§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1208201204311200
DOI 10.6846/TKU.2012.00447
論文名稱(中文) 真空式與直接接觸式薄膜蒸餾於海水淡化之性能比較
論文名稱(英文) Comparison on the performances of VMD and DCMD in desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 葉國麟
研究生(英文) Kuo-Lin Yeh
學號 699400445
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-16
論文頁數 77頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 李篤中(cedean@mail.ntust.edu.tw)
委員 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 童國倫(kuolun@cycu.edu.tw.)
委員 - 莊清榮(cjchuang@cycu.edu.tw.)
委員 - 鄭東文(twcheng@mail.tku.edu.tw)
關鍵字(中) 真空式薄膜蒸餾
直接接觸式薄膜蒸餾
聚四氟乙烯
流動通道
關鍵字(英) Vacuum membrane disstillation
Direct contact membrane distillation
Channel
PTFE
第三語言關鍵字
學科別分類
中文摘要
本研究實驗是利用Toyo公司所生產之聚四氟乙烯(Polytetrafluoroethylene;pore size=0.2μm)比較直接接觸式薄膜蒸餾(Direct Content Membrane Distillation)與真空式薄膜蒸餾(Vacuum Membrane Distillation)兩者系統用於海水淡化時之效能。實驗是以原型模組與改良模組(凸出型)改變進料溫度、進料流量、曝氣,比較兩系統其滲透通量之差異與影響。
實驗結果可以發現,提高進料溫度對於兩系統皆能明顯增加滲透通量,極化現象也較嚴重。而增加進料流在VMD系統提升通量之效能比DCMD來得高。改變模組傾斜角則是由於不穩定自然對流的關係使得滲透通量提昇,在DCMD系統時皆能提昇滲透通量,其中以傾斜角度45o為最高之滲透通量,但在VMD系統自然對流效果不顯著,對於滲透通量提昇無提昇效果。曝氣時於DCMD系統皆能有效提升通量,VMD則在傾斜角大於45o曝氣才有效果。改良凸出模組(Convex)增加了對膜面之剪應力,對於VMD與DCMD系統皆能有效減緩極化效應使得滲透通量增加,通量提升分別可達15.8%與37.3%。
英文摘要
The flat PTFE membrane and hollow fiber PVDF membrane were used in studying on the flux performance in the operating of DCMD and VMD. Operating parameters included temperature difference, feed flow rate, module inclination angle,  gas flow rate. The convex design in the feed chance was also included.
The experimental results show that increasing the temperature difference will increase the permeate flux, but also heighten the polarization phenomena. The performance of Increasing feed flow in DCMD system higher than VMD system. In DCMD system, the permeate flux increased, and reached a maximum at about 45°. Aeration in DCMD system can enhance the flux, but VMD in the angle greater than 45o aeration will be effective. It is noted that the convex design in the feed channel as module inclined increases the shear stress on the membrane, thus, effectively reduces the polarization phenomena and increases the permeate flux. The flux enhancement in DCMD and VMD were improved to about 37.3% and 15.8% percent.
第三語言摘要
論文目次
目錄
誌謝	I
中文摘要	II
英文摘要	III
目錄	IV
圖目錄	VI
表目錄	VIII
第一章	緒論	1
1.1	前言	1
1.2	薄膜分離程序	2
1.3	薄膜蒸餾	5
1.4	研究目標	7
第二章	文獻回顧	10
2.1	薄膜蒸餾相關研究	10
2.2	薄膜蒸餾法之種類	13
2.2.1  直接接觸式薄膜蒸餾	13
2.2.2  空氣間隙式薄膜蒸餾	13
2.2.3  空氣掃掠式薄膜蒸餾	14
2.2.4  真空式薄膜蒸餾	14
2.3	薄膜之性質	15
2.4	影響滲透通量的因素	17
2.5	膜組及操作程序的改良	19
2.5.1	氣液兩相流動	20
2.5.2	模組傾斜角度	22
2.5.3	減少結垢問題	22
2.5.4	改良膜組設計	24
第三章	實驗裝置與方法	30
3.1	實驗裝置	30
3.2	實驗設備	32
3.3	實驗藥品與薄膜材料	33
3.3.1  實驗藥品	33
3.3.2  海水前處理	33
3.4	實驗步驟	34
3.4.1  DCMD實驗步驟	34
3.4.2  VMD實驗步驟	34
3.5	操作條件	36
3.5.1  DCMD 操作條件	36
3.5.2  VMD 操作條件	36
3.6	流量計校正與雷諾數計算	38
3.7	分析方法	39
3.7.1  鹽類含量之分析方法與條件	39
3.7.2  鹽類阻隔率之計算	39
第四章	結果與討論	51
4.1	原型模組之滲透通量	51
4.1.1	進料流量與溫度對滲透通量之影響	51
4.1.2	改變模組傾斜角之滲透通量之影響	52
4.1.3	傾斜模組下曝氣對滲透通量之影響	53
4.2	凸出模組(CONVEX)之薄膜滲透通量	56
4.2.1	進料流量對滲透通量之影響	56
4.2.2	改變模組傾斜角度對滲透通量之影響	57
4.2.3	傾斜模組下曝氣對滲透通量之影響	58
4.3	阻隔鹽類之效能	60
第五章	結論	70
符號說明	72
參考文獻	73
附錄A	77

