm金探子升力訊號圖	30
圖4-1 高速CCD:(a) Phantom V4.2;(b) Phantom M310。	32
圖4-2 Hub連接器	32
圖4-3 Kwon3D軟體	33
圖4-4 Kwon3D拍攝示意圖	33
圖4-5 不同方位之高速攝影機軌跡擷取	34
圖4-6 Surfer地質模擬軟體	34
圖4-7 Gambit操作介面	35
圖4-8 數值分析軟體FLUENT	36
圖4-9 立體軌跡擷取實驗示意圖	37
圖4-10 座標校正用框架	37
圖4-11 翼膜標誌點	37
圖4-12 立體軌跡擷取實驗架設圖	38
圖4-13 空間定位之誤差值	39
圖4-14 標誌點之建立:(a)座標校正;(b)量測拍翼上標誌點。	39
圖4-15 翼前緣之軌跡	40
圖4-16 Kwon3D取點完成圖	40
圖4-17 SURFER處理:(a)原始數據之內插分佈;(b)刪除翼膜邊界外之數據。	40
圖4-18翼面等高線圖,驅動電壓3.7V風速1m/s;(a)-(d)為下行程;(e)-(h)為上行程。	41
圖4-19 SURFER輸出拍翼軌跡座標:(a)翼面立體軌跡座標;        (b)四分之一翼展中線之軌跡座標。	42
圖4-20 二維拍翼流場邊界	43
圖4-21 建立拍翼流場網格	43
圖4-22 拍翼中線軌跡;(a)下行程拍翼;(b)上行程拍翼。	44
圖4-23 翼前緣風速計算	44
圖4-24 金探子上行程軌跡:(a)2012年;(b)2013年	45
圖4-25 金探子下行程軌跡:(a)2012年;(b)2013年	45
圖4-26 金探子速度場模擬:(a)2012年;(b)2013年	46
圖4-27 攻角20°風速1m/s速度場變化圖,(a)-(c)為拍翼上行程;  (d)-(f)為拍翼下行程	47
圖4-28 本研究風速3m/s之金探子升力模擬數值	48
圖4-29 風速3m/s之金探子升力模擬數值	48
圖5-1 泡膜材料	50
圖5-2 Phantom M310型號參數	51
圖5-3 MATLAB程式介面	51
圖5-4 泡膜擷取實驗架設圖	52
圖5-5 Case1泡膜顯像	53
圖5-6 框架(單位:mm)	54
圖5-7 Case2泡膜顯像	55
圖5-8 泡膜「色彩-厚度」比對卡	57
圖5-9 液膜流網;實線為等勢線;虛線為流線。	60
圖5-10 Poisson方程式求解流程圖	61
圖5-11 Case1速度勢圖(迭代次數10000次;殘差值10-6)	62
圖5-12 Case2速度勢圖(迭代次數10000次;殘差值10-6)	63
圖5-13 Case1流線圖(迭代次數10000次;殘差值10-6)	64
圖5-14 Case2流線圖(迭代次數10000次;殘差值10-6)	65
圖5-15 Case1渦街位置示意圖	66
圖5-16 Case2渦街位置示意圖	67
圖6-1 壓電薄膜	70
圖6-2 3M導電銅箔膠帶	72
圖6-3 PVDF黏貼示意圖	73
圖6-4 PVDF實驗架設圖	73
圖6-5 PVDF一週期壓電訊號	74
圖6-6 本研究PVDF之升力連續週期	75
圖6-7 “Two Dimensional Mechanism for Insect Hovering”升力結果	75
圖7-1 煙線流場;(a)~(c)為下行程拍翼;(d)~(f)為上行程拍翼	77
圖7-2 10cm翼展	79
圖7-3 10cm翼展微型金探子CFD模擬升力圖	79
圖7-4 10cm微型金探子之壓電薄膜訊號圖	81
圖7-5 10cm微型金探子之升力訊號	81
圖7-6 CFD流場模擬之升力圖	82
圖7-7 PVDF擷取之電訊號圖	82
圖8-1 高速CCD之泡膜影像	88

 
表目錄
表3-1 拍翼頻率表(10cm翼展之微型金探子)	23
表6-1 壓電薄膜材料性質表	69
表6-1 金屬導電率表	71
表7-1 泡膜顯像vs.煙線實驗	78
參考文獻
參考文獻
[1] L. J. Yang, C. K. Hsu, H. C. Han, and J. M. Miao, “ Light flapping micro-aerial-vehicle using electrical discharge wire cutting technique,” Journal of Aircraft, vol. 46(6), pp. 1866-1874, 2009.
[2] T. M. Yang and F. Y. Hsiao, “Dynamics of flapping micro-aerial vehicles,” American Control Conf., St. Louis, MO, pp. 4190-4195, 2009.
