淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1207200522270400
中文論文名稱 電激發化學發光暨電化學偵測系統於農藥上的分析
英文論文名稱 Development of Electrogenerated Chemiluminescent and Electrochemical System for Pesticides Determination
校院名稱 淡江大學
系所名稱(中) 化學學系博士班
系所名稱(英) Department of Chemistry
學年度 93
學期 2
出版年 94
研究生中文姓名 王俊勝
研究生英文姓名 Jun-Sheng Wang
學號 888170023
學位類別 博士
語文別 中文
口試日期 2005-05-27
論文頁數 262頁
口試委員 指導教授-林孟山
委員-王文竹
委員-陳壽椿
委員-黃承文
委員-傅明仁
中文關鍵字 農藥  生化感測器  電化學  電激發化學發光  脈衝清除法  自動流注分析系統 
英文關鍵字 Pesticide  Biosensor  Electrochemical  Electrogenerated chemiluminescent  Aryl acylamidase  Ammonium cerium(IV) nitrate  Pulse cleaning  Automatic flow injection analysis 
學科別分類
中文摘要 本研究是利用電化學與電激發化學發光分析技術,開發農藥生化感測器及光電化學之偵測系統,結合的技術包括:生化感測器、電化學分析、電激發化學發光、流注分析以及脈衝再生自動化系統等等,用以解決農藥偵測上的困難。以電化學方法偵測農藥時,常見的問題有: 1. 種類繁多的農藥中許多是非電活性物種或 2. 具電活性之農藥易在電化學模式偵測後造成電極的毒化,使得分析結果無法再現的缺點。因此論文中針對含氮類、醯胺類及酚類等等,非電活性或易形成電極毒化的農藥進行分析與研究,以解決上述常在電化學農藥分析上遭遇的問題,使光暨電化學技術在農藥的分析上更趨彈性及完備。
首先是以酵素辨識系統來開發農藥偵測的研究,目的是發展非抑制型且具分析線性長之農藥生化感測器。研究是藉由醯胺類分解酵素 (Aryl acylamidase, EC 3.5.1.13) ,可選擇性辨識除草寧農藥的特性,先將除草寧農藥分解成苯胺類物質後,以拋棄式印刷電極配合微差脈衝電化學技術進行定量分析,此完成的電化學農藥生化感測器,有效延長了分析物操作濃度的線性範圍以及提高農藥分析的選擇性,改善了過去抑制型農藥生化感測器之偵測模式的缺點。
第二項的研究是利用化學反應前處理方式,將不具電活性或易毒化電極的物質做化性之改變後,再結合電化學農藥流注分析系統來偵測。研究是以硝酸鈰胺氧化劑先與 2,4,6-三氯酚農藥反應,生成還原氧化可逆的苯醌類氧化後產物,便可在低還原電位下偵測此苯醌類產物,並間接決定 2,4,6-三氯酚農藥的濃度,此結果成功避免了使用高的氧化電位,因此同時解決了干擾及電極表面毒化之偵測窘境。
第三項是利用自動化流注分析技術發展連續式脈衝電位之電極再生系統,來解決電化學偵測時常發生的電極毒化現象。研究將整合了連續式電壓脈衝產生程式、自製電位儀和自動化流注分析系統,已開發出可快速且簡易操作的電極毒化再生分析系統,研究以偵測易毒化電極之乙烯硫脲農藥當範例,成功改善易毒化物質過去以電化學偵測時,操作再現性不佳的問題。
最後開發非電活性物質之烷基胺類的偵測,研究使用在溶液環境中穩定性佳的發光物質 Ru(bpy)32+ ,利用它會與烷基胺類作用並產生光訊號的特性,用以開發烷基胺類尼古丁之電激發化學發光農藥分析系統。此系統成功地展現電激發化學發光分析系統之高靈敏特性,且顯示其具有快速及穩定性偵測含尼古丁農藥之水樣分析的優點。並利用電激發化學發光系統於易毒化電極之農藥分析的應用,以解決此物種利用電化學方法偵測時會毒化電極的問題。研究是選擇達諾殺為分析之農藥,此物質經電化學氧化後,易形成聚分子吸附在電極表面上而造成毒化,而以電激發化學發光分析系統來偵測此酚類化合物時,並無毒化現象的產生,此結果充分顯示本系統在農藥偵測上的優點。
綜合上述,本研究已成功利用電激發化學發光與電化學分析系統,結合酵素辨識、流注分析及自動化脈衝再生技術,開發了多個符合簡便、快速、選擇性佳、高靈敏度及高再現性的農藥分析系統,而此研究理念與偵測系統將可進一步應用於臨床、藥物及其他環境污染的分析,未來更可將其發展成可攜式之分析工具,以達到及時分析與居家檢測的最終目標。
英文摘要 The goal of this dissertation is to develop various schemes for pesticides determination based on biosensor, electrochemical, and electrogenerated chemiluminescent (ECL) system. The schemes offer solutions to measure non-electroactive species and to minimize electrode fouling.
We propose an enzyme based biosensor for propanil determination. The aryl acylamidase (EC 3.5.1.13) was modified onto disposable strip for biosensor development. The enzymatic reaction for propanil can produce 3,4-dichloroaniline which is detectable at oxidative potential. The results show both higher selectivity and longer linearity than inhibition based pesticide biosensors.
A preoxidation treatment was used for 2,4,6-trichlorophenol detection. In this study, ammonium cerium (IV) nitrate was used as an oxidant to convert 2,4,6-trichlorophenol to 2,6-dichloro-1,4-benzoquinone. This product is easily reducted at -50 mV (vs. Ag/AgCl). The scheme shows high sensitivity and limited interferences for 2,4,6-trichlorophenol determination.
A continuously automatic pulse scheme is used to clean the electrode fouling in oxidative detection scheme. This system is integrated with continuous pulse cleaning program, computerized potentiostat, and automatic flow injection analysis (AFIA). It was used to avoid the electrode surface poison from ethylene thiourea oxidation. The result shows good reproducibility for ethylene thiourea determination.
At the last, the ECL scheme is based on the reaction of Ru(bpy)32+ and its related coreactant to detect nonelectroactive aliphatic amines. The Ru(bpy)32+ is a good luminescence that has both high qutumatic efficiency and stability. The rapid, stable and highly sensitive system was established to Nicotine and Dinoseb detection.
