淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1208201319223800
中文論文名稱 三階供應鏈經濟訂購量模型
英文論文名稱 Three-stage supply chain economic order quantity model
校院名稱 淡江大學
系所名稱(中) 管理科學學系碩士班
系所名稱(英) Master’s Program, Department of Management Sciences
學年度 101
學期 2
出版年 102
研究生中文姓名 陳竑廷
研究生英文姓名 Hung-Ting Chen
學號 600620412
學位類別 碩士
語文別 中文
口試日期 2013-07-16
論文頁數 36頁
口試委員 指導教授-婁國仁
委員-歐陽良裕
委員-廖啟順
中文關鍵字 經濟訂購量  供應鏈  存貨  導數 
英文關鍵字 EOQ  Supply chain  Inventory  Derivatives 
學科別分類
中文摘要   有部分學者使用微積分以外的方式推導模型,其目的在於使大多數對微積分不熟悉的人們,尤其是企業管理階層,原本可能不是這麼輕易地能夠理解微積分方式的求解過程,在實務上遇到問題也可能不知如何緊急應變;藉由這些以微積分以外的方式所推導的模型也可以用較為簡易的方式理解。然而在存貨議題上,以往傳統上的做法大多是以微積分為基礎做推導,其主要原因在於藉由微積分方式所推導之模型所計算出來的值,理論上應比微積分以外的方式所計算出之結果來得較佳。因此本研究藉由Teng et al. (2013)以算術幾何平均不等式而非微積分之方式所發表的三階整合生產與庫存之供應鏈系統為基礎,對其以微積分重新做推導,並沿用相同的數值範例,以觀其結果與Teng et al. (2013)之計算結果的異同。存貨領域在實務上之運作,多數應為正整數解組較佳,而本模型含有四個決策變數,其中Teng et al. (2013)所計算的兩個交付次數之決策變數結果均為正整數;然而由於本研究以微積分方式作運算,其結果理論上雖較Teng et al. (2013)為佳,但本研究之結果大多為非整數解,故本研究需另外考慮從供應商到經銷商的每個生產週期的交付次數與從經銷商到買家的每個補貨週期的交付次數,這兩個決策變數之整數解,以比較其整數解、非整數解與Teng et al. (2013)所計算結果之差別。
英文摘要   Some researches derive an optimal solution for the inventory model without derivative. The reason is that some students, especially managers, who are unfamiliar with calculus may not be capable of understanding the solution procedure easily. In practice problems may not know how to contingency; through these means other than calculus to derive a model that can also be used relatively easy way to understand. However, in the inventory issues in the past mostly based on traditional practices do calculus-based derivation, mainly due to the manner by derivation calculus model, the calculated value, in theory should be better than non-calculus. Therefore, this study by Teng et al. (2013) to optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives, based on its derivation to do the calculus, and follows the same numerical examples, in order to observe the results between ours and Teng et al. (2013). Inventories of work in practice areas, the majority should be a positive integer solution set better, and the model contains four decision variables. Teng et al. (2013) to deliver two decision variables are positive integers ; However, in theory, calculus method for computing the results is better than Teng et al. (2013). The results of this study are mostly non-integer solution, therefore this study considered separately number of deliveries per production cycle from the vendor to the distributor and number of deliveries per replenishment cycle from the distributor to the buyer, these two decision variables belong to integer solution, in order to compare the differences among our integer solution, non-integer solution and the results of Teng et al. (2013).
論文目次 目錄
目錄..................................................................................I
圖目錄..............................................................................II
表目錄.............................................................................III
第一章 緒論.......................................................................1
1.1 研究動機與目的............................................................1
1.2 相關文獻探討...............................................................3
第二章 三階供應鏈經濟訂購量模型......................................5
2.1 前言............................................................................5
2.2 符號與假設..................................................................5
2.3 模型建立.....................................................................8
2.4 模型求解.....................................................................9
第三章 數值範例與分析.....................................................19
3.1 範例資料....................................................................19
3.2 交付次數非整數解.......................................................20
3.3 交付次數取整數解.......................................................24
3.4 小結..........................................................................30
第四章 結論.....................................................................33
4.1 主要研究成果.............................................................33
4.2 未來研究方向.............................................................34
參考文獻.........................................................................35

圖目錄
圖一:供應商與經銷商的存貨模型......................................7
圖二:經銷商與買家的存貨模型.........................................8

表目錄
表一:各範例資料............................................................19
表二:Teng et al. (2013) 所計算之最佳解...........................19
表三:交付次數非整數解..................................................30
表四:交付次數取整數解..................................................31
參考文獻 [1]Cardenas-Barron L.E. (2001). The economic production quantity (EPQ) with shortage derived algebraically. International Journal of Production Economics, 70, 289-292.
[2]Chung, C.J., Wee, H.M. (2007). Optimal the economic lot size of a three-stage supply chain with backlogging derived without derivatives. European Journal of Operational Research, 183, 933-943.
[3]Goyal, S.K., (1976). A one-vendor multi-buyer integrated inventory model: A comment. European Journal of Operational Research 82, 209–210.
[4]Grubbstrom R.W., Erdem A. (1999). The EOQ with backlogging derived without derivatives. International Journal of Production Economics, 59; 529-530.
[5]Teng, J.T., Cardenas-Barron L.E., Lou, K.R., Wee, H.M. (2013). Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives, International Journal of Systems Science, Vol. 44, Issue 5, 986-994.
[6]Wee H.M., Chung S.L., Yang P.C. (2003).The EOQ model with temporary sale price derived without derivatives. Engineering Economist, 48, 190-195.
[7]Yang P.C., Wee H.M. (2002). The economic lot size of the integrated vendor-buyer system derived without derivatives. Optimal Control Applications and Methods, 23, 163-169.
[8]Zanoni S., Grubbstrom R.W. (2004). A note on an industrial strategy for stock management in supply chains: modelling and performance evaluation. International Journal of Production Research, 37, 2463-2475.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信