淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1207200609163000
中文論文名稱 轉錄因子CBFA (core binding factor alpha)在斑馬魚軟骨發育過程中之功能探討
英文論文名稱 Biological functions of zebrafish core binding factor alpha (CBFA) during cartilage development
校院名稱 淡江大學
系所名稱(中) 生命科學研究所碩士班
系所名稱(英) Graduate Institute of Life Sciences
學年度 94
學期 2
出版年 95
研究生中文姓名 林永蒼
研究生英文姓名 Yung-Chang Lin
學號 693290339
學位類別 碩士
語文別 中文
口試日期 2006-06-07
論文頁數 67頁
口試委員 指導教授-陳曜鴻
委員-蔡懷楨
委員-莊子超
中文關鍵字 斑馬魚  cbfa  軟骨  發育 
英文關鍵字 zebrafish  cbfa  cartilage  development 
學科別分類 學科別醫學與生命科學生物學
中文摘要 脊椎動物的骨骼主要是由軟骨母細胞組成的軟骨及硬骨母細胞與蝕骨細胞組成的硬骨所構成。cbfa(core binding factor alpha)為runt同源轉錄因子家族,在胚胎發育早期會促進硬骨母細胞分化及硬骨形成,晚期則會抑制硬骨母細胞分化藉以維持骨骼發育的平衡。在小鼠研究中,cbfa基因剔除的小鼠其顱骨、顏面骨骼及全身硬骨缺失且在出生隨即死亡,在胚胎早期發育不易觀察且耗時。我們利用斑馬魚胚胎透明易於觀察與胚胎數量多等特性進行研究。在本篇論文中,我們複殖出斑馬魚cbfa的基因序列可轉譯成204個胺基酸。經序列比對後得知斑馬魚CBFA胺基酸序列與人類、大鼠、小鼠 、雞、河豚的相同性分別為82 %、82 %、74 %、83 %與78 %。並利用反轉錄-聚合酶鏈鎖反應偵測斑馬魚內生性cbfa的表現時期,發現自受精後1細胞時期到1個月的胚胎皆可偵測到cbfa的基因表現,推測應為母系遺傳。接著利用胚胎原位雜交法觀察cbfa mRNA在胚胎早期發育的時空分佈,發現在受精後3到7天會表現在咽弧(pharyngeal arch)。為了更進一步為了確定cbfa在骨骼發育中的功能,我們使用胚胎抑制劑(morpholino)去抑制內生性CBFA的蛋白質轉譯,在每個胚胎注射入1.5~4.5 ng,3天後觀察到畸形率為6.5±2.41~51.5±2.60 %。由外觀發現此畸形為頭部尺寸變小,野生種長為0.515±0.019 mm、寬為0.323±0.073 mm,cbfa被knock down後之胚胎長為0.347±0.037 mm、寬為0.266±0.018 mm,平均大約縮小30 %。接著利用阿爾襄藍染色法特異性的染出軟骨,結果發現畸型是由於角鰓骨(ceratobranchial)缺失、密克爾氏軟骨(Meckel’s cartilage)及角舌軟骨(ceratohyal)變形等咽弧軟骨發育有缺失而造成頭部尺寸變小。最後利用顯微注射打入cbfa mRNA去補回胚胎抑制劑所造成的缺陷,發現咽弧軟骨發育缺失的比例顯著地降低,代表CBFA的功能確實與角鰓骨、密克爾氏軟骨及角舌軟骨等骨骼發育有關而其他軟骨並不受影響。此外,我們也利用所有神經嵴細胞移動的標記Dlx2,及神經嵴細胞移動後的標記Sox9a,將CBFA-morphant進行胚胎原位雜交法,推測cbfa會調控顱神經嵴細胞的特化及移動最後形成咽弧。綜合以上的實驗,我們推測cbfa與斑馬魚神經嵴細胞特化及移動成為角鰓骨、密克爾氏軟骨及角舌軟骨等下顎軟骨的發育有關,這些研究結果能讓我們更了解cbfa在水生脊椎動物胚胎早期發育中所扮演的角色。
英文摘要 The vertebrate skeleton consists of cartilage and bone. Cartilage originates from chondrocyte and bone from osteoblast and osteoclast. CBFA (core binding factor alpha subunit) belongs to the runt homology domain family, that promotes the osteoblast differentiation and bone formation in early development and also inhibits osteoblast differentiation during late development. This dual functions of the CBFA maintains the balance of the bone formation and resorption. cbfa-null mice displayed cranium, mandible, bone malformation and embryonic lethal (Komori et al, 1997). In order to extend our knowledge of skeleton development on aquatic animal, we studied the biological function of CBFA on zebrafish. We isolated the zebrafish cbfa coding region, which encodes a 204 amino-acids polypeptide. Comparing the deduced amino-acids sequences of zebrafish CBFA to human, rat, mice, chicken and fugu, we found that they shared 82%, 82%, 74%, 83% and 78%, respectively. Using Reverse Transcription-Polymerase Chain Reaction (RT-PCR), we found that endogenous cbfa expression can be detected from one cell stage to one month stage, suggesting cbfa is a maternal inheritance gene. Whole-mount in situ hybridization was also performed, and indicated that the cbfa transcripts were detected in the pharyngeal arch at 3-7dpf embryos. Using cbfa-morpholino following by Alcian blue