On the basis of above results, this dissertation has demonstrated several methods to solve the disadvantages of previous detection by using enzyme, chemical pretreatment, automatic pulse cleaning, and ECL system. Their merits include easy operation, prompt response, high selectivity, high sensitivity, and good reproducibility for pesticides determination. In the future, the schemes can be applied to clinical, pharmaceutic, and environmental analysis. Otherwise, they will be developed to portable device for local and home-care applications.
論文目次 中文摘要 i
英文摘要 iii
圖目錄 v
表目錄 xiii
第一章 緒論 1
1-1 農藥偵測之重要性 2
1-2 生化感測器 33
1-2-1 感測器的組成元件 33
1-2-2 酵素為辨識元進行葡萄糖量測 37
1-2-3電極的修飾 40
1-2-4 干擾物排除技術 44
1-2-5 分析特性的提升 49
1-3 化學感測器 52
1-3-1 電極修飾方法 52
1-3-2修飾功能 58
1-4 脈衝式電極處理技術 61
1-5 自動化流注分析系統 67
1-6 電激發化學發光 71
1-7 本研究之目的 84
第二章 除草寧農藥生化感測器 87
2-1 簡介 87
2-1-1 除草寧農藥分析的重要性 88
2-1-2 除草寧農藥的偵測方法 88
2-2 實驗部分 91
2-2-1 儀器 91
2-2-2 藥品 92
2-2-3 實驗步驟 93
2-3 結果與討論 95
2-3-1 工作原理的探討 95
2-3-2 最佳化條件的探討 98
2-3-3 分析特性的探討 106
2-4 結論 109
第三章 2,4,6-三氯酚農藥化學偵測系統 110
3-1 簡介 110
3-1-1 2,4,6-三氯酚農藥分析的重要性 111
3-1-2 2,4,6-三氯酚農藥的偵測方法 112
3-2實驗部分 115
3-2-1 儀器 115
3-2-2 藥品 116
3-2-3 實驗步驟 117
3-3 結果與討論 118
3-3-1 工作原理的探討 118
3-3-2 最佳化條件的探討 126
3-3-3 分析特性的探討 134
3-4 結論 138
第四章 連續式脈衝電極再生系統於乙烯硫脲的偵測 139
4-1 簡介 139
4-1-1 乙烯硫脲分析的重要性 141
4-1-2 乙烯硫脲的偵測方法 142
4-2 實驗部分 144
4-2-1 儀器 144
4-2-2 藥品 146
4-2-3 實驗部分 146
4-3 結果與討論 147
4-3-1 工作原理的探討 148
4-3-2 最佳化條件的探討 150
4-3-3 分析特性的探討 165
4-4 結論 168
第五章 電激發化學發光之尼古丁農藥偵測系統 169
5-1 簡介 169
5-1-1 尼古丁農藥分析的重要性 170
5-1-2 尼古丁農藥的偵測方法 171
5-2 實驗部分 177
5-2-1 儀器 177
5-2-2 藥品 178
5-2-3 實驗步驟 182
5-3 結果與討論 182
5-3-1 工作原理的探討 182
2-3-2 最佳化條件的探討 184
5-3-3 分析特性的探討 200
5-4 結論 207
第六章 電激發化學發光之達諾殺類農藥偵測系統 208
6-1 簡介 208
6-1-1 達諾殺農藥分析的重要性 209
6-1-2 達諾殺農藥的偵測方法 209
6-2 實驗部分 212
6-2-1 儀器 212
6-2-2 藥品 213
6-2-3 實驗步驟 215
6-3 結果與討論 216
6-3-1 工作原理的探討 216
6-3-2 最佳化條件的探討 216
6-3-3 分析特性的探討 226
6-4 結論 228
第七章 總結 229
符號對照表 233
參考文獻 234

圖目錄
圖 (1-1) NAD(P)H 與Ru(bpy)32+ 之電激發化學發光反應機制。 78
圖 (1-2) Ru(bpy)32+ 和去氫酶之電極修飾示意圖。 79
圖 (1-3) 發光胺生化感測器之電激發化學發光反應機制圖。 80
圖 (2-1) 除草寧農藥生化感測器之印刷電極試片示意圖。 94
圖 (2-2) 除草寧生化感測器氧化偵測之反應機制圖。 95
圖 (2-3) 除草寧/aryl acylamidase 之微差脈衝伏安圖。分別取 15 μL 除草寧溶液其濃度為 (a) 150 和 (b) 0 μM ,滴於 Aryl acylamidase 酵素修飾 (3×10-3 units/strip) 之印刷電極上,偵測其氧化訊號之微差脈衝伏安圖;圖 (c) 則是未修飾酵素之印刷電極上偵測 150 μM 除草寧的微差脈衝伏安圖,其它操作條件: 0.1 M pH 7.0 磷酸緩衝溶液,電位區間 0 ~ 1.0 V ,而掃描速率為 50 mV/s 。........97
圖 (2-4) 除草寧與 Aryl acylamidase 酵素之反應時間探討。研究AAA 酵素分解除草寧的最佳操作時間,反應時間範圍在 10 ~ 180秒間,而其餘操作條件同圖 (2-3)。...........................................................99
圖 (2-5) 緩衝溶液之酸鹼值的探討。圖中顯示了除草寧生化感測器在酸鹼度為 pH 4 ~ 9 的反應溶液操作下,所得到的氧化電流訊號。除草寧與酵素的作用時間為 60 秒,其餘條件如圖 (2-4) 所示。...........................................................................................................101
圖 (2-6) 緩衝溶液電解質種類的探討。除草寧生化感測器之電解質探討,分別選擇了 Phosphate 、 Imidazole 、 Citric acid 、 Hepes 和 Tris 等電解質做研究,而緩衝溶液酸鹼值為 pH 7 ,其餘條件如圖 (2-5) 所示。...............................................................................103
圖 (2-7) 磷酸緩衝溶液濃度的探討。除草寧生化感測器之磷酸鹽緩衝
v