圖目錄
圖1.1   薄膜分離程序之分類 [Cheryan, 1998]	8
圖1.2   薄膜蒸餾物流流動示意圖	9
圖2.1	DCMD 示意圖	26
圖2.2	AGMD 示意圖	26
圖2.3	SGMD 示意圖	27
圖2.4	VMD 示意圖	27
圖2.5	逆洗程序示意圖 [Mulder, 1991]	28
圖2.6	流體亂流產生器	29
圖3.1	DCMD 模組示意圖	40
圖3.2	DCMD與VMD 模組設計示意圖(進料側)	41
圖3.3	DCMD 模組設計示意圖(冷卻水側)	42
圖3.4	VMD 模組設計示意圖(真空側)	43
圖3.5	渠道凸起模組設計示意圖	44
圖3.6	直接接觸薄膜蒸餾實驗裝置圖	45
圖3.7	真空式薄膜蒸餾實驗裝置圖	46
圖3.8	進料流體流量計校正曲線	47
圖3.9	冷卻水流體流量計校正曲線	47
圖3.10	進料流體流量與Reynolds number之關係圖	48
圖3.11	冷卻水流體流量與Reynolds number之關係圖	48
圖4.1	PTFE平版薄膜於DCMD與VMD在不同進料溫度下改變不同進料流率之滲透通量	61
圖4.2	PVDF中空纖維膜於DCMD與VMD在不同進料溫度下改變不同進料流率之滲透通量	61
圖4.3	DCMD不同模組傾斜角之滲透通量	62
圖4.4	VMD不同模組傾斜角之滲透通量	62
圖4.5	DCMD於不同傾斜角下通入氣體之滲透通量	63
圖4.6	VMD於不同傾斜角下通入氣體之滲透通量	63
圖4.7	VMD於0o時不同曝氣速度之滲透通量變化	64
圖4.8	DCMD於不同進料流量下凸出模組對於滲透通量的影響	64
圖4.9	VMD於不同進料流量下凸出模組對於滲透通量的影響	65
圖4.10	DCMD於不同凸出位置上於不同進料流量下之滲透通量	65
圖4.11	VMD於不同凸出位置上於不同進料流量下之滲透通量	66
圖4.12	DCMD凸出模組於不同傾斜角度下對於滲透通量之影響	66
圖4.13	VMD凸出模組於不同傾斜角度下對於滲透通量之影響	67
圖4.14	DCMD凸出模組於不同傾斜角度下曝氣對於滲透通量之影響	67
圖4.15	VMD凸出模組於不同傾斜角度下曝氣對於滲透通量之影響	68
圖4.16	DCMD不同溫度差下改變進料流量之滲透液導電度與濃度	68
圖4.17	VMD不同溫度差下改變進料流量之滲透液導電度與濃度	69
圖A    NaCl檢量線	77

表目錄
表1.1 	不同操作程序之驅動力分類 [Cheryan, 1998]	8
表3.1	平板薄膜性質說明	49
表3.2	PVDF 中空纖維膜性質說明(UMP-0047R)	50
參考文獻
Abdel-Ghani, M. S., “Cross-flow ultrafiltration of an aqueous polymer foam solution produced by gas sparging”, Journal of Membrane Science, 171, 105-117, (2000).

Baird, M. H. I., Duncan, G. J., Smith, J. I. and Taylor, J., “Heat transfer in pulsed turbulent flow”, Chemical Engineering Science, 21, 197-199, (1966).

Banat, F., Al-Rub, F. A. and Bani-Melhem, K., “Desalinationby vacuum membrane distillation: Sensitivity analysis”, Purf. Tech. 33 75-87, (2003).

Bellara, S. R., Cui, Z. F. and Pepper, D. S., “Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes”, Journal of Membrane Science, 121, 175-184, (1996).

Cabassud, C., Laborie, S. and Lainé, J. M., “How slug flow can improve ultrafiltration flux in organic hollow fibres”, Journal of Membrane Science, 128, 93-101, (1997).

Cath, T. Y., Adams, V. D. and Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004).

