淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1208202009331400
中文論文名稱 製備聚氧化乙烯高分子固態電解液之結構與性質研究
英文論文名稱 Studies on the structures and properties of polyethylene oxide polymer solid electrolytes
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 莫詠皓
研究生英文姓名 Yong-Hao Mo
學號 606400611
學位類別 碩士
語文別 中文
口試日期 2020-07-07
論文頁數 86頁
口試委員 指導教授-賴偉淇
委員-童世煌
委員-陳信龍
中文關鍵字 固態電解質  溶劑揮發  靜電紡絲  無機奈米填料 
英文關鍵字 Solid electrolytes  Solution casting  Electrospinning  Inorganic nanoparticles 
學科別分類
中文摘要 固態電解液面臨最大的問題為室溫下的離子傳導率低,因此本研究著重在如何提高室溫下導電度。本研究提出一種新型固態電解液製備方法"靜電紡絲法"來製備高分子固態電解液。本研究分為兩部份,第一部份以聚氧化乙烯(Poly(ethylene Oxide),PEO)與過氯酸鋰(Lithium perchlorate,LiClO4)以不同莫耳比例進行摻合後分別使用溶液鑄膜法和靜電紡絲法製備形成高分子固態電解液。由掃描式電子顯微鏡(SEM)觀察表面形態得知在溶液鑄膜法中隨著LiClO4的添加量的增加,平滑結構的產生與PEO結晶度的降低有關,而在靜電紡絲法中纖維結構的平均直徑約在200-600nm之間隨著鹽類添加量的增加而增加。在傅立葉紅外線轉紅外線光譜儀(FTIR-ATR)分析中得知LiClO4上的鋰離子(Li+)能與聚氧化乙烯醚基上的氧原子形成配位鍵,由熱差式掃描熱卡計(DSC)結果得知結晶度和熔點會隨著LiClO4添加量的增加而降低。由電化學阻抗圖譜(EIS)分析可得知導電度導電度隨著LiClO4添加量的增加而上升,透過溶液鑄膜法最高導電度值為5.16×10-7S/cm,靜電紡絲法則為3.94×10-5 S/cm。
第二部份為透過靜電紡絲法加入SiO2填料製備複合高分子固態電解液,由 (SEM)觀察表面形態得知纖維平均直徑隨著二氧化矽含量的添加而減少,由(DSC)結果得知結晶度和熔點會隨著SiO2添加量的增加而降低,由(EIS)分析可得知導電度隨著添加量增加而上升在7wt%時達到4.67×10-4S/cm。由線性掃描伏安(LSV)得知加入二氧化矽填料擁有較佳的化學穩定性。由溫度對導電度的變化得知三個系統都符合Arrhenius方程式。
英文摘要 The biggest problem facing solid electrolytes is the low ionic conductivity at room temperature, so this study focuses on how to increase the conductivity at room temperature. In this study, a new solid electrolyte preparation method "electrospinning method" is proposed to prepare polymer solid electrolyte. This study is divided into two parts. In the first part, poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) are mixed in different molar ratios to prepare polymer solid Electrolyte by using Solution casting and electrospinning. Observation of the surface morphology from a scanning electron microscope (SEM) shows that in the solvent volatilization method, as the amount of LiClO4 added increases, the morphology of the smooth structure is related to the decrease in the crystallinity of PEO, while the average fiber structure in the electrospinning method The diameter increases between 200-600nm as the amount of salt added increases. In the analysis of Fourier Infrared to Infrared Spectrometer (FTIR-ATR), it is known that the lithium ion (Li+) on LiClO4 can form a coordination bond with the oxygen atom on the polyoxyethylene ether group, According to the results of thermal differential scanning calorimeter (DSC), the crystallinity and melting point will decrease with the increase of the amount of LiClO4. From the analysis of electrochemical impedance spectroscopy (EIS), the conductivity will be known as the conductivity of LiClO4. Increase while increasing, the highest conductivity quality through the solution casting is 5.16×10-7S/cm,and the electrospinning is 3.94×10-5 S/cm.