溶液濃度的探討,選擇的磷酸溶液濃度在 0.01 ~ 0.2 M 區間,研究電解質濃度對氧化電流訊號的影響。其餘條件如圖 (2-6) 所示。.....................................................................................104
圖 (2-8) 除草寧之濃度校正曲線。除草寧農藥生化感測器在 0.05 M, pH 7 之磷酸緩衝溶液下、酵素反應時間為 60 秒,連續測量除草寧濃度在 20 ~ 400 μM 間所得的氧化電流訊號響應圖,其餘條件如圖 (2-3)。...............................................................................................107
圖 (3-1) 2,4,6-三氯酚之循環伏安圖。圖中顯示濃度為 1.0 mM 之 2,4,6-三氯酚的第 1 圈 (a) 及第 10 圈 (b) 掃描後伏安圖,而 0.0 mM (c) 即不含 2,4,6-三氯酚之伏安圖。條件:在 0.05 M pH 3.0 之磷酸緩衝溶液及掃描速率 100 mV/s 下操作。 120
圖 (3-2) 偵測 2,4,6-三氯酚農藥的訊號再現性。圖中顯示經過硝酸鈰胺氧化處理 (a) 及未處理 (b) 的 2,4,6-三氯酚,在連續 20 次操作下,測量 100 mM 2,4,6-三氯酚農藥時,所獲得的訊號再現性圖,其它操作條件如圖 (3-1) 。 122
圖 (3-3) 2,4,6-三氯酚經硝酸鈰胺氧化後之循環伏安圖。圖中顯示 2,4,6-三氯酚經硝酸鈰胺氧化後所得的循環伏安圖,其三氯酚的濃度為 0.5 mM (a) 及 0.0 mM (b) ,而圖 (c) 是在空白緩衝溶液中操作之循環伏安圖。其餘操作條件如圖 (3-1) 所示。 123
圖 (3-4) 2,4,6-三氯酚經硝酸鈰胺氧化後之紫外光光譜圖。圖中顯示 2,4,6-三氯酚經硝酸鈰胺氧化後所得的紫外光光譜圖,其三氯酚的濃度為 25 mM (a) 及 0 mM (b) ,其餘操作條件如圖 (3-1) 所示。 124
圖 (3-5) 2,4,6-三氯酚電化學偵測系統之還原偵測反應機制圖。 125
圖 (3-6) 2,4,6-三氯酚偵測系統的施加電位探討。利用電化學流注分析系統於施加電位在 -100 ~ 300 mV 區間下,偵測 20μL 之 500 μM 三氯酚所得的還原電流訊號,其中載流液體為 0.05 M, pH 3 磷酸緩衝溶液,而流速為 1.0 mL/min 。 127
圖 (3-7) 2,4,6-三氯酚農藥分析系統之載流液體流速的探討。控制載體流速在 0.1 ~ 1.2 mL/min 間,評估其對偵測 2,4,6-三氯酚農藥之還原電流訊號的影響,此時的偵測電位為 -50 mV ,而其它操作條件如圖 (3-6) 所列。 129
圖 (3-8) 注射樣品體積的探討。分別注入 10 、 20 、 50 、 100 及 500 μL 體積之樣品,並偵測 2,4,6-三氯酚農藥之還原電流訊號,系統之流體流速控制在 1.0 mL/min ,其它操作條件如圖 (3-7) 所示。 131
圖 (3-9) 緩衝溶液之酸鹼值的探討。在緩衝溶液之酸鹼值分別為 pH 3 、 5 、 7 和 9 下,評估其對偵測 2,4,6-三氯酚農藥之還原電流訊號響應的關係;樣品體積為 20
圖 (3-10) 2,4,6-三氯酚農藥偵測系統之濃度校正曲線。 2,4,6-三氯酚農藥偵測系統在最佳化操作條件下,連續測量濃度在 0.4 ~ 750 μM 間的 2,4,6-三氯酚農藥,所得的還原電流訊號響應,其緩衝溶液之酸鹼值為 pH 3 ,而其它最適化的操作條件如圖 (3-9) 。 136
圖 (4-1) 乙烯基二硫代胺基甲酸鹽代謝產生乙烯硫脲的途徑。 143
圖 (4-2) LabVIEW工作平台 145
圖 (4-3) 乙烯硫脲的循環伏安圖。在 (A) 0 及(B) 20 mM 乙烯硫脲之 0.05 M, pH 7 磷酸緩衝溶液中,所得之循環伏安圖,而圖中 (C) 為連續 20 圈掃描後之訊號圖,其掃描速率為 0.1 V/sec。 149
圖 (4-4) 偵測電位及電極再生脈衝電壓與時間的關係圖。 152
圖 (4-5) 脈衝強度的探討。於 +1.0 V下偵測 1.0 mM ETU 後,針對脈衝強度為 (0) no pulse 、 (1) 0 ~ 1.2 、 (2) 0 ~ 1.3 、 (3) 0 ~ 1.4 、 (4) 0V ~ 1.45 及 (5) 0 V ~ 1.5 V對毒化現象做處理,並偵測ETU 6次之相對標準偏差。操作條件為: 0.05 M, pH 7之磷酸緩衝溶液、流速 0.5 mL/min 、 注入樣品體積為 20
圖 (4-6) 脈衝頻率的探討。系統以脈衝頻率分別為 0 、 5 、 10 、 15 、20 及 25 Hz ,作為處理偵測 1 mM 乙烯硫脲後的毒化電極,並觀察其氧化電流訊號的變化,脈衝強度為 0 ~ 1.4 V,其餘操作條件與圖 (4-5) 同。 156
圖 (4-7) 再生脈衝電壓施加時間的探討。系統脈衝處理時間分別為0 、5 、 10 、 15 、 20 、 25及30秒,作為處理偵測乙烯硫脲後的毒化電極,並觀察其氧化電流訊號的變化,脈衝頻率15 Hz ,其餘操作條件與圖 (4-6) 同。 157
圖 (4-8) 偵測乙烯硫脲之氧化電位的探討。在圖 (4-7) 的操作條件,且脈衝清除時間為 20 秒下,探討偵測電位分別為0.6 、 0.8 、 1.0 、 1.1及 1.2 V ( vs. Ag / AgCl, 3M KCl ) 時,所獲得的乙烯硫脲氧化電流訊號。 158
圖 (4-9) 溶液 pH 值探討。乙烯硫脲分析系統在 pH 值分別為 5 、 5.5 、6 、 6.5 、 7 、 8 及 9 之 0.05 M 磷酸緩衝溶液中,於偵測電壓為 1.0 V 下,偵測 ETU 所得的氧化電流訊號響應,其餘操作條件如圖 (4-8)。 160
圖 (4-10) 樣品注入體積的探討。乙烯硫脲分析系統在注入之樣品體積分別為 10 、 20 、 50 及 100 μL 下,酸鹼度為 pH 7之磷酸緩衝液中,偵測 ETU 所得的氧化電流訊號變化,其餘操作條件如圖
(4-9)。 161
圖 (4-11) 載流液體流速的探討。注入乙烯硫脲的體積為 20 μL下,對流體流速分別為 0.3 、 0.5 、 0.7 、 1.0 、 1.5 及 2 mL/min 做探討,比較 ETU 氧化電流訊號的變化,其餘操作條件如圖 (4-10)。 163
圖 (4-12) 乙烯硫脲之偵測校正曲線。在最佳化條件:脈衝強度0 ~ 1.4 V、頻率15 Hz 、施加時間20秒、偵測電位 +1.0 V 、 0.05M, pH 7 磷酸緩衝溶液、 20 μL之樣品體積、流體流速 0.5 mL/min下,連續偵測不同濃度 ETU 所得的濃度校正曲線。 166