[3] K. D. Jones, C. M. Dohring, and M. F. Platzer, “Experimental and computational investigation of the Knoller-Betz effect,” AIAA Journal, vol. 36, no. 7, July 1998.
[4] E.G. Drucker and G.V. Lauder, “Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry, ”International Journal of Experimental Biology 202, pp. 2393-2412, 1999.
[5] N.J. Lawson, and J. Wu, “Three-dimensional particle image velocimetry:error analysis of stereoscopic techniques, ”Measurement Science and Technology, vol. 8, no. 8, pp. 894-900, 1997.
[6] 黃柏銜,蔡宗翰,魏禕良,昆蟲拍翅的氣流研究,102年台灣國際科展,物理與太空科學組第4名,指導老師馮愛蓮,楊龍杰。
[7] 高崇瑜,「應用精密模造技術於微飛行器套件組之設計與製造」,淡江大學機械與機電工程學系碩士論文,2009年。
[8] 葉星志,「可撓拍翼之三維軌跡與二維流場探索」,淡江大學機械與機電工程學系碩士論文,2012年。
[9] L.J. Yang, F.Y. Hsiao, W.T. Tang, and I.C. Huang, “3D flapping trajectory of a micro-air-vehicle and its application to unsteady flow simulation, ”International Journal of Advanced Robotic Systems, vol.10, paper no.264, 2013.
[10] L.J. Yang, J.C. Liou, H.L. Huang, K.C. Hung, S. Marimuthu, and U. Chandrasekhar, “2D quasi-steady flow investigation of a flexible flapping wing, ” The 9th International Conference on Intelligent Unmanned Systems(ICIUS), Japur, India, Sep. 25-27, 2013.
[11] L.J. Yang, H.L. Huang, J.C. Liou, B. Esakki, and U. Chandrasekhar, “2D quasi-steady flow simulation of an actual flapping wing, ”Journal of Unmanned Systems Technology, vol.2, pp.10-16, 2014.
[12] Y. Sun, S.N. Fry, D.P. Potasek, D.J. Bell, and B.J. Nelson, “ Characterizing fruit fly flight behavior using a micro force sensor with a new comb-drive configuration, ” Journal of Micro electro mechanical Systems, vol.14, Issue 1, pp. 4-11, February 2005.
[13] M. Sun and J. Tang, “ Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion, ” Journal of Experimental Biology, vol. 205, Issue 1, pp. 55-70, 2002.
[14] J.H. Wu and M. Sun, “Unsteady aerodynamic forces of a flapping wing, ” Journal of Experimental Biology, vol. 207, Issue 7, pp. 1137-1150, 2004.
[15] L. Zeng, Q. Hao, and K. Kawachi, “A scanning projected line method for measuring a beating bumblebee wing, ” Optics Communications, vol. 183, Issue 1-4, pp. 37-43, 2000.
[16] M.H. Dickinson, F.-O. Lehmann, and S.P. Sane, “Wing rotation and the aerodynamic basis of insect right, ” Science, vol. 284, Issue 5422, pp. 1954-1960, 18 June 1999.
[17] 何仁揚,「拍撲式微飛行器之製作及其現地升力之量測研究」,淡江大學機械與機電工程學系碩士論文,2005年。
[18] Y. Coudera, J.M. Chomazb, and M. Rabauda, “On the hydrodynamics of soap films”, Physica D :Nonlinear Phenomena, vol. 37, Issue 1, pp. 384-405, July 1989.
[19] J. Zhang, S. Childress, A. Libchaber, and M. Shelley, “Flexible laments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind, ”Nature, vol. 408, pp. 835-839, 2000.
[20] Z. J. Wang, “Two dimensional mechanism for insect hovering, ” Physical Review Letters, vol. 85, no.10, pp. 2216-2219, 2000.
[21] Z. J. Wang, “Vortex shedding and frequency selection in flapping flight, ”Journal of Fluid Mechanics, vol. 410, pp. 323-341, 2000.
[22] M.A. Rutgers, X.L. Wu, and W.B. Daniel, “Conducting fluid dynamics experiments with vertically falling soap films, ” Rev. Sci. Instrum., vol. 72, pp. 3025–3037, 2001.
[23]“The 50 Best Inventions, ”Time, pp. 80, November, 2011.
[24] T.N. Pornsin Sirirak, Parylene MEMS Technology for Adaptive Flow Control of Flapping Flight, California Institute of Technology, Ph. D. Dissertation, 2002.
[25] 施宏明,「拍撲式微飛行器之製作及其現地升力量測研究」,淡江大學機械與機電工程學系碩士論文,2007年。
[26] L. J. Yang, C. K. Hsu, J. Y. Ho, and C. K. Feng, “Flapping wings with PVDF sensors to modify the aerodynamics forces of a micro aerial vehicle,” Sensors and Actuators A, vol. 139, pp. 95-103, 2007.