The second part is to prepare a composite solid electrolyte by adding SiO2 filler through electrospinning. Observing the surface morphology by (SEM), it is known that the average fiber diameter decreases with the addition of silica content. According to the results of thermal (DSC), the crystallinity and melting point will decrease with the increase of SiO2 addition. From the (EIS) analysis, it can be known that the conductivity increases with the addition of the amount of 7wt% to 4.67×10-4S/cm. It is known from linear scanning voltammetry (LSV) that the addition of silica filler has better chemical stability. From the change of temperature to electrical conductivity, we know that the three systems are in line with the Arrhenius equation.

論文目次 目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 IV
圖目錄 VII
表目錄 X
第一章緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章文獻回顧與理論背景 3
2-1靜電紡絲的發展歷史 3
2-2靜電紡絲的原理與裝置 4
2-3影響靜電紡絲之參數 5
2-3-1溶液參數 5
2-3-2靜電紡絲製程參數 6
2-3-3環境參數 7
2-4鋰離子電池歷史發展 8
2-5鋰離子電池介紹 9
2-6 鋰離子電池原理 10
2-7高分子電解質的介紹 11
2-8高分子電解質的種類 12
2-8-1膠態高分子電解質 12
2-8-2固態高分子電解質 14
2-9以靜電紡絲法製備固態高分子電解質 17
2-9-1以浸泡電解液製備固態電解質 17
2-9-2把鹽類摻入電紡溶劑中製備固態電解質 19
2-10靜電紡絲加入無機填料製備固態電解質 21
第三章實驗 22
3-1實驗藥品 22
3-2實驗儀器 23
3-3實驗流程 25
3-3-1 PEO/ LiClO4溶液鑄膜法固態電解質製備 25
3-3-2 PEO/ LiClO4靜電紡絲法固態電解質製備 25
3-3-3 PEO/ LiClO4/SiO2靜電紡絲法固態電解質製備 26
3-3-4固態高分子電解質電性測試元件製備 27
3-4特性分析 27
3-4-1場放射掃描式電子顯微鏡(Field emission scanning electron microscopy,SEM) 27
3-4-2能量色散x射線光譜(Energy-disoersive X-ray spectroscopy,EDS) 27
3-4-3傅立葉轉換紅外線光譜儀-衰減式全反射(FTIR-ATR) 27
3-4-4微差掃描熱卡計儀(Differential scanning calorimetry,DSC) 27
3-4-5交流阻抗分析測試(Electrocgemistry Impedance Spectroscopy,EIS) 27
3-4-6固態電解質溫度對導電度的變化 28
3-4-7線性循環掃描伏安分析(Linear sweep voltammetry,LSV) 29
第四章結果分析與討論 30
4-1溶液鑄膜法和靜電紡絲法製備固態電解質之性質探討 30
4-1-1固態電解質表面結構與型態 30
4-1-2傅立葉轉換紅外線光譜分析(FTIR-ATR) 45
4-1-3結晶度分析 47
4-1-4導電度量測 51
4-2靜電紡絲法加入二氧化矽填料製備固態電解質之性質探討 55
4-2-1靜電紡絲法加入二氧化矽填料表面結構與型態 55
4-2-2 EDS元素分析探討靜電紡絲纖維其化學成分 62
4-2-3傅立葉轉換紅外線光譜分析(FTIR-ATR) 68
4-2-4靜電紡絲法加入二氧化矽填料固態電解質結晶度分析 69
4-2-5靜電紡絲法加入二氧化矽填料製備固態電解質導電度分析 70
4-2-6固態電解質溫度對導電度的變化 73
4-2-7 線性掃描伏安分析 75
第五章結論 76
參考資料 78

圖目錄
圖 2-1靜電紡絲原理示意圖 4
圖 2-2 PS/DMF系統不同濃度下的纖維表面型態圖 (a)10wt% (b)20wt% (c)30wt% 5
圖 2-3鋰離子電池工作示意圖 10
圖 2-4鋰離子在高分子鏈中傳遞示意圖 12
圖 4-1PEO(4wt%)表面型態圖,放大倍率(a)1K(b)5K 31