圖 (5-1) ECL/ AFIA 之儀器裝置圖。 180
圖 (5-2) 電化學反應槽中的三電極系統裝置。 181
圖 (5-3) Ru(bpy)32+ 之結構。 181
圖 (5-4) 尼古丁之結構。 181
圖 (5-5) 尼古丁偵測系統之循環伏安圖及電激發化學發光圖。以循環伏安法在電位區間為 0.0 ~ 1.6 間,掃描速率 0.1 V/s 下,同時觀察 50 (a) 及 0 μΜ (b) 尼古丁溶液之光 (A) 及電化學電流訊號 (B) ,其他操作條件為:光電化學三電極反應槽是以 ITO 為工作電極、銀/氯化銀為參考電極和白金為輔助電極,而流注系統之載流液體為 0.1 M, pH 8 磷酸緩衝溶液內含 25 μΜ Ru(bpy)32+ mL/min 。 186
圖 (5-6) 尼古丁偵測系統之操作電位的探討。在電位區間為 1.0 ~ 1.5 間,偵測 50 μΜ 尼古丁反應所生成的光電流,其他操作條件為:光電化學三電極反應槽是以 ITO 為工作電極、銀/氯化銀為參考電極和白金為輔助電極,而流注系統之載流液體為 0.1 M, pH 8 磷酸緩衝溶液內含 0.1 mM Ru(bpy)32+ ,樣品迴路體積為 20 μL ,流速為 1 mL/min 。 187
圖 (5-7) 載流液體流速的探討。圖中顯示尼古丁偵測系統之載流液體流速變化對分析訊號的影響,流速變化控制在 0.6 ~ 1.1 mL/min 間,施加氧化電位為 1.4 V ,而其他的操作條件則如同圖 (5-6) 所示。 188
圖 (5-8) 緩衝溶液之酸鹼值的探討。圖為尼古丁偵測系統中緩衝溶液之酸鹼值改變對光電流訊號的影響,酸鹼值的探討在 pH 4 ~ 10 間,載流液體流速為 1.0 mL/min ,而其他的操作條件則如同圖 (5-7) 所示。 190
圖 (5-9) 緩衝溶液電解質種類的探討。圖中顯示尼古丁偵測系統在 Tris 、 Phosphate 、 Boric acid 、 Carbonate 等四種不同電解質緩衝溶液操作時,對產生光電流訊號的影響,溶液酸鹼值為 pH 8 ,而其他的操作條件則如同圖 (5-8) 所示。 194
圖 (5-10) 磷酸緩衝溶液濃度的探討。圖中顯示尼古丁偵測系統之磷酸緩衝溶液濃度改變對光電流訊號的影響,磷酸溶液濃度研究範圍在 0.01 ~ 0.15 M 間,而其他的操作條件則如同圖 (5-9) 所示。 195
圖 (5-11) 發光物質 Ru(bpy)32+ 濃度的探討。圖中顯示尼古丁偵測系統之磷酸緩衝溶液濃度改變對光電流訊號的影響,磷酸溶液濃度研究範圍在 0.01 ~ 0.15 M 間,而其他的操作條件則如同圖 (5-9) 所示。 196
圖 (5-12) 樣品迴路體積的探討。圖中顯示尼古丁偵測系統之樣品迴路體積改變對光電流訊號的影響,樣品體積分別為 10 、 20 、 50 和 100 µL ,磷酸緩衝溶液的濃度為 0.1 M ,而其他的操作條件則如同圖 (5-11) 所示。 197
圖 (5-13) 樣品迴路體積探討的真實訊號圖,其操作條件如圖 (5-12) 所述。 198
圖 (5-14) 尼古丁之電激發化學發光系統的濃度校正曲線。在 ITO 電極上施加 1.4 V ,於含有 0.1 mM, Ru(bpy)32+ 的 0.1 M, pH 8 磷酸緩衝溶液,樣品體積為 20 μL 及流體速度為 1.0 mL/min 之條件下偵測尼古丁,其濃度範圍在 2 ~ 300 μM 間所得的濃度校正曲線圖。 203
圖 (5-15) 尼古丁偵測系統之再現性的探討。在最佳化條件 (見圖 5-13) 下連續偵測 20 次 5 μM 之尼古丁,所得的訊號響應圖。 204
圖 (6-1) 達諾殺農藥混合劑之結構。 214
圖 (6-2) 達諾殺偵測系統之操作電位的探討。在電位區間為 1.1 ~ 1.8 間,偵測 500 μΜ 達諾殺反應所生成的光電流,其他操作條件:光電化學三電極反應槽是以 ITO 為工作電極、銀/氯化銀為參考電極和白金為輔助電極,而流注系統之載流液體為 0.1 M, pH 8 磷酸緩衝溶液內含 0.1 mM Ru(bpy)32+ ,樣品迴路體積為 10 μL ,流速為 1 mL/min 。 218
圖 (6-3) 樣品迴路體積的探討。圖中顯示達諾殺偵測系統之樣品迴路體積改變對光電流訊號的影響,樣品體積分別為 5 、 10 、 25 和 50 µL ,電壓施加為 1.55 V,而其他的操作條件則如同圖 (6-2) 所示。 220
圖 (6-4) 載流液體流速的探討。圖中顯示達諾殺偵測系統之載流液體流速變化對分析訊號的影響,流速變化控制在 0.9 ~ 1.7 mL/min 間,樣品體積為 10 µL ,而其他的操作條件則如同圖 (6-3) 所示。 221
圖 (6-5) 緩衝溶液之酸鹼值的探討。圖為達諾殺偵測系統中緩衝溶液之酸鹼值改變對光電流訊號的影響,酸鹼值的探討在 pH 5 ~ 9 間,載流液體流速為 1.5 mL/min ,而其他的操作條件則如同圖 (6-4) 所示。 223
圖 (6-6) 磷酸緩衝溶液濃度的探討。圖中顯示達諾殺偵測系統之磷酸緩衝溶液濃度改變對光電流訊號的影響,磷酸溶液濃度研究範圍在 0.01 ~ 0.2 M 間,而緩衝溶液酸鹼度為 pH 7 ,其他的操作條件則如同圖 (6-5) 所示。 224
圖 (6-7) 達諾殺之電激發化學發光系統的濃度校正曲線。在 ITO 電極上施加 1.55 V ,於含有 0.1 mM , Ru(bpy)32+ 的 0.1 M, pH 7 磷酸緩衝溶液,樣品體積為 10 μL 及流體速度為 1.5 mL/min 之條件下偵測達諾殺,其範圍在 2 ~ 1000 μM 間所得的濃度校正曲線圖。 227
表目錄
表(2-1)除草寧生化感測器之最佳化操作條件..............105
表(2-2)除草寧農藥生化感測器之分析特性................108
表(3-1)2,4,6-三氯酚農藥偵測系統之最佳化條件..........133
表(3-2)2,4,6-三氯酚農藥偵測系統之分析特性............137
表(4-1)乙烯硫脲分析系統之最佳化操作條件..............164
表(4-2)乙烯硫脲之分析特性............................167
表(5-1)尼古丁分析系統之最佳化操作條件................199
表(5-2)尼古丁偵測系統之分析特性......................205
表(5-3)尼古丁偵測方法的比較..........................206
表(6-1)達諾殺農藥混合物分析系統之最佳操作條件........225
表(6-2)達諾殺偵測系統之分析特性......................228
參考文獻 M. K. Hill, Understanding Environmental Pollution, Cambridge University Press, Cambridge, 1997.