staining, we found that the average length (L) and width (W) of morphants’ heads are 0.347±0.0379 mm and 0.266±0.018 mm, which are around 30% smaller than their wild type littermates (L:0.515±0.019 mm; W:0.323±0.073 mm). We also found that the CBFA-morphants displayed specific abnormalities, such as ceratobranchial missing, ceratohyal and Meckel’s cartilage deformation. The cbfa-MO-induced specific abnormalities are in a dosage-dependent manner. As the MO injection dosages increased (1.5 ng to 4.5 ng), the specific abnormalities rates increased (6.5±2.41 to 51.5±2.60%). cbfa mRNA were also injected in order to rescue CBFA-morphants. The abnormalities of CBFA-morphants were decreased in a dosage-dependent manner after rescued by cbfa mRNA. Finally, we used Dlx2 (all neural crest cells) and Sox9a (postmigration neural crest cells) riboprobes to carry out whole-mount in situ hybridization on CBFA-morphants. These results show that neural crest cell specification and migration was affected by cbfa. Base on these observations, we propose that cbfa gene is essential for neural crest cell specification into ceratobranchial, Meckel’s cartilage and ceratohyal pharyngeal arch cartilages development.
論文目次 目錄
授權書
口試委員審議通過委員簽名表
謝誌 ------------------------------- I
中文摘要 ------------------------- II
英文摘要 -------------------------- IV
目錄 ------------------------------- VI
圖表目錄 --------------------------- VII

前言 ------------------------------- 1
材料與方法 ------------------------- 9
結果 ------------------------------- 21
討論 ------------------------------- 31
參考文獻 --------------------------- 38
圖表 ------------------------------- 45
附錄 ------------------------------- 62

圖表目錄
Fig. 1 斑馬魚與其他脊椎動物的CBFA胺基酸序列比對結果及演化樹。 ----- 46
Fig. 2 藉由反轉錄聚合酵素鏈鎖反應(RT-PCR)偵測內生性斑馬魚CBFA
在胚胎早期發育時期的表現。 ------------------------------------------------- 47
Fig. 3 藉由胚胎原位雜交法 (whole-mount in situ hybridization)偵測斑馬
魚CBFA在胚胎發育時的表現。 --------------------------------------------- 48
Fig. 4 野生種(wild type)與CBFA-Morphant在可見光下觀察受精後3天
時的胚胎。 ------------------------------------------------------------------------ 49
Fig. 5 注射不同濃度cbfa morpholino的存活率與畸形率。 --------------------- 50
Fig. 6 野生種(wild type)及CBFA-Morphant及rescued後的胚胎以Alcain
blue觀察受精後3天時的胚胎軟骨型態。----------------------------------- 51
Fig. 7 cbfa過度表現、CBFA-Morphant及rescued後的斑馬魚表現型。--------- 52
Fig. 8 cbfa-MO及cbfa mRNA co-injection的存活率與畸形率。 ---------------- 53
Fig. 9 knock cbfa down降低早期顱神經嵴細胞的數目。 -------------------------- 54
Fig. 10 knock cbfa down使晚期顱神經嵴細胞的移動受阻。 --------------------- 55
Fig. 11 knock cbfa down造成角鰓骨(cb)無法表現。 ---------------------------- 56
Table 1. 斑馬魚與其他脊椎動物CBFA胺基酸序列的相似性。 ----------------- 57
Table 2. 野生種(wild type)、CBFA-morphant及rescued後的頭部尺寸。 ------- 58
Table 3. 注射不同濃度cbfa morpholino的存活率與畸形率。 -------------------- 59
Table 4. CBFA-morphant的三種型態百分比。 --------------------------------------- 60
Table 5. cbfa過度表現及CBFA-morphant的存活率及畸形率。 ----------------- 61
參考文獻 1. Ducy, P. and G. Karsenty, Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol, 1998. 10(5): p. 614-9.
