§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1209201310070900
DOI 10.6846/TKU.2013.00340
論文名稱(中文) 串聯微米球之光子奈米噴流傳播模態的數值分析與實驗
論文名稱(英文) Numerical analysis and experiment of photonic nanojet induced modes in chains of microspheres
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 王柏凱
研究生(英文) Po-Kai Wang
學號 699370309
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-07-26
論文頁數 57頁
口試委員 指導教授 - 劉承揚
委員 - 張天立
委員 - 孫崇訓
關鍵字(中) 光子奈米噴流
微米圓球
傳輸模態
關鍵字(英) optical anojet
transmission
microspheres
第三語言關鍵字
學科別分類
中文摘要
微米圓球呈線性排列時,所引起的光子奈米噴流傳遞現象,稱之為奈米噴流傳播模態。本論文使用時域有限差分法建立串聯微米圓球的數值分析模型,微米圓球直徑分別為1.9μm、5μm、10.1μm,折射率為1.59,在模擬結果中,觀察光子奈米噴流傳播模態與傳播的行為,並計算其衰減率、散射以及傳播損失。本論文建立了一套量測光子奈米噴流的量測系統,試片準備我們使用直徑為3μm、5μm、8μm以及126μm的聚苯乙烯微米圓球,並且利用半導體製程製作可讓微米圓球自主性排列組合的基板,利用物鏡將雷射光束聚焦導入光纖內,再經由光纖導入呈線性串聯的聚苯乙烯微米圓球上,最後利用光纖將光的傳遞效果導入光譜儀中,進而取得光譜數據,並與其模擬結果互相驗證,此研究結果將有助於解決高科技產業中奈米等級的影像量測與傳輸問題。
英文摘要
In this paper, we observed the optical transport phenomena of linear arrays of polystyrene spheres that can be called the nanojet-induced modes. We established a numerical mode of linear arrays of polystyrene spheres by using the FDTD with refractive index 1.59 and diameters 1.9μm, 5μm and 10.1μm. In simulation, we have calculated the transmission, reflection and propagation loss of the nanojet-induced modes. We developed an efficient measurements system for nanojet-induced modes. The 3μm, 5μm, 8μm and 126μm polystyrene spheres are deposited on a patterned substrate by using a self-assembly of polystyrene spheres. The laser beam is focused into the optical fiber by using an objective lens. Another optical fiber is used to collect the light propagation and connect with a spectrometer. The experimental results are compared with the simulation results. The results in this study can be used to solve the image measurements and transmission problems in the high-tech industries.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	V
表目錄	VII
第1章 緒論	1
1.1 前言	1
1.2 文獻回顧	1
1.3 研究動機與目標	3
第2章 數值分析	4
2.1 時域有限差分法	4
2.1.1 馬克斯威爾方程式	5
2.1.2 FDTD	6
2.2 散射理論	7
2.2.1 散射	7
2.2.2 米氏散射(Mie Scattering)	7
第3章 數值模擬	8
3.1 模型建立	8
3.2 模擬結果	10
3.2.1 入射波長範圍的傳輸效率	10
3.2.2 折射率範圍的傳播效率	12
3.2.3 衰減	14
3.2.4 散射	20
3.2.5 能量流	22
第4章 量測系統	27
4.1 電荷耦合元件(CCD)	29
4.2 紅光雷射(HENE LASER SYSTEM)	31
4.3 光纖夾持系統	32
4.3.1 物鏡及光纖夾持平台	33
4.4 光纖	35
4.5 金相顯微鏡系統	38
4.5.1 金相顯微鏡	38
4.5.2 壓電控制器	39
4.6 物鏡	40
4.7 光譜儀	42
第5章 實驗數據	44
5.1 實驗製程	44
5.1.1 光罩設計	44
5.1.2 晶圓製程	45
5.2 實驗流程	48
5.2.1 量測數據	48
5.3 數據分析	52
第6章 結論與未來展望	53
參考文獻	55

圖目錄
圖 2.1 (A)二維X-Y平面的YEE晶格、(B)三維YEE晶格	4
圖 3.1 串聯微米圓球數值計算模型	9
圖 3.2 微米圓球組合排列的結構	9
圖 3.3 N=10串聯微米圓球的傳輸效率	11
圖 3.4 N=20串聯微米圓球的傳輸效率	11
圖 3.5 N=10串聯微米圓球折射率的傳輸效率	13
圖 3.6 N=20串聯微米圓球折射率的傳輸效率	13
圖 3.7 N=10入射波長範圍的高傳播模態衰減率	15
圖 3.8 N=10入射波長範圍的低傳播模態衰減率	15
圖 3.9 N=20入射波長範圍的高傳播模態衰減率	16
圖 3.10 N=20入射波長範圍的低傳播模態衰減率	16
圖 3.11 N=10折射率範圍的高傳播模態衰減率	18
圖 3.12 N=10折射率範圍的低傳播模態衰減率	18
圖 3.13 N=20折射率範圍的高傳播模態衰減率	19
圖 3.14 N=20折射率範圍的低傳播模態衰減率	19
圖 3.15 N=10串聯微米圓球入射波長500~600NM的散射損失	20
圖 3.16 N=20串聯微米圓球入射波長500~600NM的散射損失	21
圖 3.17 N=10串聯微米圓球的折射率1.5至1.8的散射損失	21
圖 3.18 N=20串聯微米圓球的折射率1.5至1.8的散射損失	22
圖 3.19 N=10串聯微米圓球的高傳播模態能量流	23
圖 3.20 N=10串聯微米圓球的低傳播模態能量流	23
圖 3.21 N=20串聯微米圓球的高傳播模態能量流	24
圖 3.22 N=20串聯微米圓球的低傳播模態能量流	24
圖 3.23 N=10串聯微米圓球的折射率高模態能量流	25
圖 3.24 N=10串聯微米圓球的折射率低模態能量流	25
圖 3.25 N=20串聯微米圓球的折射率高模態能量流	26
圖 3.26 N=20串聯微米圓球的折射率低模態能量流	26
圖 4.1 光學系統架構簡易圖	27
圖 4.2 光學系統架構圖	28
圖 4.3 光纖夾持系統	28
圖 4.4 (A)SV-C393-2NU CCD、(B)MLX205	29
圖 4.5 HENE雷射(25-STP-912-249)	31
圖 4.6 光纖微調平台	33
圖 4.7 物鏡及光纖夾持平台	34
圖 4.8 波導在光纖內傳遞示意	35
圖 4.9 SMA FIBER PATCH CABLE	36
圖 4.10 圖光纖剝其外殼示意圖	37
圖 4.11 光纖平整截斷面	37
圖 4.12 光纖不平整截斷面	37
圖 4.13 金相顯微鏡(MICROTECH LX500-M)	39