G. W. Ware, The Pesticide Book, Thomson Publisher, CA, 1989.
F. C. Lu, Basic Toxicology, Yi Hsien Publishing Co. Ltd., Taipei, 1998.
M. A. Kamrin, Pesticide Profiles: Toxicity, Environmental Impact, and Fate, Lewis Publisher, New York, 1997.
C. Tixer, M. Sancelme, F. Bonnemoy, A. Cuer, H. Veschambre, Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation, Environ. toxicol. chem., 20 (2001) 1381-1389.
Y. Ozeki, A. Komamine, Y. Tanaka, Induction and repression of phenyl- alanine ammonia-lyase and chalcone synthase enzyme proteins and mRNAs in carrot cell suspension cultures regulated by 2,4-D, Physiol. plant., 78 (1990) 400-408.
B. Riggle, Development of a preliminary enzyme-linked immunosorbent assay for the herbicide trifluralin, Bull. environ. contam. toxicol. 46 (1991) 404-409.
R. J. Hance, K. Holly, Weed Control Handbook: Principles, 8th ed., Blackwell, Oxford, U.K., 1990.
K. H. Buchel, Chemistry of Pesticides, Wiley, New York, 1997.
J. H. Stender, Occupational Safety and Health Standards, vol. 39, Federal Register, 1974, p. 3756.
G. W. Ivens, The UK Pesticide Guide, British Crop Protection Council, Cambridge, 1992, p. 18.
R. E. Gosselin, R. P. Smith, H. C. Hodge, Clinical Toxicology of Commercial Products, 5th ed., Willwams and Wilkins, Baltimore, MD, 1984, p. 11.
T. S. Scott, Carcinogenic and Toxic Hazards of Aromatic Amines, Elsavier, New York, 1962.
A. Balinova, Solid-phase extraction followed by high-performance liquid chromatographic analysis for monitoring herbicides in drinking water, J. Chromatogr. A 643 (1993) 203-207.
M. C. Gennaro, C. Abrigo, D. Giacosa, L. Rigotti, A. Liberatori, Separation of phenylurea pesticides by ion-interaction reversed-phase high-performance liquid chromatography diuron determination in lagoon water, J. Chromatogr. A 718 (1995) 81-88.
J. A. Field, R. L. Reed, T. E. Sawyer, M. Martinez, Diuron and its metabolites in surface water and ground water by solid phase extraction and in-vial lution, J. Agric. Food Chem. 45 (1997) 3897-3902.
B. L. Worobey, Simplified heptafluorobutyrylation of linuron and its meta- bolite 3,4-dichloroaniline, J.Chromatogr. A 262 (1983) 328-330.
J. Fischer, P. Jandera, Chromatographic behaviour of phenylurea pesticides in high-performance liquid chromatography with nitrile- and amino-bonded stationary phases, J.Chromatogr. A 684 (1994) 77-92.
S. M. Walters, B. C. Westerby, D. M. Gilvydis, Determination of phenylurea pesticides by high-performance liquid chromatography with UV and photoconductivity detectors in series, J. Chromatogr. A 317 (1984) 533-544.
M. C. Gennaro, C. Abrigo, D. Giacosa, L. Rigotti, A. Liberatori, Separation of phenylurea pesticides by ion-interaction reversed-phase high-performance liquid chromatography diuron determination in lagoon water, J. Chromatogr. A 718 (1995) 81-88.
R. G. Luchtefeld, J. Assoc. Off. Anal. Chem. 59 (1987) 740
W. M. Draper, S. R. Ruberu, S. K. Perera, Multiresidue HPLC methods for phenyl-urea herbicides in water, J. Agric. Food Chem. 48 (2000) 4109-4115.
A. M. O. Brett, C. M. Delerue-Matos, E. M. Garrido, J. L. C. Lima, Electrochemical oxidation of bentazon at a glassy carbon electrode Application to the determination of a commercial herbicide, Talata 46 (1998) 1131-1135.
A. D. Corcia, A. Costantino, C. Crescenzi, R. Samperi, Quantification of phenylurea herbicides and their free and humic acid-associated metabolites in natural waters, J. Chromatogr. A 852 (1999) 465-474.
K. Levsen, K. H. Schafer, Determination of phenylureas by on-line liquid chromatography mass spectrometry, J. Chromatogr. A 271 (1983) 51-60.
U. A. Th. Brinkman, A. D. Kok, R. B. Geerdink, Determination of phenylurea herbicides via direct derivatisation with heptafluorobutyric anhydride, J.Chromatogr. A 283 (1984) 113-126.
W. M. Draper, Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water, J. Agric. Food Chem. 49 (2001) 2746-2755.
S. T. Joselito, P. Quirino, N. Inoue, Reversed migration micellar electrokinetic chromatography with off-line and on-line concentration analysis of phenylurea herbicides, J. Chromatogr. A 892 (2000) 187-194.