2. Lian, J.B., et al., Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr, 2004. 14(1-2): p. 1-41.
3. Aubin, J.E., Turksen, K., and Heersche, J.N.M., Osteoblastic lineage. In Cellular and Molecular Biology of Bone, M. Noda, ed. London: Academic Press), 1993: p. 1-45.
4. Kimmel, C.B., C.T. Miller, and C.B. Moens, Specification and morphogenesis of the zebrafish larval head skeleton. Dev Biol, 2001. 233(2): p. 239-57.
5. Langille, R.M. and B.K. Hall, Role of the neural crest in development of the cartilaginous cranial and visceral skeleton of the medaka, Oryzias latipes (Teleostei). Anat Embryol (Berl), 1988. 177(4): p. 297-305.
6. Le Douarin, N.M., The Neural Crest. 1982.
7. Horstadius, S., The Neural Crest, its Properties and Derivatives in Light of Experimental Research. 1950.
8. Piotrowski, T., et al., Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development, 1996. 123: p. 345-56.
9. Charrier, J.B., et al., Defining subregions of Hensen's node essential for caudalward movement, midline development and cell survival. Development, 1999. 126(21): p. 4771-83.
10. Schilling, T.F. and C.B. Kimmel, Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development, 1994. 120(3): p. 483-94.
11. Noden, D.M., The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat, 1983. 168(3): p. 257-76.
12. Le Douarin, N.M., E. Dupin, and C. Ziller, Genetic and epigenetic control in neural crest development. Curr Opin Genet Dev, 1994. 4(5): p. 685-95.
13. Noden, D.M., Interactions and fates of avian craniofacial mesenchyme. Development, 1988. 103 Suppl: p. 121-40.
14. Bi, W., et al., Sox9 is required for cartilage formation. Nat Genet, 1999. 22(1): p. 85-9.
15. Horton, W.A., The biology of bone growth. Growth Genet. Horm., 1990. 6(2): p. 1-3.
16. Komori, T., et al., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997. 89(5): p. 755-64.
17. Grigoriadis, A.E., J.N. Heersche, and J.E. Aubin, Analysis of chondroprogenitor frequency and cartilage differentiation in a novel family of clonal chondrogenic rat cell lines. Differentiation, 1996. 60(5): p. 299-307.
18. Suda, T., N. Takahashi, and T.J. Martin, Modulation of osteoclast differentiation. Endocr Rev, 1992. 13(1): p. 66-80.
19. Goldring, M.B., K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis. J Cell Biochem, 2006. 97(1): p. 33-44.
20. Flores, M.V., et al., Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expr Patterns, 2004. 4(5): p. 573-81.
21. Bi, W., et al., Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A, 2001. 98(12): p. 6698-703.
22. Rani, P.U., et al., Restoration of normal bone development by human homologue of collagen type II (COL2A1) gene in Col2a1 null mice. Dev Dyn, 1999. 214(1): p. 26-33.
23. Ducy, P., et al., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-54.
24. Vandenberg, P., et al., Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia. Proc Natl Acad Sci U S A, 1991. 88(17): p. 7640-4.
