淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1208200820244400
中文論文名稱 薄膜蒸餾脫鹽模組之模擬與最佳化研究
英文論文名稱 Modeling and optimization of membrane distillation modules for desalination
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 廖俊興
研究生英文姓名 Jung-Shing Liau
學號 695401520
學位類別 碩士
語文別 中文
口試日期 2008-07-25
論文頁數 136頁
口試委員 指導教授-張煖
委員-尹庚鳴
委員-陳錫仁
中文關鍵字 薄膜蒸餾  脫鹽  反應表面法  模擬  最適化 
英文關鍵字 Membrane distillation  Desalination  Response surface method  Simulation  Optimization 
學科別分類
中文摘要 薄膜蒸餾(Membrane Distillation, MD)是利用一多孔性疏水薄膜,在薄膜兩側提供溫度之差異,藉以因水之蒸汽壓差產生水之傳輸,達到將水純化之目的。本論文針對兩種適合應用於海水淡化之薄膜蒸餾單元進行模擬分析研究,包括直接接觸式(Direct Contact Membrane Distillation, DCMD)與氣隔式(Air Gap Membrane Distillation, AGMD)。本研究使用之模式建立於Aspen Plus®並
附加程式,探討模組內部特性分佈,包括溫度、質傳通量,以及改變操作參數與熱質傳係數對性能之影響,最後利用反應表面法建立直接接觸式與氣隔式薄膜蒸餾系統之性能模式,並探討其最佳化設計。
針對直接接觸式與氣隔式系統之分析結果顯示,影響薄膜蒸餾性能之主要條件為熱液體進口溫度、熱液體進口流量、冷液體進口流量與氣隔層壓力。在利用反應表面法建立了含熱回收設計系統之性能預測二階模式後,進行最佳化分析之結果顯示,直接接觸式應採用最低熱液體流量、最高熱液體溫度、最高冷液體流量與最小膜厚,系統效率值為8.2%;氣隔式應採用最低熱液體流量與最高熱液體溫度之設計,系統效率值為5.8%。
英文摘要 Membrane distillation is a separation operation employing porous hydrophobic membrane and utilizing the vapor pressure difference across the membrane due to temperature difference. This thesis investigates the application for desalination via simulation. Direct contact membrane distillation (DCMD) and air gap membrane distillation (AGMD) are studied. Simulation model is built on Aspen Plus® with a user defined unit operation written for the two types of membrane distillation, respectively. The model is different from reported in that the bulk phase mass resistances are included. Large scale modules for practical industrial applications are simulated and studied for the effects of design and operation variables, as well as the importance of heat and mass transfers of each phase. Response surface method is adopted to establish the performance-variable quadratic model and optimization is further accomplished.
Analysis results indicate that the most significant variables are hot liquid inlet temperature, hot liquid inlet flow rate, cold liquid inlet flow rate and the membrane thickness or pressure of the air gap. The optimal operation should use minimum hot liquid flow rate, maximum hot liquid temperature, maximum cold liquid flow rate and minimum membrane thickness for DCMD with efficiency of 8.2% can be obtained and use minimum hot liquid flow rate and maximum hot liquid temperature for AGMD with efficiency of 5.8% can be obtained.
論文目次 誌謝 i
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 x
表目錄 xv
第一章 前言 1
第二章 文獻回顧 5
第三章、模式建立 8
3.1 直接接觸式薄膜蒸餾 8
3.1.1 數學模式 8
3.1.1.1 方程式 10
3.1.1.2 熱力學模式與物理/輸送性質 11
3.1.1.3 熱質傳係數 12
3.1.1.4 模式之求解 14
3.1.2 模組內部特性分析 14
3.1.2.1 基本個案設定條件 14
3.1.2.2 特性分析 17
3.1.3 阻力分析 19
3.1.3.1 巨相流質傳阻力之影響 20
3.1.3.2 各層阻力之影響 21
3.1.4 模式驗證 23
3.1.4.1 平板式 23
3.1.4.2 中空纖維式 27
3.2 氣隔式薄膜蒸餾 31
3.2 氣隔式薄膜蒸餾 31
3.2.1 數學模式 31
3.2.1.1 方程式 32
3.2.1.2 熱力學模式與物理/輸送性質 35
3.2.1.3 熱質傳係數 36
3.2.1.4 模式之求解 37
3.2.2 模組內部特性分析 38
3.2.2.1 基本個案設定條件 38
3.2.2.2 特性分析 40
3.2.3 阻力分析 42
3.2.3.1 巨相質傳阻力之影響 42
3.2.3.2 各層阻力之影響 43
3.2.4 模式驗證 45
第四章 參數影響分析 55
4.1 直接接觸式薄膜蒸餾 55
4.1.1 大尺寸模組之定義 55
4.1.2 參數影響分析 58
4.1.2.1 孔隙度 61
4.1.2.2 孔徑 63
4.1.2.3 膜厚 65
4.1.2.4 熱液體進料溫度 67
4.1.2.5 熱液體進料濃度 69
4.1.2.6 熱液體進料流量 71
4.1.2.7 冷液體進料流量 73
4.2 氣隔式薄膜蒸餾 75
4.2.1 大尺寸模組之定義 75
4.2.2 參數影響分析 78
4.2.2.1 孔隙度 81
4.2.2.2 孔徑 83
4.2.2.3 膜厚 85
4.2.2.4 氣隔層厚度 87
4.2.2.5 氣隔層壓力 89
4.2.2.6 熱液體進料溫度 91
4.2.2.7 熱液體進料濃度 93
4.2.2.8 熱液體進料流量 95
第五章 系統性能分析 97
5.1 直接接觸式薄膜蒸餾 97
5.1.1 變數設定與範圍 98
5.1.2 反應表面法 99
5.1.3 分析結果 102
5.2 氣隔式薄膜蒸餾 115
5.2.1 變數定義與範圍 116
5.2.2 分析結果 117
第六章 系統最佳化分析 122
6.1 直接接觸式薄膜蒸餾 122
6.2 氣隔式薄膜蒸餾 124
第七章 結論 126
符號說明 128
參考文獻 132