W. F. M. Stöcklein, M. Rohde, G. Scharte, Olaf Behrsing, A. Warsinke, B. Micheel, F. W. Scheller, Sensitive detection of triazine and phenylurea pesticides in pure organic solvent by enzyme linked immunosorbent assay (ELISA):stabilities, solubilities and sensitivities, Anal. chim. acta. 405 (2000) 255-265
C. Paolo, D. Paolo, M. Marco, Reversed-phase high-performance liquid chromatography of pesticides VII. Analysis of Vinclozolin, lprodione, Procymidone, Dichlozolinate and their degradation product 3,5-dichloroaniline on white must and wine extracts, J. Chromatogr. A 256 (1983) 176-181.
A. Collinge, A. Noirfalise, Determination of thiabendazole residues in marmalades by high-performance liquid chromatography, J. Chromatogr. A 257 (1983) 416-418
B. C. Verma, R. K. Sood, H. S. Sidhu, A new colorimetric method for the determination of carbon disulphide and its application to the analysis of some dithiocarbamate fungicides , Talanta 30 (1983) 787-788.
V. K. Gupta, V. Agrawal, P. Shivhare, Spectrophotometric determination of Zineb (a dithiocarbamate fungicide) by the methylene blue method, Fresenius J. Anal. Chem. 344 (1992) 350-352.
V. K. Gupta, R. Kesari, A sensitive spectrophotometric method for the determination of dithiocarbamate fungicide and its application in environmental samples, Talanta 45 (1998) 1097-1102.
T. P. Rao, L. Mathew, C. S. P. Iyer, A. D. Damodaran, Spectrophotometric determination of ziram (dithiocarbamate fungicide) by thiocyanate and rhodamine 6G method, Talanta 42 (1995) 41-43.
A. L. J. Rao, A. K. Malik, Spectrophotometric determination of iron(III) dimethyldithiocarbamate (ferbam), Talanta 44 (1997) 177-183.
K. H. Gustafsson, R. A. Thompson, High-pressure liquid chromatographic determination of fungicidal dithiocarbamates, J. Agric. Food Chem. 29 (1981) 729-732.
D. L. Sedlak, K. W. Weissmahr, C. L. Houghton, Analysis of the dithiocarbamate fungicides ziram, maneb, and zineb and the flotation agent ethylxanthogenate by ion-pair reversed-phase HPLC, Anal. Chem. 70 (1998) 4800-4804.
C. -C. Lo, M. -H. Ho, M. -D. Hung, Use of high-performance liquid chromatographic and atomic absorption methods to distinguish propineb, zineb, maneb, and mancozeb fungicides, J. Agric. Food Chem. 44 (1996) 2720-2723.
I. H. Pomerantz, L. J. Miller, G. Kava, J. Assoc. Off. Anal. Chem., 53 (1970) 154.
P. B. Baker, B. Flaherty, Fungicide residues. Part II. The simultaneous determination of residues of folpet, captan and captafol in selected fruits by gas chromatography, Analyst 97(1972) 713-718.
W. Schwack, B. Bruger, S. Nyanzi, Simultaneous differential pulse-polarographic determination of CS2 and COS gases and its application in the analysis of dithiocarbamate fungicide residues in foods, Fresenius J. Anal. Chem. 351 (1995) 297-300.
W. H. Chan, A. W. M. Lee, S. L. Ng, W. L. Liu, Differential-pulse polarographic micro-determination of amines via in situ generation of dithiocarbamates, Analyst 117 (1992) 1909-1912.
E. S. Rocha, M. D. Santos, E. X. Albuquerque, Low concentrations of the organophosphate VX affect spontaneous and evoked transmitter release from hippocampal neurons: toxicological relevance of cholinesterase- independent actions, Toxicol. appl. pharmacol. 159 (1999) 31-40.
C. Rohl, M. Gulden, H. Seibert, Toxicity of organotin compounds in primary cultures of rat cortical astrocytes, Cell biol. toxicol. 17 (2001) 23-32.
C. D. Rubin, C. Y. C. Pak, B. Adams-Huet, H. K. Genant, J. Li, D. S. Rao, Sustained-release sodium fluoride in the treatment of the elderly with established osteoporosis, Arch. intern. med. 161 (2001) 2325-2333.
D. J. Hunter, S. E. Hankinson, F. Laden, G. A. Colditz, J. E. Manson, W. C. Willett, F. E. Speizer, M. S. Wolff, Plasma organochlorine levels and the risk of breast cancer, N. Engl. j. med. 337 (1997) 1253-1258.
M. S. Wolff, G. S. Berkowitz, S. Brower, I. J. Bleiweiss, P. Tartter, B. Pace, N. Roy, S. Wallenstein, A. Weston, Organochlorine exposures and breast Cancer risk in New York city women, Environ. res. 84 (2000) 151-161
S. Haider, R. M. Inbaraj, Relative toxicity of technical material and commercial formulation of malathion and endosulfan to a freshwater fish, Channa punctatus (Bloch), Ecotoxicol. and Environ. Saf. 11 (1986) 347-351.
U.S. Environmental Protection Agency. Integrated Risk Information System; Washington, D.C., 1995.
Miller, G. T. Jr. Ed., Living in the Environment- Principle, Connections, and Solutions, Wadsworth Publishing Co., Belmont, 1994, pp. 598.
S. A. Senseman, T. L. Lavy, B. W. Skulman, Trace level pesticide detections in arkansas surface waters, Environ. Sci. Tech. 31 (1997) 395-341.
S. M. Waliszewsli, V. T. Pardío, K. N. Waliszewsli, J. N. Chantiri, A. A. Aguirre, R. M. Infanzón, J. Rivera, Sci. total environ. 208 (1997) 127-132.
V. Schinas, M. Leotsinidis, A. Alexopoulos, Organochlorine pesticide residues in human breast milk from southwest greece:associations with weekly food consumpution patterns of mothers, Arch. environ. health. 55 (2000) 411-417.
Bor-Cheng Han, Woei-Lih Jeng, Tsu-Chang Hung, Yong-Chien Ling, Ming-Jer Shieh, Ling-Chu. Chien, Estimation of metal and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan, Environ. pollut. 109 (2000) 147-156
K. S. Guruge, M. Watanabe, H. Tanaka, S. Tanabe, Accumulation status of persistent organochlorines in albatrosses from the North Pacific and the Southern Ocean, Environ. pollut. 114 (2001) 389-398.
Henry A. Alergia, Terry F. Bidleman, Timothy J. Shaw, Organochlorine pesticides in ambient air of belize, central America, Environ. Sci. Technol. 34 (2000) 1953-1958.
