§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1208201815534300
DOI 10.6846/TKU.2018.00332
論文名稱(中文) 塑膠熔融體暫態剪切黏度的流變學理論模擬
論文名稱(英文) Rheological Theory and Modeling of Transient Shear Viscosity of Plastic Melts
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 林冠甫
研究生(英文) Kuan-Fu Lin
學號 605400083
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-06-14
論文頁數 103頁
口試委員 指導教授 - 林國賡
委員 - 黃招財(cthuang@mail.tku.edu.tw)
委員 - 孫士博(tobersun@moldex3d.com)
關鍵字(中) 暫態黏度
應力過衝
流變性質
聚碳酸酯
高分子黏彈性
關鍵字(英) Transient viscosity
stress overshoot
rheology
polycarbonate
polymer viscoelastic
第三語言關鍵字
學科別分類
中文摘要
本研究主旨在於分析高分子材料於熔融狀態之暫態剪切流動行為,探討兩次剪切間隔時間、剪率、溫度對材料暫態黏度(或應力增長)之影響,並且嘗試量化黏彈性流體在啟動剪切之後,其分子結構恢復所需時間。本研究所選用之材料為聚碳酸酯,其為一常見的熱塑型工程塑膠,具優良耐衝擊性,並常應用於樹酯鏡片、燈罩等光學相關產品。本研究首先利用平板式流變儀進行暫態剪切流動實驗,取得暫態黏度數據,其次應用流變學模式(White-Metzner and the convected Jeffrey model)來分析瞬間啟動剪切之流變行為,並且聚焦在觀察啟動流動瞬間的應力過衝現象。由結果得知,於第一次啟動剪切,因為高分子鏈之不定向排列,其應力過衝會很明顯,而且當剪切率越高,高分子鏈的彈性效應也較顯著,應力過衝數值亦會越高。在進行第二次剪切實驗,其與第一次剪切結束不同間隔時間,高分子鏈產生不同程度的重新排列,時間隔越久分子鏈恢復就越多,遂造成其應力過衝程度較趨近於第一次剪切應力過衝數值。再者,實驗溫度是影響高分子材料黏彈性之重要因素,本研究發現於相同剪率下,溫度較低其材料彈性效應較強,所得的應力過衝現象也較顯著。
英文摘要
The main purpose of this research is to analyze the transient shear flow behavior of polymer materials in the molten state. The effects of two shear intervals, shear rate, and temperature on the transient viscosity (or stress increase) of the material were investigated, and attempts were made to quantify the time required for the recovery of the molecular structure of the viscoelastic fluid between two consecutive instant shearing. The material selected for this study is polycarbonate, which is a common thermoplastic engineering plastic with highimpact resistance. In this study, the plate-type rheometer was used to obtain thetransient viscosity data. BoththeWhite-Metzner and the convected Jeffrey models were used to analyze the rheologyof the instantshear flow, focusing on tracking the stress overshoot accompanying thestart-up of the shearing flow. From the results, it can be seen that when the shear flow starting for the first time, the stress overshoot could be very apparent because the polymer chains are randomly coiled, and the higher the shear rates, the more elastic the polymer chainsare; thus the extent of the overshoot becomes higher.Bytheimmediateconsecutiveshearing, the polymer chains couldberecoiled to variantextentsinaccordancewiththetimeintervalsfrom the first shearing. The longer the time intervals, the more the molecular chainsare recovered, and thusthe stress is growing up more obviously. Ultimately, itisapproaching the stress overshoot for the first-time shearing. It is known that the temperature is an important factor influencing the viscoelastic properties forthe polymer materials. In this study, it was found that under the same shear rate, the material at lower temperature possessed stronger elasticity, and the resulting stress overshoot at the start-up of shear flow wasmore significant.