圖目錄
圖1.1 薄膜蒸餾操作原理1
圖1.2 薄膜蒸餾模組配置3
圖1.3太陽能驅動薄膜蒸餾海水淡化系統流程4
圖3.1 DCMD系統示意圖9
圖3.2 DCMD基本個案 (a)模組配置16
圖3.2 DCMD基本個案 (b) Aspen Plus®流程16
圖3.3 DCMD模擬分段數之影響17
圖3.4 DCMD質傳通量分佈18
圖3.5 DCMD溫度分佈19
圖3.6 平板式DCMD巨相流質傳阻力對質傳通量之影響20
圖3.7 中空纖維式DCMD巨相流質傳阻力對質傳通量之影響21
圖3.8 改變平板式DCMD各層阻力係數對質傳通量之影響22
圖3.9 改變中空纖維式DCMD各層阻力係數對質傳通量之影響23
圖3.10 平板式DCMD模式驗證模組巨相流溫差與熱液體溫度對質傳通量之影響25
圖3.11 平板式DCMD模式驗證模組熱液體進料溫度與濃度對質傳通量之影響26
圖3.12 中空纖維式DCMD模式驗證模組熱液體進料溫度與組成對質傳通量之影響28
圖3.13 中空纖維式DCMD模式驗證模組冷液體流量與熱液體濃度對質傳通量之影響29
圖3.14 中空纖維式DCMD模式驗證模組冷液體進料溫度對質傳通量之影響30
圖3.15 AGMD系統配置圖32
圖3.16 AGMD Aspen Plus®配置圖40
圖3.17 AGMD模擬分段數之影響40
圖3.18 AGMD質傳通量分佈圖41
圖3.19 AGMD溫度分佈圖42
圖3.20 AGMD巨相流阻力對質傳通量之影響43
圖3.21 AGMD各層阻力係數改變對質傳通量之影響44
圖3.22 飽和蒸汽壓差平均值對質傳通量之影響47
圖3.23 巨相流溫差平均值對能源效率之影響48
圖3.24熱液體進口溫度對能源效率之影響49
圖3.25熱液體雷諾數對質傳通量/飽和蒸汽壓差平均值之影響50
圖3.26氣隔層壓力對質傳通量/飽和蒸汽壓差平均值之影響51
圖3.27氣隔層壓力對能源效率之影響52
圖3.28氣隔層厚度對通量/飽和蒸汽壓差平均值之影響53
圖3.29氣隔層厚度對能源效率之影響54
圖4.1 DCMD大尺寸模組設備圖56
圖4.2 DCMD孔隙度對質傳通量之影響62
圖4.3 DCMD孔隙度對效率值之影響62
圖4.4 DCMD孔徑對質傳通量之影響64
圖4.5 DCMD孔徑對效率值之影響64
圖4.6 DCMD膜厚對質傳通量之影響66
圖4.7 DCMD膜厚對效率值之影響66
圖4.8 DCMD熱液體進料溫度對質傳通量之影響68
圖4.9 DCMD熱液體進料溫度對效率值之影響68
圖4.10 DCMD熱液體進料濃度對質傳通量之影響70
圖4.11 DCMD熱液體進料濃度對效率值之影響70
圖4.12 DCMD熱液體進料流量對質傳通量之影響72
圖4.13 DCMD熱液體進料流量對效率值之影響72
圖4.14 DCMD冷液體進料流量對質傳通量之影響74
圖4.15 DCMD冷液體進料流量對效率值之影響74
圖4.16 AGMD大尺寸模組剖面圖76
圖4.17 AGMD孔隙度對質傳通量之影響82
圖4.18 AGMD孔隙度對效率值之影響82
圖4.19 AGMD孔徑對質傳通量之影響84
圖4.20 AGMD孔徑對效率值之影響84
圖4.21 AGMD膜厚對質傳通量之影響86
圖4.22 AGMD膜厚對效率值之影響86
圖4.23 AGMD氣隔層厚度對質傳通量之影響88
圖4.24 AGMD氣隔層厚度對效率值之影響88
圖4.25 AGMD氣隔層壓力對質傳通量之影響90
圖4.26 AGMD氣隔層壓力對效率值之影響90
圖4.27 AGMD熱液體進料溫度對質傳通量之影響92
圖4.28 AGMD熱液體進料溫度對效率值之影響92
圖4.29 AGMD熱液體進料濃度對質傳通量之影響94
圖4.30 AGMD熱液體進料濃度對效率值之影響94
圖4.31 AGMD熱液體進料流量對質傳通量之影響96
圖4.32 AGMD熱液體進料流量對效率值之影響96
圖5.1 DCMD系統流程98
圖5.2 DCMD系統模擬值與反應表面法模式結果比較-完整版108
圖5.3 DCMD系統模擬值與反應表面法模式結果比較-簡化版108
圖5.4 DCMD系統反應表面圖-熱液體流量與溫度109
圖5.5 DCMD系統反應表面圖-變數為熱液體流量與冷液體流量110
圖5.6 DCMD系統反應表面圖-變數為熱液體流量與膜厚111
圖5.7 DCMD系統反應表面圖-變數為冷液體流量與熱液體溫度112
圖5.8 DCMD系統反應表面圖-變數為熱液體溫度與膜厚113
圖5.9 DCMD系統反應表面圖-變數為熱液體流量與膜厚114
圖5.10 AGMD系統流程116
圖5.11 AGMD系統模擬值與反應表面法模式結果比較120
圖5.12 AGMD系統反應表面圖121