Robert G. M. Lee, Victoria Burnett, Tom Harner, Kevin C. Jones, Short-term temperature-dependent air-surface exchange and atmospheric concentrations of polychlorinated naphthalenes and organochlorine pesticides, Environ. Sci. Technol. 34 (2000) 393.
Y. C. Ling, I. P. Huang, Multi-residue matrix solid-phase dispersion method for the determination of six synthetic pyrethroids in vegetables followed by gas chromatography with electron capture detection, J. Chromatogr. A 695 (1995) 75-82.
I. Schechter, S. Hassoon, A sensitive fluorescence probe for DDT-type pesticides, Anal. Chim. Acta 368 (1998) 77-82.
L. Comellas, J. L. Lliberia, A. Roca, Determination of organochlorine compounds in anion-exchange resins by UV irradiation and ion chromatography, J. chromatogr. A 655 (1993) 57-62.
C. Crespo, R. M. Marce, F. Borrull, Determination of various pesticides using membrane extraction discs and gas chromatography-mass spectrometry, J. Chromatogr. A 670 (1994) 135-144.
R. Eisert, K. Levsten, G. Wunsch, Element-selective detection of pesticides by gas chromatography—atomic emission detection and solid-phase microextraction, J. Chromatogr. A 683 (1994) 175-186.
G. Achilli, G. P. Cellerino, G. M. D’Eril, S. Bird, Simultaneous determination of 27 phenols and herbicides in water by high-performance liquid chromatography with multielectrode electrochemical detection, J. Chromatogr. A 697 (1995) 357-362.
R. S. Hoffman, R. Morasco, L. R. Goldfrank, Administration of purified human plasma cholinesterase protects against cocaine toxicity in mice. J. toxicol., Clin. toxicol. 34 (1996) 259-266.
W. Liu, A. Kumar, M. Alraja, Excitatory effects of muscarine on septohippocampal neurons: involvement of M receptors, Brain research 805 (1998) 220-233.
J. P. Kiss, K. Windisch, K. De Oliveira, E. C. P. Hennings, A. Mike, B. K. Szasz, Differential effect of nicotinic agonists on the [3H]norepinephrine release from rat hippocampal slices, Neurochem. res. 26 (2001) 943-950.
Hamers Timo, G. D. S. Mathijis, J. M. Albertinka, Jan H. Koeman, Biological and chemical analysis of the toxic potency of pesticsides in rainwater, Chemosphere 45 (2001) 609-624.
M. Terreni, E. Benfenati, M. Natangelo, G. Facchini, G. Pagani, Synthesis and use of pentadeuteroethyl ethofumesate as an internal standard for the determination of ethofumesate and its metabolites in water by gas chromatography-mass spectrometry, J. Chromatogr. A 688 (1994) 243-250.
G. D. Teresa, G. C. Agustina, M. D. Nielene, P. V. Piedad, S. L. Francisco, Rapid and sensitive determination of 4-nitrophenol,3-methyl-4-nitrophenol, 4,6-dinitro-o-cresol, parathion-methyl,fenitrothion, and parathion-ethyl by liquid chromatography with electrochemical detection, J. Agric. Food Chem. 48 (2000) 4508-4513.
R. C. Martinez, E. R. Gonzalo, F. G. Garcia, J. H. Mendez, Automated high-performance liquid chromatographic method for the determination of organophosphorus pesticides in waters with dual electrochemical (reductive—oxidative) detection, J. Chromatogr. A 644 (1993) 49-58.
Patrick Durand and Daniel Thomas, Journal of environmental pathology, toxicology, and oncology: official organ of the International Society for Environmental Toxicology and Cancer, 5 (1984) 51.
I. C. Palchetti, C. Andrea, D. C. Michele, M. M. Claudio, A. P. F. Turner, Determination of anticholinesterase pesticides in real samples using a disposable biosensor, Anal. Chim. Acta 337 (1997) 315-321.
J. M. Abad, F. Pariente, L. Hernandez, H. D. Abruna, E. Lorenzo, Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor, Anal. chem. 70 (1998) 2848-2855.
D. Martorell, F. Cespeses, E. Martinez-Fabregas, S. A. Legret, Amperometric determination of pesticides using a biosensor based on a polishable graphie-epoxy biocomposite, Anal. Chim. Acta 290 (1994) 343-348.
R. T. Andres, R. Narayanaswamy, Fibre-optic pesticide biosensor based on covalently immobilized acetylcholinesterase and thymol blue, Talanta 49 (1997) 1335-1352.
D. Barcelo, S. Lacorte, J. L. Marty, Validation of an enzymatic biosensor with liquid chromatography for pesticide monitoring, TrAC, Trends anal. chem. 14 (1995) 334-340.
A. S. Miquel, M. Arben, A. Salvador, Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology, Anal. Chim. Acta 442 (2001) 35-44.
K. Rekha, M. D. Gouda, M. S. Thakur, N. G. Karanth, Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring, Biosens. bioelectron. 15 (2000) 499-502.
Jean-Luc Besombes, S. Cosnier, Pierre Labbe, Gilbert Reverdy, A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides, Anal. Chim. Acta 311(1995) 255-263.
W. R. Everett, G. A. Rechnitz, Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem. 70 (1998) 807-810.
A. Mulchandani, P. Mulchandani, L. Chen, Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase, Anal. Chem. 71 (1999) 2246-2249.
S. A. Wring, J. P. Hart, L. Bracey, B. J. Birch, Development of screen-printed carbon electrodes, chemically modified with cobalt phthalocyanine, for electrochemical sensor applications, Anal. Chim. Acta. 231 (1990) 203-212.
J. P. Hart, I. C. Hartley, Voltammetric and amperometric studies of thiocholine at a screen-printed carbon electrode chemically modified with cobalt phthalocyanine: studies towards a pesticide sensor, Analyst 119 (1994) 259-263.
J. Wang, P. V. A. Pamidi, Disposable screen-printed electrodes for monitoring hydrazines, Talanta 42 (1995) 463-467.
J. Wang, F. Lu, D. MacDonald, J. Lu, M. E. S. Ozsoz, K. R. Rogers, Screen-printed voltammetric sensor for TNT, Talanta 46 (1998) 1405-1412.
J. Wang, M. Pedrero, X. Cai, Palladium-doped screen-printed electrodes for monitoring formaldehyde, Analyst 120 (1995) 1969-1972.
J. Park, J.-Y. Choi, K.Seo, S.-R. Cho, J.-R. Oh, S.-H. Kahng, Screen-printed anodic stripping voltammetric sensor containing HgO for heavy metal analysis, Anal. Chim. Acta. 443 (2001) 241-247.