圖 4-2PEO(7wt%)表面型態圖,放大倍率(a)1K(b)5K 31
圖 4-3PEO(10wt%)表面型態圖,放大倍率(a)1K(b)5K 32
圖 4-4靜電紡絲法純PEO纖維表面型態圖,放大倍率(a)1K(b)5K(c)10k 35
圖 4-5純PEO平均纖維直徑圖 35
圖 4-6靜電紡絲法PEO:LiClO4=30:1纖維表面型態圖,放大倍率(a)1K (b)5K (c)10k 36
圖 4-7 PEO:LiClO4=30:1平均纖維直徑圖 36
圖 4-8靜電紡絲法PEO:LiClO4=27.5:1纖維表面型態圖,放大倍率(a)1K (b)5K (c)10k 37
圖 4-9 PEO:LiClO4=27.5:1平均纖維直徑圖 37
圖 4-10靜電紡絲法PEO:LiClO4=25:1纖維表面型態圖,放大倍率(a)1K (b)5K (c)10k 38
圖 4-11 PEO:LiClO4=25:1平均纖維直徑圖 38
圖 4-12靜電紡絲法PEO:LiClO4=22.5:1纖維表面型態圖,放大倍率(a)1K (b)5K (c)10k 39
圖 4-13 PEO:LiClO4=22.5:1平均纖維直徑圖 39
圖 4-14靜電紡絲法PEO:LiClO4=20:1纖維表面型態圖,放大倍率(a)1K (b)5K (c)10k 40
圖 4-15 PEO:LiClO4=20:1平均纖維直徑圖 40
圖 4-16靜電紡絲法不同比例LiClO4的平均纖維直徑影響圖 41
圖 4-17溶液鑄膜法純PEO表面型態圖,放大倍率(a)1K(b)5K 43
圖 4-18溶液鑄膜法PEO:LiClO4=30:1表面型態圖,放大倍率(a)1K(b)5K 43
圖 4-19溶液鑄膜法PEO:LiClO4=27.5:1表面型態圖,放大倍率(a)1K (b)5K 43
圖 4-20溶液鑄膜法PEO:LiClO4=25:1表面型態圖,放大倍率(a)1K(b)5K 44
圖 4-21溶液鑄膜法PEO:LiClO4=22.5:1表面型態圖,放大倍率(a)1K(b)5K 44
圖 4-22溶液鑄膜法PEO:LiClO4=20:1表面型態圖,放大倍率(a)1K(b)5K 44
圖 4-23不同方法製備的固態電解質FTIR-ATR圖 46
圖 4-24溶液鑄膜法不同比例LiClO4的DSC溫度掃描圖(1st run Heating) 49
圖 4-25靜電紡絲法不同比例LiClO4的DSC溫度掃描圖(1st run Heating) 50
圖 4-26溶液鑄膜法不同比例LiClO4的固態電解質導電度圖 53
圖 4-27靜電紡絲法不同比例LiClO4的固態電解質導電度圖 54
圖 4-28純SiO2粒子 55
圖 4-29 9wt%SiO2纖維表面型態圖 55
圖 4-30 0wt%SiO2纖維表面型態圖,放大倍率(a)1K(b)5K(c)10k 57
圖 4-31 0wt%SiO2平均纖維直徑圖 57
圖 4-32 3wt%SiO2纖維表面型態圖,放大倍率(a)1K(b)5K(c)10k 58
圖 4-33 3wt%SiO2平均纖維直徑圖 58
圖 4-34 5wt%SiO2纖維表面型態圖,放大倍率(a)1K(b)5K(c)10k 59
圖 4-35 5wt%SiO2平均纖維直徑圖 59
圖 4-36 7wt%SiO2纖維表面型態圖,放大倍率(a)1K(b)5K(c)10k 60
圖 4-37 7wt%SiO2平均纖維直徑圖 60
圖 4-38靜電紡絲法不同含量SiO2的平均纖維直徑影響圖 61
圖 4-39 0wt%SiO2EDS元素分析圖 62
圖 4-40 3wt%SiO2EDS元素分析圖 63
圖 4-41 5wt%SiO2EDS元素分析圖 63
圖 4-42 7wt%SiO2EDS元素分析圖 64
圖 4-43 3wt%SiO2 EDS局部元素分析圖 65
圖 4-44 5wt%SiO2 EDS局部元素分析圖 66
圖 4-45 7wt%SiO2 EDS局部元素分析圖 67
圖 4-46靜電紡絲法不同含量SiO2的FTIR-ATR圖 68
圖 4-47靜電紡絲法不同含量SiO2的DSC溫度掃描圖(1st run Heating) 69
圖 4-48靜電紡絲法不同含量SiO2的固態電解質導電度圖 72
圖 4-49不同方法製備的固態電解質溫度對導電度的變化關係圖 74
圖 4-50靜電紡絲法不同含量SiO2的固態電解質線性掃描電位圖 75


表目錄
表 2-1鋰離子電池電解質的比較 10
表 3-1 PEO/LiClO4溶液鑄膜法固態電解質樣品含量表 25
表 3-2 PEO/ LiClO4靜電紡絲法固態電解質樣品含量表 26
表 3-3 PEO/ LiClO4/SiO2靜電紡絲法固態電解質樣品含量表 26
表 4-1不同濃度PEO/DI water系統靜電紡絲實驗參數表 31
表 4-2不同莫耳比PEO/LiClO4系統靜電紡絲實驗參數表 33
表 4-3 PEO特性吸收峰 45
表 4-4溶液鑄膜法不同比例LiClO4的DSC數據一覽表 49
表 4-5靜電紡絲法不同比例LiClO4的DSC數據一覽表 50
表 4-6溶液鑄膜法不同比例LiClO4的固態電解質數據一覽表 53
表 4-7靜電紡絲法不同比例LiClO4的固態電解質數據一覽表 54