表目錄
表3.1 DCMD基本個案模組尺寸15
表3.2 DCMD基本個案操作參數15
表3.3 平板式DCMD模式驗證模組之設備尺寸24
表3.4 平板式DCMD模式驗證模組之薄膜資料24
表3.5 平板式DCMD模式驗證模組之操作條件24
表3.6中空纖維式DCMD模式驗證模組之設備尺寸27
表3.7中空纖維式DCMD模式驗證模組之薄膜資料27
表3.8中空纖維式DCMD模式驗證模組之操作條件28
表3.9 AGMD模組尺寸39
表3.10 AGMD基本個案操作參數39
表3.11 AGMD模式驗證─設備尺寸46
表3.12 AGMD模式驗證─PE膜基本資料46
表3.13 AGMD模式驗證─操作條件46
表4.1 DCMD大尺寸模組規格57
表4.2 DCMD大尺寸模組薄膜特性57
表4.3 DCMD大尺寸模組基本個案與操作條件分析範圍59
表4.4 DCMD大尺寸模組變數影響範圍60
表4.5 AGMD大尺寸模組規格76
表4.6 AGMD大尺寸模組薄膜特性77
表4.7 AGMD大尺寸模組基本個案與操作條件分析範圍79
表4.8 AGMD大尺寸模組變數影響範圍80
表5.1 DCMD系統變數分析範圍99
表5.2 中央合成設計法實驗點(d個變數101
表5.3 DCMD系統反應表面法分析結果104
表5.4 DCMD系統反應表面法分析結果(續)105
表5.5 DCMD系統回歸參數結果-完整版106
表5.6 DCMD系統回歸參數結果-簡化版106
表5.7 AGMD變數定義與範圍117
表5.8 AGMD系統反應表面法分析結果118
表5.9 AGMD系統回歸參數結果119
表6.1 DCMD各變數之邊界值123
表6.2 DCMD系統最佳化結果123
表6.3 DCMD最佳設計之嚴謹模式模擬結果123
表6.4 AGMD各變數之邊界值125
表6.5 AGMD系統最佳化結果125
表6.6 最佳設計之嚴謹模式模擬結果125






參考文獻 Al-Mutaz, I. S. (2001). The continued challenge of capacity building in desalination. Desalination, 141(2), 145-156.