[27] L. J. Yang, C. K. Feng, C. K. Hsu, J. Y. Ho, G. H. Feng, H. M. Shih and Y. K. Sheng, “A flapping MAV with PVDF-parylene composite skin,” Journal of Aeronautics, Astronautics and Aviation, Series A, vol. 39, pp. 195-202, 2007.
[28] T. Y. Hubel and C. Tropea, “The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds, ”The Journal of Experimental Biology, vol. 213, pp. 1930-1939, 2010.
[29] R. Knoller, “Die Gesetze Des Luftwiderstands”, Flug and Motor-technik (Wien), vol. 3, no. 21, pp. 1-7, 1909.(德文)
[30] T. Von Karman and J.M., Burgers,“General Aerodynamic Theory Perfect Fluids,” Aerodynamic Theory, Division E, vol. II. W.F. Durand, Ed. pp.308, 1943.
[31] 廖俊瑋,「翼展10cm之拍翼式微飛行器研製」,淡江大學機械與機電工程學系碩士論文,2009年。
[32] 陳羿韶,「拍翼式飛行器之微小化改良」,淡江大學機械與機電工程學系碩士論文,2011年。
[33] H. Liu, C. P. Ellington, K. Kawachi, C. Van den Berg, and A. P. Willmott, “A computational fluid dynamic study of hawkmoth hovering, ” The Journal of Experimental Biology, vol. 201, pp. 461-477, 1998.
[34] Theodore von Karman, Aerodynamics., McGraw-Hill Book Company, 1963. 
[35] 雙語辭彙、學術名詞暨辭書資訊網       http://terms.naer.edu.tw/,國家教育研究院,2014年。
[36] Jan Roskam, Airplane Flight Dynamics and Automatic Flight Controls, Roskam Aviation and Engineering corporation, 1979.
[37] B. Heinemann and R. K. Sinnott, Coulson and Richardson's Chemical Engineering Volume 6: Chemical Engineering Design, 4th, page 473, Elsevier, 2010.
[38] D. F. Young, B. R. Munson, T. H. Okiishi, W. W. Huebsch, A Brief Introduction to Fluid Mechanics, 5th, Wiley, 2010.
[39] L.J. Yang, C.Y. Kao, and C.K. Huang, Development of flapping ornithopters by precision injection molding, Applied Mechanics and Materials, vol. 163, pp. 125-132, 2012.
[40] 陳泓嘉,「微飛行器風洞測試訊號截取半自動化之研究」,淡江大學機械與機電工程學系碩士論文,2010年。
[41] SURFER軟體介紹  
    http://www.geomem.com/products/6/surfer.html
[42] 黃奕澄,「微飛行器拍翼軌跡即時測定之研究」,淡江大學機械與機電工程學系碩士論文,2008年。
[43] L. J. Yang, “The micro-air-vehicle Golden Snitch and its figure-of-8 flapping,” Journal of Applied Science and Engineering, vol.15, no. 3, pp. 197-212, 2012. 
[44] 陳信良、吳亭緯、卓宛昀、張妤,「讓泡泡飛一會兒-皂膜色彩與厚度關係之探討」,私立薇閣高中小論文,2011年。
[45] 陳鴻興,「顯示器色彩工程Part2色度學在顯示器上的應用」,世新大學資訊管理學系演講,2005年。
[46] “How to compute a streamfunction,”       http://www-pord.ucsd.edu/~matlab/stream.htm, 1994.
[47] 朱宗申、朱国富,「有限区域风速场求解流函数和速度势场的有效方案」,中国气象科学研究院应用气象学报,2008年。
[48] “Doctor Weilun's Web Memo,” 
     http://drweilun.blogspot.tw/,June,2010.
[49] 黃柏銜,蔡宗翰,魏禕良,「昆蟲拍翅的氣流研究」,台灣國際科展物理與太空科學組,2013年。
[50] C.Y. Wen and W.S. Kuo, “An experimental study on two-dimensional grid turbulence, ” Journal of Science and Engineering Technology, vol. 2, no. 3, pp. 85-93, 2006.


[51] 壓電材料之介紹                                 http://www.twwiki.com/, September, 2013.
[52] Phantom V4.2  http://www.highspeedimaging.com/pdf/TroubleShooter%20Datasheet.pdf, 2013.
[53] Kwon3D                                  http://www.kwon3d.com/, January, 2010.
[54] Accuratus            http://www.accuratus.com.tw/index.php?prodid=832, 2014.
[55] ANSYS                                http://www.ansys.com/, August, 2014.
[56] PHANTOM型號表     http://www.highspeedcameras.com.cn/images/Miro.pdf, 2013.
[57] 劉家誠,「可撓拍翼之二維準定常流場分析」,淡江大學機械與機電工程學系碩士論文,2012年。
[58]壓電薄膜材料性質表       http://www.meas-spec.com/default.aspx, 2014.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信