表 4-8不同含量SiO2的靜電紡絲實驗參數表 56
表 4-9矽氧特性吸收峰 68
表 4-10靜電紡絲法不同含量SiO2的DSC數據一覽表 70
表 4-11靜電紡絲法不同含量SiO2的固態電解質數據一覽表 72

參考文獻 [1] Y.Nishi," Lithium ion secondary batteries; past 10 years and the future". Journal of Power Sources, 2001, 101-106.
[2] S.Reddy,C.V.Wu,G.P.Zhao,C.X.Zhu,Q.Y.Chen,andR.R.Kalluru,"Characterization of SBA-15 doped (PEO+LiClO4) polymer electrolytes for electrochemical applications," Journal of Non-Crystalline Solids, 2007, 440–445.
[3] L .Wang, W.Yang, J.Wang ,and D.G.Evans,"New nanocomposite polymer electrolyte comprising nanosized ZnAl2O4 with a mesopore network and PEO-LiClO4," Solid State Ionics, 2009, 392–397
[4] F.Croce, G.B.Appetecchi, L.Persi, and B.Scrosati, " Nanocomposite polymer electrolytes for lithium batteries,"1998, 394(6692), 456–45.
[5] W.Gilbert,P.Short, "On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth,"1628.
[6] L,Rayleigh,"XX. On the equilibrium of liquid conducting masses charged with electricity,"The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1882 , 184-186.
[7] J.F.Cooley, "Apparatus for electrically dispersing fluids,"1902.
[8] J.Zeleny,"The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces," Physical Review, 1914 , 69–91.
[9] A.Formhals, "Process and apparatus for preparing artificial threads,"1934.
[10] G.I.Taylor,"Disintegration of Water Drops in an Electric Field,"Physical and Engineering Sciences,1964,383–397.
[11] G.I.Taylor, "The Force Exerted by an Electric Field on a Long Cylindrical Conductor,"Physical and Engineering Sciences, 1966, 145–158.
[12] G.I.Taylor,"Electrically Driven Jets," Physical and Engineering Sciences,1969, 453–475.
[13] W. Simm, K. Gosling, R. Bonart, von Falkai B, GB ,1972 ;1346231.
[14] D. H. Reneker, I. Chun.. "Nanometre diameter fibres of polymer, produced by electrospinning,"Nanotechnology 7,1996,216.
[15] D.Li,Y.Xia, "Electrospinning of Nanofibers: Reinventing the Wheel,"Advanced Materials, 2004, 1151-1170.
[16] T.Jarusuwannapoom, W.Hongrojjanawiwat, S.Jitjaicham, L.Wannatong, M.Nithitanakul, C.Pattamaprom, P. Supaphol, "Effect of solvents on electro-spinnability of polystyrene solutions and Morphological appearance of resulting electrospun polystyrene fibers," European Polymer Journal,2005,41(3), 409-421.