25. Komori, T. and T. Kishimoto, Cbfa1 in bone development. Curr Opin Genet Dev, 1998. 8(4): p. 494-9.
26. WB., U., In: Olsen BR, Ninmi ME, editors. Collagen, Vol V. Boca Raton FL: CRC Press, 1989: p. 31–49.
27. RA., S., Biology of cartilage cells. 1979.
28. de Crombrugghe, B., V. Lefebvre, and K. Nakashima, Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol, 2001. 13(6): p. 721-7.
29. Lian, J.B. and G.S. Stein, Runx2/Cbfa1: a multifunctional regulator of bone formation. Curr Pharm Des, 2003. 9(32): p. 2677-85.
30. Drissi, H., et al., Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J Cell Physiol, 2000. 184(3): p. 341-50.
31. Ito, Y., Structural alterations in the transcription factor PEBP2/CBF linked to four different types of leukemia. J Cancer Res Clin Oncol, 1996. 122(5): p. 266-74.
32. Wang, Q., et al., Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A, 1996. 93(8): p. 3444-9.
33. Sasaki, K., et al., Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A, 1996. 93(22): p. 12359-63.
34. Okuda, T., et al., AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 1996. 84(2): p. 321-30.
35. Wang, Q., et al., The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, 1996. 87(4): p. 697-708.
36. Bae, S.C., et al., Isolation of PEBP2 alpha B cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene, 1993. 8(3): p. 809-14.
37. Bae, S.C., et al., Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding the mammalian Runt domain. Gene, 1995. 159(2): p. 245-8.
38. Le, X.F., et al., Regulation of AML2/CBFA3 in hematopoietic cells through the retinoic acid receptor alpha-dependent signaling pathway. J Biol Chem, 1999. 274(31): p. 21651-8.
39. Otto, F., et al., Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 1997. 89(5): p. 765-71.
40. Kim, I.S., et al., Regulation of chondrocyte differentiation by Cbfa1. Mech Dev, 1999. 80(2): p. 159-70.
41. Liu, W., et al., Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol, 2001. 155(1): p. 157-66.
42. Mundlos, S., et al., Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell, 1997. 89(5): p. 773-9.
43. Selby, P.B. and P.R. Selby, Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice. II. Description of proved mutations. Mutat Res, 1978. 51(2): p. 199-236.
44. Westerfield, M., The zebrafish book. 1993, Eugene, OR: University of Oregon Press.
45. Thisse, C., et al., Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development, 1993. 119(4): p. 1203-15.
46. Arents, G. and E.N. Moudrianakis, Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A, 1993. 90(22): p. 10489-93.
47. Kim, I.S., et al., Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol, 1996. 16(8): p. 4003-13.
48. Noden, D.M., The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol, 1983. 96(1): p. 144-65.
49. Thirunavukkarasu, K., et al., The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem, 2000. 275(33): p. 25163-72.
50. Epperlein, H., et al., Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation. Development, 2000. 127(12): p. 2751-61.
51. Tan, S.S. and G. Morriss-Kay, The development and distribution of the cranial neural crest in the rat embryo. Cell Tissue Res, 1985. 240(2): p. 403-16.
52. Trainor, P.A. and P.P. Tam, Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development, 1995. 121(8): p. 2569-82.
53. Yan, Y.L., et al., A zebrafish sox9 gene required for cartilage morphogenesis. Development, 2002. 129(21): p. 5065-79.
54. Barrallo-Gimeno, A., et al., Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development, 2004. 131(7): p. 1463-77.
55. Chiang, E.F., et al., Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol, 2001. 231(1): p. 149-63.
56. Akimenko, M.A., et al., Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci, 1994. 14(6): p. 3475-86.
57. Kelsh, R.N. and D.W. Raible, Specification of zebrafish neural crest. Results Probl Cell Differ, 2002. 40: p. 216-36.
58. Miller, C.T., et al., sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development. Development, 2000. 127(17): p. 3815-28.
59. Yan, Y.L., et al., A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development, 2005. 132(5): p. 1069-83.
60. Schilling, T.F. and C.B. Kimmel, Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development, 1997. 124(15): p. 2945-60.
61. Schilling, T.F., et al., Jaw and branchial arch mutants in zebrafish I: branchial arches. Development, 1996. 123: p. 329-44.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-07-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-07-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信