Cheng, T. W., Yeh, H. M. and Gau, C. T., “Resistance analyses for ultrafiltration in tubular membrane module”, Separation Science and Technology, 32, 2623, (1997).

Cheng, T. W., H. M. Yeh and J. H. Wu, “Effects of gas slugs and inclination angle on the ultrafiltration in tubular membrane module”, Journal of Membrane Science, 158, 223-234 (1999).

Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998).

Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985).

Cui, Z. F. and Wright, K. I. T., “Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions”, Journal of Membrane Science, 90, 183-189, (1994).

Cui, Z. F. and Wright, K. I. T., “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, Journal of Membrane Science, 117, 109-116, (1996).

Criscuoli, A., Carnevale, M. C. and Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008)

Dhananjay Singh., Kamalesh K. Sirkar., “Desalination of brine and produced water by direct contact membrane” , Journal of Membrane Science 389 ,380–388, (2012)

Fan, H. and Peng, Y. “Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes” , Chemical Engineering Science 79  94–102 (2012)

Essemiani, K., Ducom, G., Cabassud, C. and Liné, A., “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chemical Engineering Science, 56, 6321-6327, (2001).

Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969).

Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967).

Gazagnes, L., Cerneaux, S., Persin, M., Prouzet, E. and Larbot, A., “Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes”, Desalination, 217, 260-266, (2007).

Ghosh, R. and Cui, Z. F., “Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes”, Journal of Membrane Science, 162, 91-102, (1999).

Gryta, M., Tomaszewska, M., Grzechulska, J. and Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001).

Gryta, M., Tomaszewska, M. and Morawski, A. W., “Membrane distillation with laminar flow”, Separation and Purification Technology, 11, 93-101, (1997).

Gryta, M., “Alkaline scaling in the membrane distillation process”, Desalination, 228, 128-134, (2008a).

Gryta, M., “Fouling in direct contact membrane distillation process”, Journal of Membrane Science, 325, 383-394, (2008b).

Gupta, B. B., Howell, J. A., Wu, D. and Field, R. W., “A helical baffle for cross-flow microfiltration”, Journal of Membrane Science, 102, 31-42, (1995).

Hsu, S. T., Cheng, K. T. and Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002).

Lawson, K. W. and Lloyd, D. R., “Review Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997).

Li, J. M., Xu, Z.K., Liu, Z.M., Yuan, W. F., Hui, X., Wang, S. Y.and Xu, Y. Y., “Microporous polypropylene and polyethylene hollow fibermembranes. Part 3. Experimental studies on membrane distillation for desalination” , Desalination 155  153-156, (2003).


Mercier-Bonin, M., Lagane, C. and Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000a).

Mercier-Bonin, M., C. MAranges, C. Lafforgue and C. Fonade, “Hydrodynamics of slug flow applied to cross-flow filtration in narrow tubes”, AIChE Journal, 46, 476-488 (2000b)

Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968).

Mohamed Khayet., “Membranes and theoretical modeling of membrane distillation: A review”, Advances in Colloid and Interface Science,164 56–88 (2011)

Mohammadali, Safavi., Toraj Mohammadi., “High-salinity water desalination using VMD”, Chemical Engineering Journal, 149, 191–195, (2009)

Schofield, R. W., Fane, A. G. and Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987).

Schofield, R. W., Fane, A. G., Fell, C. J. D. and Macoun, R., “Factors affecting flux in membrane distillation”, Desalination, 77, 279-294, (1990).

Sirkar K.K., Fei He, and Jack Gilron, “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science,345 , 53–58 (2009).

Smolders, K. and Franken, A. C. M., “Terminology of Membrane Distillation”, Desalination, 72, 249-262, (1989)

Tomaszewska, M., Gryta, M. and Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994).

Van der Waal, M. J. and Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989).

Youm, K. H., Fane, A. G. and Wiley, D. E., “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, Journal of Membrane Science, 116, 229-241, (1996).

Yun, Y., Ma, R., Zhang, W., Fane, A. G. and Li, J., “Direct contact membrane distillation mechanism for high concentration NaCl solutions”, Desalination, 188, 251-262, (2006).

Zhao, Z. P., Zhu, C. Y., Liu, D. Z., and Liu, W. F. “Concentration of ginseng extracts aqueous solution by vacuum membrane distillation 2. Theory analysis of critical operating conditions and experimental confirmation” Desalination, 267, 147-153, (2011).

韓知融, “鹽水濃度與組成對直接接觸式薄膜蒸餾膜結垢之影響”, 淡江大學化學工程與材料工程研究所碩士論文, (2009).

陳威州, “流動型態對直接接觸式薄膜蒸餾滲透通量之影響”, 淡江大學化學工程與材料工程研究所碩士論文, (2010).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信