[17] H.Fong,I.Chun, D.Reneker, "Beaded nanofibers formed during electrospinning," Polymer, 1999, 40(16), 4585-4592.
[18] T.Uyar,F.Besenbacher, " Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity,"Polymer, 2008, 49(24), 5336-5343.
[19] R.Jalili,S.A.Hosseini,M.Morshed, "The Effects of Operating Parameters on the Morphology of Electrospun Polyacrilonitrile,"Iranian Polymer Journal ,2005.14 (12), 2005, 1074-1081.
[20] M.Demir,I.Yilgor,E.Yilgor,and B.Erman,. "Electrospinning of polyurethane fibers," Polymer, 2002,43(11), 3303-3309.
[21] S.De Vrieze, T.Van Camp, A.Nelvig, B.Hagstrm, P. Westbroek, and K.De Clerck, "The effect of temperature and humidity on electrospinning,"Journal of Materials Science, 2008,44(5), 1357-136.
[22] M. S.Whittingham," Electrical Energy Storage and Intercalation Chemistry,"Science, 1976,192(4244), 1126–1127.
[23] K.Mizushima,P. C.Jones, P. J .Wiseman, and J. B. Goodenough, 1980.
[24] M.Armand,"Polymer solid electrolytes - an overview,"Solid State Ionics, 1983,9-10, 745–754.
[25] M.Armand,J.M.Tarascon,"Building better batteries,"Nature,2008,652-657.
[26] Y. S.Meng,M.E.Arroyo-deDompablo,"First principles computational materials design for energy storage materials in lithium ion batteries,"Energy & Environmental Science,2009,2(6), 589.
[27] D.E.Fenton, J.M.Parker and P.V.Wright,Polymer,1973,589.
[28] P. V. Wright,J.Br.Polym,1975, 7, 319–327.
[29] C.Berthier, W.Gorecki, M. Minier, M. B. Armand, J.M.Chabagno, and P. Rigaud,. "Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts," Solid State Ionics, 1983, 11(1), 91–95.
[30] R.Khurana, J.L.Schaefer, L. A.Archer, and G. W. Coates, "Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries,"Journal of the American Chemical Society, 2014,136(20), 7395–7402.
[31] X.Qian, N. Gu, Z.Cheng, X.Yang,E.Wang, and S.Dong, " Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte," Materials Chemistry and Physics, 2002,74(1), 98–103.
[32] S.Das, A.Ghosh, "Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate,"AIP Advances, 2015,5(2), -27-125.
[33] S.Klongkan, J.Pumchusak, "Effects of Nano Alumina and Plasticizers on Morphology, Ionic Conductivity, Thermal and Mechanical Properties of PEO-LiCF3SO3 Solid Polymer Electrolyte,"Electrochimica Acta, 2015,161, 171-176.
[34] Y.Kumar, S. A.Hashmi, and G. P.Pandey, "Lithium ion transport and ion--polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid,"Solid State Ionics, 2011,201 (1), 73-80.
[35] L.Fan, "Effect of modified SiO2 on the properties of PEO-based polymer electrolytes,"Solid State Ionics, 2003,164(1-2), 81-86.
[36] F.Croce, R.Curini, A.Martinelli, L.Persi, F.Ronci, B. Scrosati, and R.Caminiti, "Physical and Chemical Properties of Nanocomposite Polymer Electrolytes," The Journal of Physical Chemistry B, 1999,103(48), 10632-10638.
[37] J.Cho, Y.C.Jung, Y. S.Lee, and D.W. Kim, "High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries," Journal of Membrane Science, 2017, 535, 151-157.
[38] E.M.Masoud, A.A.El-Bellihi, W. A. Bayoumy, and M. A.Mousa, "Organic-inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties,"Journal of Alloys and Compounds, 2013,575, 223-228.
[39] S. N.Banitaba, D. Semnani, E.Heydari-Soureshjani, B. Rezaei, and A. A.Ensafi, "Electrospun Polyethylene Oxide-Based Membranes Incorporated with Silicon Dioxide, Aluminum Oxide and Clay Nanoparticles as Flexible Solvent-Free Electrolytes for Lithium-Ion Batteries,2019.
[40] S. N.Banitaba, D.Semnani, B.Rezaie, and A. A. Ensafi, " Morphology, electrochemical and mechanical properties of polyethylene oxide-based nanofibrous electrolytes applicable in lithium ion batteries," Polymer International, 2019.