Alklaibi, A. M. and Lior, N. (2005a). Membrane-distillation desalination: Status and potential. Desalination, 171(2), 111-131.

Alklaibi, A. M. and Lior, N. (2005b). Transport analysis of air-gap membrane distillation. Journal of Membrane Science, 255(1-2), 239-253.

Alklaibi, A. M. and Lior, N. (2006). Heat and mass transfer resistance analysis of membrane distillation. Journal of Membrane Science, 282(1-2), 362-369.

AspenTech. (2006). Aspen Technology, Inc Massachusetts, USA.

Banat, F. A. and Simandl, J. (1999). Membrane distillation for dilute ethanol: Separation from aqueous streams. Journal of Membrane Science, 163(2), 333-348.

Banat, F. A. and Simandl, J. (2000). Membrane distillation for propanone removal from aqueous streams. Journal of Chemical Technology and Biotechnology, 75(2), 168-178.

Bao, J., Gao, B., Wu, X., Yoshimoto, M. and Nakao, K. (2002). Simulation of industrial catalytic-distillation process for production of methyl tert-butyl ether by developing user's model on Aspen plus platform. Chemical Engineering Journal, 90(3), 253-266.

Bird, R. B., Stewart, W. E. and Lighfoot, E. N. (1960). Transport Phenomena. New York: John Wiley and Sons, Inc.
Bouguecha, S., Chouikh, R., and Dhahbi, M. (2003). Numerical study of the coupled heat and mass transfer in membrane distillation. Desalination, 152(1-3), 245-252.

CADDET (Centre for Renewable Energy). (1996). A solar desalination system using the membrane distillation process. United Kingdom.
Drioli, E., Calabro, V. and Wu, Y. (1986). Microporous Membranes in Membrane Distillation. Pure and Applied Chemistry, 58(12), 1657-1662.

El-Bourawi, M. S., Ding, Z., Ma, R. and Khayet, M. (2006). A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 285(1-2), 4-29.

Gabelman, A. and Hwang, S.-T. (1999). Hollow fiber membrane contactors. Journal of Membrane Science, 159(1-2), 61-106.

Guijt, C. M., Meindersma, G. W., Reith, T. and De Haan, A. B. (2002). Method for experimental determination of the gas transport properties of highly porous fibre membranes: A first step before predictive modelling of a membrane distillation process. Desalination, 147(1-3), 127-132.

Guijt, C. M., Meindersma, G. W., Reith, T. and De Haan, A. B. (2005a). Air gap membrane distillation: 1. Modelling and mass transport properties for hollow fibre membranes. Separation and Purification Technology, 43(3), 233-244.

Guijt, C. M., Meindersma, G. W., Reith, T. and De Haan, A. B. (2005b). Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis. Separation and Purification Technology, 43(3), 245-255.

Guijt, C. M., Racz, I. G., Reith, T. and De Haan, A. B. (2000). Determination of membrane properties for use in the modelling of a membrane distillation module. Desalination, 132(1-3), 255-261.

Holman, J. P. (1989). Heat Transfer (pp. 493-494): McGraw-Hill, Inc.
Hsu, S. T., Cheng, K. T. and Chiou, J. S. (2002). Seawater desalination by direct contact membrane distillation. Desalination, 143(3), 279-287.

Izquierdo-Gil, M. A., Garcia-Payo, M. C. and Fernandez-Pineda, C. (1999a). Air gap membrane distillation of sucrose aqueous solutions. Journal of Membrane Science, 155(2), 291-307.

Izquierdo-Gil, M. A., Garcia-Payo, M. C. and Fernandez-Pineda, C. (1999b). Direct contact membrane distillation of sugar aqueous solutions. Separation Science and Technology, 34(9), 1773-1801.

Khayet, M., Cojocaru, C. and Garcia-Payo, C. (2007). Application of response surface methodology and experimental design in direct contact membrane distillation. Industrial and Engineering Chemistry Research, 46(17), 5673-5685.