第三語言摘要
論文目次
中文摘要	I
英文摘要	II
致謝	IV
本文目錄	V
表目錄	IX
圖目錄	X
符號說明	XIV
第一章	緒論	1
1.1 前言	1
1.2 文獻回顧	4
1.3 研究動機與目的	12
1.4 論文架構	14
第二章	理論介紹	16
2.1 射出成型製程	16
2.2 流變學理論介紹	17
2.2.1 White Metzner model	17
2.2.2 The convected Jeffrey’s model	19
第三章	研究方法	23
3.1 實驗材料	23
3.1.1 PC(聚碳酸酯)	23
3.1.2 改質蒙脫土(Cloisite 30B)	24
3.1.3 高分子/蒙脫土複合材料之製備方法	26
3.1.4 高分子/蒙脫土複合材料之分析	30
3.2 實驗設備及分析儀器	31
3.2.1 塑譜儀(Mixer)	31
3.2.2 熱壓成型機(Hydraulic Compression Molding Machine)	31
3.2.3 烘箱(Vacuum Dry Oven)	32
3.2.4 熱重損失分析儀(Thermal Gravimetric Analyzer, TGA)	32
3.2.5 示差掃描式熱卡計(Differential Scanning Calorimeter, DSC)	33
3.2.6 X光繞射分析儀(X-ray Diffractometer, XRD)	33
3.2.7 流變儀(Rheometer)	34
3.3 實驗流程	35
3.4 材料性質測試與分析	36
3.4.1 穩態剪切測試	37
3.4.1 頻率掃描	38
3.4.2 啟動剪切實驗	39
3.4.3 熱重損失測試(TGA)	40
3.4.1 示差掃描式熱卡計(Differential Scanning Calorimeter, DSC)	40
3.4.2 X光繞射分析儀(XRD)	41
第四章	結果與討論	42
4.1 熱重損失分析實驗	42
4.2 示差掃描式熱卡計(Differential Scanning Calorimeter, DSC)	48
4.3 X光繞射分析儀(XRD)	50
4.4 穩態實驗	52
4.5 動態實驗	56
4.6 溫度掃描實驗	60
4.7 暫態剪切實驗	63
4.7.1 暫態實驗改變剪率之比較(0.1~0.9 1/s)	63
4.7.2 暫態實驗改變溫度之比較(220℃~260℃)	69
4.7.3 暫態實驗改變摻合物比例(1wt%~5wt%)	70
4.7.4 暫態實驗改變休息時間比較(0sec~1200sec)	71
4.7.5 暫態實驗數值擬合分析	80
第五章	結論	86
第六章	未來研究方向	88
第七章	參考文獻	89
附錄(A)The ConvectedJeffreys Model 數學模型推導	93
附錄(B)White-Metzner Model公式推導	98
附錄(C) White-Metzner model 暫態黏度公式推導	101
作者簡介	103

 
第5章	表目錄
表3.4.1穩態剪切實驗操作條件	37
表3.4.2頻率掃描實驗操作條件	39
表3.4.3暫態實驗操作條件表	40
表4.1.1不同比例PC/Cloisite30B摻合物熱重損失數據表	47
表4.7.1純PC暫態實驗擬合結果整理(鬆弛時間)	83
 
第6章	圖目錄
圖1.1.1泛用塑膠、工程塑膠與高性能塑膠分類	3
圖2.2.1 Whtie-Metzner model 暫態黏度公式預測圖	19
圖2.2.2數據擬合流程圖	22
圖3.1.1蒙脫土層狀結構[41]	24
圖3.1.2蒙脫土化學結構[25]	25
圖3.1.3高分子複合材料原位聚合示意圖[42]	26
圖3.1.4高分子複合材料以溶劑法聚合示意圖[42]	27
圖3.1.5以熔融法製備高分子/蒙脫土複合材料[42]	28
圖3.1.6不同比例PC/Cloisite30B摻合物摻混樣品圖	29
圖3.2.1塑譜儀	31
圖3.2.2熱壓成型機	31
圖3.2.3烘箱	32
圖3.2.4熱重損失分析儀	32
圖3.2.5示差掃描式熱卡計	33
圖3.2.6 X光繞射分析儀	33
圖3.2.7 MCR 101 流變儀	34
圖3.3.1實驗流程圖	35
圖3.4.1不同流變黏度量測範圍	36
圖4.1.1純Cloisite 30B熱重損失	45
圖4.1.2純 Cloisite 30B 熱重損失(於240℃維持13分鐘)	45