[41] Q.Wang, W.L.Song, L.Wang, Y.Song, Q.Shi, and L.Z. Fan,. "Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries,"Electrochimica Acta, 2014,132, 538-544.
[42] P.Raghavan, X.Zhao, C.Shin, D.H.Baek, J.W.Choi, J.Manuel, C.Nah, "Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries, "Journal of Power Sources, 2010,195(18), 6088-6094.
[43] P.Raghavan, X.Zhao , J.K.Kim, J. Manuel, G. S.Chauhan, J.H. Ahn, and C.Nah, "Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers," Electrochimica Acta, 2008,54(2), 228-23.
[44] C.Li, B.Qin, Y.Zhang, A.Varzi, S.Passerini, J.Wang, H.Cheng, "Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries," Advanced Energy Materials, 2019.
[45] K. M.Freitag, H.Kirchhain, L.Wallen, and T. Nilges, "Enhancement of Li Ion Conductivity by Electrospun Polymer Fibers and Direct Fabrication of Solvent-Free Separator Membranes for Li Ion Batteries," Inorganic Chemistry, 2017, 56(4), 2100-210.
[46] Q.Xiao, Z.Li, D.Gao,and H. Zhang, "A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery,"Journal of Membrane Science, 2009,326 (2), 260 -264.
[47] S.N.Banitaba, D.Semnani, E.Heydari-Soureshjani, B.Rezaei, and A.A .Ensafi, "The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries," Solid State Ionics, 2020,347.
[48] Z.Xu, T.Yang, X. Chu, H.Su, Z.Wang, N.Chen, W.Yang, "Strong Lewis Acid-base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly (ethylene oxide)SiO2 Electrolytes for High Rate-capability Li-metal Battery,"ACS Applied Materials & Interface, 2020.
[49] S.N.Banitaba, D.Semnani, A. Fakhrali, S.V.Ebadi, E.Heydari-Soureshjani, B.Rezaei, amd A.A. Ensafi, "Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application. Ionics,"2020.
[50] J.K.Kim, G.Cheruvally, X. Li, J.H.Ahn, K.W. Kim, and H.J. Ahn, "Preparation and electrochemical characterization Of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries," Journal of Power Sources, 2008,178(2), 815–820.
[51] Y.S.Lee, Y.B. Jeong, and D.W.Kim, "Cycling performance of lithium-ion batteries assembled with a hybrid composite membrane prepared by an electrospinning method," Journal of Power Sources, 2010,195(18), 6197-6201.
[52] L.Hu, Z.Tang, and Z. Zhang, " New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4". Journal of Power Sources, 2007,166(1), 226–232.
[53] P.Chu, "Sm2O3 composite PEO solid polymer electrolyte,"Journal of Power Sources, 2003,115(2), 288–294.
[54] K.Arayanarakul, N.Choktaweesap, Aht-ong Duangdao, C.Meechaisue,P. Supaphol, "Effects of Poly(ethylene glycol), Inorganic Salt, Sodium Dodecyl Sulfate, and Solvent System on Electrospinning of Poly(ethylene oxide)," Macromolecular Materials and Engineering, 2006,291(6), 581-591.
[55] F.Yalcinkaya, B.Yalcinkaya, and O. Jirsak, "Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions,"Journal of Nanomaterials, 2015, 1-12.
[56] H.R.Jung, D.H.Ju , W.J. Lee , X.Zhang, and R.Kotek, "Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes,"Electrochimica Acta, 2009,54(13), 3630–3637.
[57] G.Socrates, "Infrared and Raman characteristic group frequencies: tables and charts," John Wiley & Sons,2004.
[58] J.W.Zha, N.Huang, K.Q.He, Z.M.Dang, C.Y Shi, and R.K. Li, "Electrospun poly (ethylene oxide) nanofibrous composites with enhanced ionic conductivity as flexible solid polymer electrolytes," 2017, 2 (1), 25–31.
[59] E.M.Masoud, A.A.El-Bellihi, W.A. Bayoumy, and M.A Mousa, "Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO--LiClO4 composite,"Materials Research Bulletin, 2013,48 (3) , 1148—1154.