圖 4.14 壓電控制器(SFS-OBL-1)	40
圖 4.15 光譜儀USB 650 RED TIDE SPECTROMETER	42
圖 5.1 光罩設計圖	45
圖 5.2 製程步驟流程圖	45
圖 5.3 動態配自旋速度圖	46
圖 5.4 蝕刻完成圖	47
圖 5.5 3ΜM聚苯乙烯微米圓球	49
圖 5.6 5ΜM聚苯乙烯微米圓球	49
圖 5.7 8ΜM聚苯乙烯微米圓球	49
圖 5.8 126ΜM的聚苯乙烯微米圓球,左右兩端為光纖	50
圖 5.9 126ΜM聚苯乙烯微米圓球的光子奈米噴流現象圖	50
圖 5.10 126ΜM聚苯乙烯微米圓球的光子奈米噴流現象比較圖	51
圖 5.11 紅光雷射初始光譜強度圖	52
圖 5.12 串聯的126ΜM微米圓球光子奈米噴流傳播效果之光譜強度圖	52

表目錄
表 3.1 入射波長範圍500NM~600NM的高、低傳播模態衰減表	14
表 3.2 折射率範圍1.5至1.8的高、低傳播模態衰減表	17
表 4.1 SV-C393-2NU CCD 規格表	30
表 4.2 MLX205 規格表	30
表 4.3 SV-C393-2NU CCD與MLX205 特點比較	30
表 4.4 HENE雷射(25-STP-912-249) 規格表	32
表 4.5 微調平台TSD-251S規格表	33
表 4.6 微調平台TSD-253規格表	34
表 4.7 SAM接頭光纖規格表	36
表 4.8 ∞PLL5X、∞PLL10X、∞PLL100X物鏡規格表	41
表 4.9 光譜儀規格表	43
參考文獻
[1]	Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Optics express, vol. 12, no. 7, pp. 1214-1220, 2004.
[2]	A. Tavlove, and S. C. Hagness, “Computational electrodynamics: the finite-difference time-domain method,” Artech House, Norwood, MA, vol. 2062, 1995.
[3]	K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” Antennas and Propagation, IEEE Transactions on, vol. 14, no. 3, pp. 302-307, 1966.
[4]	M. Qiu, and S. He, “Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions,” Physical Review B, vol. 61, no. 19, pp. 12871, 2000.
[5]	K. Sakoda, Optical properties of photonic crystals: Springer, 2005.
[6]	J. D. Joannopoulos, R. D. Meade, J. N. Winn et al., Photonic crystals: molding the flow of light: Princeton University Press Princeton, 1996.
[7]	A. Yariv, Y. Xu, R. K. Lee et al., “Coupled-resonator optical waveguide: a proposal and analysis,” Optics letters, vol. 24, no. 11, pp. 711-713, 1999.
[8]	Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Optics letters, vol. 31, no. 3, pp. 389-391, 2006.
[9]	A. V. Kanaev, V. N. Astratov, and W. Cai, “Optical coupling at a distance between detuned spherical cavities,” Applied physics letters, vol. 88, no. 11, pp. 111111-111111-3, 2006.
[10]	S. Deng, W. Cai, and V. N. Astratov, “Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides,” Opt. Express, vol. 12, no. 26, pp. 6468-6480, 2004.
[11]	S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Optics letters, vol. 30, no. 19, pp. 2641-2643, 2005.
[12]	A. Itagi, and W. Challener, “Optics of photonic nanojets,” JOSA A, vol. 22, no. 12, pp. 2847-2858, 2005.
[13]	T. Mukaiyama, K. Takeda, H. Miyazaki et al., “Tight-binding photonic molecule modes of resonant bispheres,” Physical review letters, vol. 82, no. 23, pp. 4623, 1999.
[14]	Y. Hara, T. Mukaiyama, K. Takeda et al., “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Physical review letters, vol. 94, no. 20, pp. 203905, 2005.
[15]	B. M. Moller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Optics letters, vol. 30, no. 16, pp. 2116-2118, 2005.
[16]	S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express, vol. 14, no. 20, pp. 9460-9466, 2006.
[17]	B. Terris, H. Mamin, D. Rugar et al., “Near‐field optical data storage using a solid immersion lens,” Applied physics letters, vol. 65, no. 4, pp. 388-390, 1994.
[18]	T. Fujimura, K. Edamatsu, T. Itoh et al., “Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes,” Optics letters, vol. 22, no. 8, pp. 489-491, 1997.
[19]	J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Philosophical Transactions of the Royal Society of London, vol. 155, pp. 459-512, 1865.
[20]	A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” Electromagnetic Compatibility, IEEE Transactions on, no. 3, pp. 191-202, 1980.
[21]	J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185-200, 1994.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信