圖4.1.3不同比例PC/Cloisite30B摻合物熱重損失圖	46
圖4.2.1不同比例PC/Cloisite30B摻合物於第二次升溫示意圖	49
圖4.3.1不同比例PC/Cloisite30B摻合物之XRD圖	51
圖4.4.1純料聚碳酸酯不同溫度下穩態剪切剪切黏度	53
圖4.4.2不同比例PC/Cloisite30B摻合物於220℃穩態剪切黏度	53
圖4.4.3不同比例PC/Cloisite30B摻合物於240℃穩態剪切黏度	54
圖4.4.4不同比例PC/Cloisite30B摻合物於260℃穩態剪切黏度	54
圖4.4.5純料PC與不同比例PC/Cloisite30B摻合物於240℃穩態剪切黏度結果比較	55
圖4.5.1純聚碳酸酯不同溫度下複合黏度比較	57
圖4.5.2純聚碳酸酯不同溫度下儲存及損失模數比較	58
圖4.5.3不同比例PC/Cloisite30B摻合物於220℃複合黏度	58
圖4.5.4不同比例PC/Cloisite30B摻合物於220℃儲存及損失模數	59
圖4.6.1純料聚碳酸酯溫度掃描	61
圖4.6.2不同比例聚碳酸酯/PC/Cloisite30B摻合物溫度掃描	61
圖4.6.3純料聚碳酸酯與不同比例PC/Cloisite30B摻合物溫度掃描	62
圖4.7.1純PC暫態黏度實驗於220℃改變剪切速率	65
圖4.7.2純PC暫態黏度實驗於240℃改變剪切速率	65
圖4.7.3純PC暫態黏度實驗於260℃改變剪切速率	66
圖4.7.4 PC摻混1wt% Cloisite30B暫態實驗改變剪切速率	66
圖4.7.5PC摻混3wt% Cloisite30B暫態實驗改變剪切速率	67
圖4.7.6PC摻混5wt% Cloisite30B暫態實驗改變剪切速率	67
圖4.7.7純料聚碳酸第一次暫態剪切實驗(剪率= 0.01 1/s)	69
圖4.7.8不同比例PC/Cloisite30B摻合物於240℃暫態黏度比較	70
圖4.7.9純料聚碳酸酯暫態剪切改變休息時間	72
圖4.7.10純料聚碳酸酯暫態剪切改變休息時間	72
圖4.7.11純料聚碳酸酯暫態剪切改變休息時間	73
圖4.7.12純料聚碳酸酯暫態剪切改變休息時間	73
圖4.7.13純料聚碳酸酯暫態剪切改變休息時間	74
圖4.7.14純料聚碳酸酯暫態剪切改變休息時間	74
圖4.7.15純料聚碳酸酯暫態剪切改變休息時間	75
圖4.7.16純料聚碳酸酯暫態剪切改變休息時間	75
圖4.7.17純料聚碳酸酯暫態剪切改變休息時間	76
圖4.7.18純料聚碳酸酯暫態剪切改變休息時間	76
圖4.7.19純料聚碳酸酯暫態剪切改變休息時間	77
圖4.7.20純料PC暫態剪切改變休息時間	77
圖4.7.21 PC摻混1wt% Cloisite 3B 240℃暫態實驗改變休息時間	78
圖4.7.22 PC摻混3wt% Cloisite 3B 240℃暫態實驗改變休息時間	78
圖4.7.23 PC摻混5wt% Cloisite 3B 240℃暫態實驗改變休息時間	79
圖4.7.24純PC於剪切速率0.1(1/s)不同溫度下休息時間擬合結果	81
圖4.7.25純PC於剪切速率0.3(1/s)不同溫度下休息時間擬合結果	81
圖4.7.26純PC於剪切速率0.5(1/s)不同溫度下休息時間擬合結果	82
圖4.7.27純PC於剪切速率0.7(1/s)不同溫度下休息時間擬合結果	82
圖4.7.28純PC 不同溫度暫態擬合結果整理(鬆弛時間)	83
圖4.7.29純PC於220℃暫態實驗數據與擬合預測結果比較	84
圖4.7.30純PC於240℃暫態實驗數據與擬合預測結果比較	84
圖4.7.31純PC於260℃暫態實驗數據與擬合預測結果比較	85
參考文獻
[1].	Strong, A. B., Plastics: Materials and Processing. 2006.
[2].	劉士榮, 高分子加工. 2000: 滄海書局.
[3].	Jeong, S., Kim, J. M., and Baig, C., Effect of Chain Orientation and Stretch on the Stress Overshoot of Entangled Polymeric Materials under Start-Up Shear. Macromolecules, 2017. 50(8): p. 3424-3429.