[60] L.Fan, Z.Dang, G.Wei, C.W.Nan,and M. Li, "Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes,"Materials Science and Engineering: B, 2003,99(1-3), 340-343.
[61] Y.Shen, "Porous PVDF with LiClO4 complex as solid and wet polymer electrolyte,"Solid State Ionics,2004, 175(1-4), 747–750.
[62] H.Nithya, S.Selvasekarapandian, D.Arun Kumar, A.Sakunthala, M. Hema , P.Christopherselvin, C. Sanjeeviraja, "Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO)," Materials Chemistry and Physics, 2011,126(1-2), 404-408.
[63] G.Appetecchi, F.Croce,L.Persi, F. Ronci, and B.Scrosati, "Transport and interfacial properties of composite polymer electrolytes,".Electrochimica Acta, 2000,45(8-9), 1481-1490.
[64] A.Abdullah, S. Z.Abdullah, A. M Ali, T.Winie, M. Z. A.Yahya, and R. H. Y. Subban, "Electrical properties of PEO-LiCF3SO3-SiO2 nanocomposite polymer electrolytes," Materials Research Innovations, 2009,13(3), 255-258.
[65] J.O.Kweon, S.T.Noh, "Thermal, thermomechanical, and electrochemical characterization of the organic-inorganic hybrids poly (ethylene oxide) (PEO) -silica and PEO-silica-LiClO4,"Journal of Applied Polymer Science,2001, 81 (10), 2471-2479.
[66] A. J.Nagajothi, R. Kannan, and S.Rajashabala, "Lithium ion conduction in plasticizer based composite gel polymer electrolytes with the addition of SiO2," Materials Research Innovations, 2017,22 (4), 226-230.
[67] Y.J.Kim, C. H. Ahn, M. B.Lee, and M.S. Choi, "Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte,"Materials Chemistry and Physics, 2011,127(1-2), 137–142.
[68] S. S.Zhang, "A review on the separators of liquid electrolyte Li-ion batteries,"Journal of Power Sources, 2007,164(1), 351-364.
[69] C.Pan, J.Gao, Q.Zhang, Q.Feng, and M.Chao, "Preparation and properties of PEO/LiClO4/KH560-SiO2 composite polymer electrolyte by sol-gel composite-in-situ method,"Journal of Central South University of Technology, 2008,15(3), 295-300.
[70] S. N.Banitaba, D.Semnani,E.Heydari-Soureshjani, B. Rezaei, and A. A.Ensafi, "Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries,"Materials Research,2019.
[71] S. N.Banitaba, D. Semnani, B.Rezaie,and A. A.Ensafi, "Morphology, electrochemical and mechanical properties of polyethylene oxide-based nanofibrous electrolytes applicable in lithium ion batteries," Polymer International,2019.
[72] B.Scrosati, F.Croce, and L. Persi, "Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes," Journal of The Electrochemical Society,2000, 147(5), 1718.
[73] P. A. R.Jayathilaka, M. A. K.Dissanayake, I.Albinsson, and B.E.Mellander," Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system," Electrochimica Acta,2002, 47(20), 3257–3268.
[74] M.Marcinek, A.Bac, P.Lipka, A.Zalewska, G.Żukowska, R.Borkowska, and W.Wieczorek, "Effect of Filler Surface Group on Ionic Interactions in PEG−LiClO4−Al2O3Composite Polyether Electrolytes," The Journal of Physical Chemistry B, 2000,104(47), 11088–11093.
[75] W.Pu,X.He,L.Wang, C.Jiang, and C.Wan, "Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion," Journal of Membrane Science, 2006,272(1-2), 11–14.
[76] J.Xi , X.Qiu, J.Li, X.Tang, W.Zhu, and L. Chen, "PVDF–PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity," Journal of Power Sources, 2006,157(1), 501–506.
[77] Z.Li, G. SU, X. WANG, and D. GAO, "Micro-porous P(VDF-HFP)-based polymer electrolyte filled with AlO nanoparticles,"Solid State Ionics, 2005,176(23-24), 1903–1908.
[78] R.Miao, B.Liu, Z. Zhu, Y.Liu, J.Li, X.Wang, and Q.Li,. "PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries," Journal of Power Sources, 2008 ,184(2), 420–426.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2025-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2025-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信