淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1208200911460600
中文論文名稱 強穩定控制器設計
英文論文名稱 On The Design of Strongly Stabilizing Controllers
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 張齊文
研究生英文姓名 Chi-Wen Chang
學號 696460145
學位類別 碩士
語文別 中文
口試日期 2009-06-30
論文頁數 89頁
口試委員 指導教授-周永山
共同指導教授-易志孝
委員-容志輝
委員-吳政郎
中文關鍵字 強穩定  H∞強穩定  線性矩陣不等式  結構化控制器  交替式設計法 
英文關鍵字 Strong stabilization  H-infinity Strong Stabilization  LMI  Structured Controller  Iterative Design 
學科別分類 學科別應用科學電機及電子
中文摘要 強穩定問題即是設計穩定的控制器使閉迴路系統穩定。歷年來的研究成果豐碩,然而仍有不足處,例如有解條件的保守性、解法的保守性,受控體接近違反pip特性時如何求解的問題等尚待改良。因此,本論文針對強穩定控制器設計問題與H∞強穩定控制器設計問題,提出新型的更寬鬆的有解條件,並提供具體的狀態空間設計方法。質言之,我們將這兩個問題分別轉換為多目標、正實控制器的設計問題、正實結構化控制器的設計問題,以及混合正實及H∞性能要求的設計問題。除了部份可採用Scherer等人的解法外,我們也發展出這些問題的新解法,特別是在正實結構化控制器的設計問題(Scherer等人的解法無法應用於此種問題)上。而當受控體接近違反pip性質時,面對頻域內插法繁複的設計程序(特別是受控體為多輸入多輸出時),而現存狀態空間設計法皆可能失效的情形,我們特別提出一套設計過程簡單許多的交替式狀態空間設計法(每一步驟皆為解決一凸最佳化問題),以彌補現有時域方法之不足。
本論文所提出的條件可表為線性矩陣不等式,故可運用許多現存的相關軟體有效求解。相較於若干內插法或黎卡迪方程式的方法,我們提出的方法條件較不保守、設計過程簡單、適用範圍較廣。數值模擬結果證實我們所提出的方法確實有效。
英文摘要 The strong stabilization problem is to design a stable controller that achieves close-loop stability. For years profound results relevant to this subject have been addressed. However, certain in-sufficiency of the current results can be improved further, for example, the conservatism incurred from the solvability conditions and the technical treatment exploited. Moreover, there still lacks a state-space approach for dealing with the case that a plant nearly violates the parity interlacing property (pip), the necessary and sufficient condition for the existence of stable stabilizing controllers. Therefore, this thesis presents new less conservative solvability conditions for the strongly stabilization problem and H-infinity strongly stabilization problem, Explicit state-space design procedures are provided. Specifically, we recast these two problems as the solvability conditions of multi-objective positive real controller synthesis problem, positive real structured controller synthesis problem and multi-objective (a mixture of positive realness and H-infinity performance requirements) control problem, respectively. New methods are derived for solving the cases, particularly on the positive real structured controller synthesis problem, where Scherer et al’s method is not applicable. In addition, this thesis also presents a new method to deal with the case that a plant nearly violates pip. Considering that the design procedure of the (frequency-domain) interpolation approach is quite involved, especially for multi-input multi-output systems, furthermore, all the currently existing state-space approaches may fail to yield a solution in this situation, we propose an iterative design with much simpler synthesis procedure (each step of which can be efficiently solved by performing convex optimization), so as to alleviate the in-sufficiency of the current time-domain designs.
The conditions proposed in this thesis can be converted to be LMIs, which can be efficiently solved with several LMI solvers. Compared with the interpolation approach and Riccati equation-based approach, our methods are less conservative and applicable to a broader class of plants. Numerical examples are presented to demonstrate the effectiveness of the proposed methods.

論文目次 目錄

中文摘要............................................................................................................I
英文摘要..........................................................................................................II
目錄.................................................................................................................IV
圖目錄.............................................................................................................VI
表目錄...........................................................................................................VII
第一章 緒論...................................................................................................1
1.1 文獻回顧與研究動機.......................................................................1
1.2 論文架構...........................................................................................3
第二章 背景知識、問題敘述與重要解法....................................................4
2.1 背景知識與問題敘述.......................................................................4
2.2 重要解法.........................................................................................10
第三章 強穩定控制器設計.........................................................................24
3.1 前言.................................................................................................24
3.2 直接設計法.....................................................................................26
3.3 結構化設計法.................................................................................30
3.4 尤拉參數法(Youla parameterization approach)....................35
3.5 交替式設計法.................................................................................37
3.6 數值例子.........................................................................................43
第四章 H∞強穩定控制器設計....................................................................59
4.1 前言.................................................................................................59
4.2 次佳化(suboptimal) H∞控制器參數式設計法...........................59
4.3 尤拉參數設計法.............................................................................65
4.4 交替式設計法.................................................................................69
4.5 數值例子.........................................................................................73
第五章 結論與未來研究方向.....................................................................85
參考文獻.........................................................................................................87