[4].	Menezes, E. V. and Graessley, W. W., Nonlinear rheological behavior of polymer systems for several shear‐flow histories. Journal of Polymer Science: Polymer Physics Edition, 1982. 20(10): p. 1817-1833.
[5].	Stratton, R. A. and Butcher, A. F., Stress relaxation upon cessation of steady flow and the overshoot effect of polymer solutions. Journal of Polymer Science: Polymer Physics Edition, 1973. 11(9): p. 1747-1758.
[6].	Huppler, J. D., et al., Rheological Properties of Three Solutions. Part II. Relaxation and Growth of Shear and Normal Stresses. Transactions of the Society of Rheology, 1967. 11(2): p. 181-204.
[7].	Robertson, C. G., et al., Reentanglement Kinetics in Sheared Polybutadiene Solutions. Macromolecules, 2004. 37(26): p. 10018-10022.
[8].	Dealy, J. M., K.‐, W., and Tsang, W., Structural time dependency in the rheological behavior of molten polymers. Journal of Applied Polymer Science, 1981. 26(4): p. 1149-1158.
[9].	Yamaguchi, M. and Gogos, C. G., Quantitative relation between shear history and rheological properties of LDPE. Advances in Polymer Technology, 2001. 20(4): p. 261-269.
[10].	Xu, Y. Z., Kee, D. D., and Fong, C. F. C. M., Large transient shearing of molten polymers: Predictions of rate‐dependent and nonaffine network models. Journal of Applied Polymer Science, 1995. 55(5): p. 779-786.
[11].	Sanchez-Reyes, J. and Archer, L. A., Relaxation dynamics of entangled polymer liquids in steady shear flow. Journal of Rheology, 2003. 47(2): p. 469-482.
[12].	Richardson, R. K. and Ross-Murphy, S. B., Non-linear viscoelasticity of polysaccharide solutions. 1: Guar galactomannan solutions. International Journal of Biological Macromolecules, 1987. 9(5): p. 250-256.
[13].	Roy, D. and Roland, C. M., Reentanglement kinetics in polyisobutylene. Macromolecules, 2013. 46(23): p. 9403-9408.
[14].	Santangelo, P. G. and Roland, C. M., Molecular Weight Dependence of Fragility in Polystyrene. Macromolecules, 1998. 31(14): p. 4581-4585.
[15].	T., S., Shear-banding during non-linear creep with a solution of monodisperse polystyrene. Rheol. Acta, 2007. 46: p. 629.
[16].	Ebrahimi, T., Hatzikiriakos, S. G., and Mehrkhodavandi, P., Synthesis and Rheological Characterization of Star-Shaped and Linear Poly(hydroxybutyrate). Macromolecules, 2015. 48(18): p. 6672-6681.
[17].	Seo, Y., Modeling of the transient viscosity for polymer melts after startup of shearing and elongational deformations. Journal of Applied Polymer Science, 2003. 88(2): p. 510-515.
[18].	Borg, T. and Pääkkönen, E. J., Start‐Up and Transient Flow Effects From the Molecular Weight Distribution. AIP Conference Proceedings, 2008. 1027(1): p. 448-450.
[19].	Borg, T., et al., Time Dependency of Viscosity in the Flow Simulations. 2004.
[20].	Rajabian, M., et al., Shearing and mixing effects on synthesis and properties of organoclay/polyester nanocomposites. Rheologica Acta, 2012. 51(11-12): p. 1007-1019.
[21].	Miller, B., Tiny clay particles pack potent properties punch. Plastics World; Boston, 1997. 55(10): p. 36-38.
[22].	Maniar, K. K., Polymeric Nanocomposites: A Review. Polymer-Plastics Technology and Engineering, 2004. 43(2): p. 427-443.
[23].	Casalini, R. and Roland, C. M., Local and Global Dynamics in Polypropylene Glycol/Silica Composites. Macromolecules, 2016. 49(10): p. 3919-3924.
[24].	Bagheriasl, D., et al., Shear rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. Cellulose, 2016. 23(3): p. 1885-1897.
[25].	Lee, K. M. and Han, C. D., Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer, 2003. 44(16): p. 4573-4588.
[26].	Xiao, J., et al., Effect of Organically Modified Montmorillonite on Thermal Degradation Mechanism of Polycarbonate Nanocomposites. Procedia Engineering, 2013. 62(Supplement C): p. 791-796.