Khayet, M., Godino, M. P. and Mengual, J. I. (2004). Study of Asymmetric Polarization in Direct Contact Membrane Distillation. Separation Science and Technology, 39(1), 125-147.

Khayet, M., Mengual, J. I. and Zakrzewska-Trznadel, G. (2005). Direct contact membrane distillation for nuclear desalination. Part I: Review of membranes used in membrane distillation and methods for their characterisation. International Journal of Nuclear Desalination, 1(4), 435-449.

Lawson, K. W. and Lloyd, D. R. (1996). Membrane distillation. II. Direct contact MD. Journal of Membrane Science, 120(1), 123-133.

Lawson, K. W. and Lloyd, D. R. (1997). Membrane distillation. Journal of Membrane Science, 124(1), 1-25.
Li, B. and Sirkar, K. K. (2004). Novel membrane and device for direct contact membrane distillation-based desalination process. Industrial and Engineering Chemistry Research, 43(17), 5300-5309.

Li, J. M., Xu, Z. K., Liu, Z. M., Yuan, W. F., Xiang, H., Wang, S. Y., et al. (2003). Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination. Desalination, 155(2), 153-156.

Martinez-Diez, L. and Florido-Diaz, F. J. (2001). Desalination of brines by membrane distillation. Desalination, 137(1-3), 267-273.

Martinez-Diez, L. and Vazquez-Gonzalez, M. I. (1998). Effects of polarization on mass transport through hydrophobic porous membranes. Industrial & Engineering Chemistry Research, 37(10), 4128-4135.

Martinez-Diez, L. and Vazquez-Gonzalez, M. I. (1999). Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 156(2), 265-273.

Martinez, L. and Florido-Diaz, F. J. (2001). Theoretical and experimental studies on desalination using membrane distillation. Desalination, 139(1-3), 373-379.

Martinez, L. and Rodriguez-Maroto, J. M. (2006). Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers. Journal of Membrane Science, 274(1-2), 123-137.

Martinez, L. and Rodriguez-Maroto, J. M. (2007). On transport resistances in direct contact membrane distillation. Journal of Membrane Science, 295(1-2), 28-39.

McCabe, M. L., Smith, J. S. and Harriott, P. (1985). Unit operation of Chemiacl Engineering (6th ed). New York: McGraw-Hill.

MEDESOL Project. (2007). Seawater desalination by innovative solar-powered membrane distillation system: Project co-funded by European Commission within the 6th Framework Programme.

Meindersma, G. W., Guijt, C. M. and De Haan, A. B. (2005). Water recycling and desalination by air gap membrane distillation. Environmental Progress, 24(4), 434-441.

Meindersma, G. W., Guijt, C. M. and de Haan, A. B. (2006). Desalination and water recycling by air gap membrane distillation. Desalination, 187(1-3), 291-301.

Montgomery., D. C. (2005). Design and Analysis of Experiments (6th ed.). New York: Wiley.

Myers, R. H., Montgomery, D. C., Geoffrey Vining, G., Borror, C. M. and Kowalski, S. M. (2004). Response Surface Methodology: A Retrospective and Literature Survey. Journal of Quality Technology, 36(1), 53-78.

Prasad, R. and Sirkar, K. K. (1988). Dispersion-Free Solvent Extraction with Microporous Hollow-Fiber Modules. AIChE Journal, 34(2), 177-188.

Prasad, R. and Sirkar, K. K. (1989). Hollow fiber solvent extraction of pharmaceutical products: A case study. Journal of Membrane Science, 47(3), 235-259.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical recipes in Fortran (2th ed). New York: Cambridge University Press.

Song, L., Li, B., Sirkar, K. K. and Gilron, J. L. (2007). Direct contact membrane distillation-based desalination: Novel membranes, devices, larger-scale studies, and a model. Industrial and Engineering Chemistry Research, 46(8), 2307-2323.

Srisurichan, S., Jiraratananon, R. and Fane, A. G. (2006). Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 277(1-2), 186-194.

Verhoef, A., Degreve, J., Huybrechs, B., van Veen, H., Pex, P. and Van der Bruggen, B. (2008). Simulation of a hybrid pervaporation-distillation process. Computers and Chemical Engineering, 32(6), 1143-1154.

Zhang, L., Xie, L., Chen, H. L. and Gao, C. J. (2005). Progress and prospects of seawater desalination in China. Desalination, 182(1-3), 13-18.

Zukauskas, A. (1972). Heat Transfer from Tubes in Crossflow. Journal of Polymer Science, Polymer Chemistry Edition, 8, 93-160.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-08-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-08-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信