圖目錄

圖2.1 標準G-K架構.......................................................................................7
圖2.2 R+UQ之設計架構...............................................................................11
圖2.3 UQ之設計架構....................................................................................16
圖3.1 標準迴路架構..................................................................................... 24
圖3.2 強穩定控制器設計架構......................................................................27
圖3.3 結構化控制器設計架構I....................................................................31
圖3.4 結構化控制器設計架構II..................................................................34
圖3.5 交替式設計架構..................................................................................39
圖3.6 參考極點位置(即 值)與強穩定控制器階數................................... 56
圖4.1 H∞控制器之參數式 ........................................... 60
圖4.2 符合 為嚴格正實之函數 的奈氏圖.....................................62
圖4.3 H∞強穩定控制器設計架構I................................................................63
圖4.4 H∞強穩定控制器設計架構II...............................................................67
圖4.5 閉迴路控制架構..................................................................................74
圖4.6 不考慮輸入干擾d之閉迴路控制架構.............................................. 76

表目錄

表3.1 強穩定控制器階數比較表.................................................................57
表3.2 應用若干現有狀態空間設計方法於例3.3之結果..........................58
表4.1 各方法結果之比較.............................................................................76
表4.2 H∞強穩定控制器階數比較表............................................................83
表4.3 應用若干現有狀態空間設計方法於例4.3之結果..........................84
參考文獻 參考文獻

[1] D.C. Youla, J.J. Bongiorno, and N.C. Lu, “Single-loop feedback stabilization of linear multivariable dynamical plants,” Automatica, Mar. 1974, pp. 159-173.
[2] M. Zeren and H. Ozbay, “On the synthesis of stable H∞ controllers,” IEEE Trans. Autom. Control, vol. 44, Feb. 1999, pp. 431-435.
[3] M. Zeren and H. Ozbay, “Stabilization and stable H∞ controller design for MIMO systems,” Automatica, vol. 36, Nov. 2000, pp. 1675-1684.
[4] S. Gumussoy and H. Ozbay, “Remarks on strong stabilization and stable H∞ controller design,” IEEE Trans. Autom. Control, vol. 50, Dec. 2005, pp. 2083-2087.
[5] Y. Choi, and W.K. Chung, “On the stable H∞ controller parameterization under sufficient condition,” IEEE Trans. Autom Control, vol. 46, Oct. 2001, pp. 1618-1623.
[6] Y.S. Chou, J.L. Leu and Y.C. Chu, “Stable controller design for MIMO systems: an LMI approach,” IET Control Theory, vol. 1, no. 3, May 2007, pp. 817-829.
[7] C.A. Desoer and M. Vidyasagar , Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.
[8] C. F. Yung and C.Y. Cheng, “A Game Theoretic Approach to Strictly Positive Real Control,” in Proc. of the 36th Conf. on Decision & control, San Diego, California USA, vol. 3, Dec. 1997, pp. 2115-2120.
[9] W. Sun, P.P. Khargonekar, and D. Shim, “Solution to the positive real control problem for linear time-invariant systems,” IEEE Trans. Autom. Control, vol. 39, Oct. 1994, pp. 2034-2046.
[10] B.M. Chen, “Direct computation of infimum in discrete-time H∞-optimization using measurement feedback,” Syst. Control Lett. vol. 35, Dec. 1998, pp. 269-278.
[11] G. Tao and P. A. Ioannou, “Necessary and sufficient conditions for strictly positive real matrices,” Proc. Inst. Elect. Eng. , pt. G, vol. 137, 1990, pp. 360–366
[12] K. Zhou and J.C. Doyle, Essentials of Robust Control, Prentice-Hall, 1998.
[13] K. Glover and J.C. Doyle, “State-space formulas for all stabilizing controllers that satisfy an H∞-norm bound and relations to risk sensitivity,” Syst. Control Lett., vol. 11, Sept. 1988, pp. 167-172.
[14] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI optimization,” IEEE Trans. Autom. Control, vol. 42, 1997, pp. 896-911.
[15] F. Yang and M. Gani, “An H∞ Approach for Robust Calibration of Cascaded Sigma-Delta Modulators,” IEEE Trans. on Circuits and Systems, vol. 55, Mar. 2008, pp. 625-634.
[16] M.C. Oliveira, J.C. Geromel and J. Bernussou “An LMI optimization approach to multiobjective controller design for discrete-time systems,” in Proc. of the 38th, Conf. on Decision & Control, Phoenix, Arizona USA , vol. 4, Dec. 1999 , pp. 3611-3616.
[17] M.C. Oliveira and J.C. Geromel, “A class of robust stability conditions where linear parameter dependence of the Lyapunov function is a necessary condition for arbitrary parameter dependence,” Syst. Control Lett. vol. 54, Nov. 2005, pp. 1131-1134.
[18] C. N. Nett, C. A. Jacobson and N. J. Balas, “A connection between state-space and doubly coprime fractional representations,” IEEE Trans. Autom. Contr, vol. 29, Sept. 1984, pp. 831-832.
[19] M. Vidyasagar, Control System Synthesis: A Factorization Approach , MIT Press, 1985.
[20] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, Manual of LMI Control Toolbox , Math Works, Inc, 1995.
[21] M.C. Smith and K.P. Sondergeld, “On the order of stable compensators,” Automatica, vol. 22, Jan. 1986, pp. 127-129.
[22] O. Toker, “On the order of simultaneously stabilizing compensators,” IEEE Trans. Autom. Control, vol. 41, Mar. 1996, pp. 430-433.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信