[27].	Špírková, M., et al., Novel polycarbonate-based polyurethane elastomers: Composition–property relationship. European Polymer Journal, 2011. 47(5): p. 959-972.
[28].	Feng, J., et al., Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite. Polymer Degradation and Stability, 2012. 97(4): p. 605-614.
[29].	張榮語, 射出成型模具設計. 2001: 高立圖書有限公司.
[30].	Souvaliotis, A. and Beris, A. N., An extended White–Metzner viscoelastic fluid model based on an internal structural parameter. Journal of Rheology, 1992. 36(2): p. 241-271.
[31].	Minoshima, W., White, J. L., and Spruiell, J. E., Experimental investigations of the influence of molecular weight distribution on melt spinning and extrudate swell characteristics of polypropylene. Journal of Applied Polymer Science, 1980. 25(2): p. 287-306.
[32].	White, J. L. and Minoshima, W., Significance of deformation rate softening of memory in viscoelastic fluid mechanics and polymer processing. Polymer Engineering & Science, 1981. 21(17): p. 1113-1121.
[33].	Lin, G. G., Chang, J. T., and Kuo, T. W., “Experimentation and modeling for the apparent elongation viscosity of polymer melts with the White–Metzner model”. Polymers for Advanced Technologies, 2014. 25(12): p. 1565-1571.
[34].	White, J. L. and Metzner, A. B., Development of constitutive equations for polymeric melts and solutions. Journal of Applied Polymer Science, 1963. 7(5): p. 1867-1889.
[35].	Seo, Y., A simple empirical model describing the steady state shear viscosity and its use in prediction of the first normal stress function in shear flow. Journal of Non-Newtonian Fluid Mechanics, 1994. 51(2): p. 179-194.
[36].	Minoshima, W. and White, J. L., A comparative experimental study of the isothermal shear and uniaxial elongational rheological properties of low density, high density and linear low density polyethylenes. Journal of Non-Newtonian Fluid Mechanics, 1986. 19(3): p. 251-274.
[37].	Barnes, H. A. and Roberts, G. P., A simple empirical model describing the steady-state shear and extensional viscosities of polymer melts. Journal of Non-Newtonian Fluid Mechanics, 1992. 44(C): p. 113-126.
[38].	奇美實業股份有限公司., WONDERLITE® PC樹脂.
[39].	維基百科. 聚碳酸酯. Available from: https://zh.wikipedia.org/wiki/%E8%81%9A%E7%A2%B3%E9%85%B8%E9%85%AF.
[40].	Bordes, P., Pollet, E., and Avérous, L., Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science (Oxford), 2009. 34(2): p. 125-155.
[41].	Ray, S. S., et al., New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer, 2003. 44(21): p. 6633-6646.
[42].	T., N. Q. and G., B. D., Preparation of polymer–clay nanocomposites and their properties. Advances in Polymer Technology, 2006. 25(4): p. 270-285.
[43].	Giannelis, E. P., Polymer layered silicate nanocomposites. Advanced Materials, 1996. 8(1): p. 29-35.
[44].	Giannelis, E. P., Krishnamoorti, R., and Manias, E., Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes, in Polymers in Confined Environments, S. Granick, et al., Editors. 1999, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 107-147.
[45].	LeBaron, P. C., Wang, Z., and Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 1999. 15(1): p. 11-29.
[46].	Vaia, R. A., et al., Polymer/layered silicate nanocomposites as high performance ablative materials. Applied Clay Science, 1999. 15(1): p. 67-92.
[47].	Biswas, M. and Ray, S. S., Recent Progress in Synthesis and Evaluation of Polymer-Montmorillonite Nanocomposites, in New Polymerization Techniques and Synthetic Methodologies. 2001, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 167-221.
[48].	Vaia, R. A., et al., Microstructural Evolution of Melt Intercalated Polymer−Organically Modified Layered Silicates Nanocomposites. Chemistry of Materials, 1996. 8(11): p. 2628-2635.
[49].	Vega, J. F., et al., Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt. Journal of Rheology, 2004. 48(3): p. 663-678.
[50].	Vega, J., et al., Viscoelasticity and macromolecular topology in single-site catalyzed polyethylene. Vol. 43. 2008. 1745-1748.
[51].	李庭樞, 蒙脫土補強聚乳酸/十八烯琥珀酸酐摻合物的製備與性質,碩士論文、淡江大學, 2016.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信