J.-M. Zen, Y. Shih, An electrochemical sensor based on a clay-coated screen-printed electrode for the determination of arbutin, Anal. Chim. Acta. 412 (2000) 63-68.
R. Nagata, S. A. Clark, K. Yokoyama, I. K. Tamiya, Amperometric glucose biosensor manufactured by a printing technique, Anal. Chim. Acta. 304 (1995) 157-164.
M. B. Madaras, R. Buck, Miniaturized biosensors employing electropolymerized permselective films and their use for creatinine assays in human serum, Anal. Chem. 68 (1996) 3832-3839.
X.-E. Zhang, F. Ge, Z.-P. Zhang, X.-M. Zhang, Simultaneous determination of maltose and glucose using a screen-priented electrode system, Biosens. bioelectron. 13 (1998) 333-339.
G. A. Evtugyn, E.V. Gogol, J.-L. Marty, H. C. Budnikov, V. G. Wintrer, Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors, Talanta 53 (2000) 379-389.
M. V. Pishko, A. F. Revzin, K. Sirkar, A. Simonian, Glucose, lactate, and pyruvate biosensor arrays based on redox polymer/oxidoreductase nanocomposite thin-films deposited on photolithographically patterned gold microelectrodes , Sens. actuators. B Chem. 81 (2002) 359-368.
J. Deng, H. Liu, An amperometric glucose sensor based on Eastman- AQ-tetrathiafulvalene modified electrode, Biosens. bioelectron. 11 (1996) 103-110.
A. R. Guadalupe, Y. Guo, Screen-printable surfactant-induced sol–gel graphite composites for electrochemical sensors , Sens. Actuators B chem. 46 (1998) 213-219.
P. G. Zambonin, F. Palmisano, G. E. De Benedetto, One-step fabrication of a bienzyme glucose sensor based on glucose oxidase and peroxidase immobilized onto a poly(pyrrole) modified glassy carbon electrode , Biosens. bioelectron. 11 (1996) 1001-1008.
G. G. Guilbault, M. Pravda, M. P. O’Halloran, Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors, Talanta 55 (2001) 605-611.
C. Saby, F. Mizutani, S. Yabuki, Glucose sensor based on carbon paste electrode incorporating poly(ethylene glycol) -modified glucose oxidase and various mediators, Anal. Chim. Acta 304 (1995) 33-39.
H. E. Hansen, J. Kulys, Long-term response of an integrated carbon paste based glucose biosensor, Anal. Chim. Acta 303 (1995) 285-294.
S-H. Kim, S-M. Lee, D-U. Kim, J-Z. Cui, S-W. Kang, Enzyme-based glucose biosensor using a dye couple system, Dyes pigm. 49 (2001) 103-108.
M. Aizawa, C. Zhang, Q. Gao, Flow injection analytical system for glucose with screen-printed enzyme biosensor incorporating Os-complex mediator, Anal. Chim. Acta 426 (2001) 33-41.
G. S. Cha, G. Cui, S. J. Kim, S. H. Choi, H. Nam, A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent, Anal. Chem. 72 (2000) 1925-1929.
P. C. Pandey, S. Upadhyay, H. C. Pathak, A new glucose sensor based on encapsulated glucose oxidase within organically modified sol–gel glass , Sens. Actuators B chem. 60 (1998) 83-89.
S. Dong, X. Chen, Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor, Biosens. bioelectron. 18 (2003) 999-1004.
G. Zhu, L. Zhu, Y. Li, A novel flow through optical fiber biosensor for glucose based on luminol electrochemiluminescence , Sens. Actuators B chem. 86 (2002) 209-214.
I. Isildak, N. Tinkilic, O. Cubuk, Glucose and urea biosensors based on all solid-state PVC–NH2 membrane electrodes, Anal. Chim. Acta 452 (2002) 29-34.
L. Doretti, D. Ferrara, P. Gattolin, S. Lora, F. Schiavon, F. M. Veronese, PEG-modified glucose oxidase immobilized on a PVA cryogel membrane for amperometric biosensor applications, Talanta 45 (1998) 891-898.
C. Martelet, S. Poyard, N. Jaffrezic-Renault, S. Cosnier, P. Labbe, Optimization of an inorganic/bio-organic matrix for the development of new glucose biosensor membranes, Anal. Chim. Acta 364 (1998) 165-172.
H. Liu, T. Ying, K. Sun, H. Li, D. Qi, Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode, Anal. Chim. Acta 344 (1997) 187-199.
C. Jiménez, C. Puig-Lleixà, J. Bartrolí, Acrylated polyurethane photopolymeric membrane for amperometric glucose biosensor construction , Sens. Actuators B chem. 72 (2001) 56-62.
F. Kadirgan, I. Becerik, Glucose sensitivity of platinum-based alloys incorporated in polypyrrole films at neutral media, Synth. met. 124 (2001) 379-384.
A. Guerrieri, G. E. De Benedetto, F. Palmisano, P. G. Zambonin, Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer, Biosens. bioelectron. 13 (1998) 103-112.
X. Yang, E. Wang, Z. Cheng, Capacitive detection of glucose using molecularly imprinted polymers, Biosens. bioelectron. 16 (2001) 179-185.
A. L. Sharma, S. Annapoorni, B. D. Malhotra, Current Applied Physics 3 (2003) 239-245.
Z. Shen, H. Xue, Y. Li, Polyaniline–polyisoprene composite film based glucose biosensor with high permselectivity, Synth. met. 124 (2001) 345-349.
R. D. O’Neill, B. M. Dixon, J. P. Lowry, Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose, J. of Neuroscience Methods 119 (2002) 135-142.
A. Griffith, A. Glidle, J. M. Cooper, Probing enzyme polymer biosensors using X-ray photoelectron spectroscopy: Determination of glucose oxidase in electropolymerised films , Biosens. bioelectron. 11 (1996) 625-631.
Z. Shen, H. Zheng, H. Xue, Y. Zhang, A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst , Biosens. bioelectron. 17 (2002) 541-545.
M. C. Pham, B. Piro, L. A. Dang, S. Fabiano, C. Tran-Minh, A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly(3,4-ethylenedioxythiophene) (PEDT) films, J. electroanal. chem. 512 (2001) 101-109.
Z. Shen, H. Xue, W. Sun, B. He, Single-wall carbon manotubes as immobilization material for glucose biosensor, Synth. met. 135-136 (2003) 831-832.
S. D-Champagne, M. Delvaux, Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors, Biosens. bioelectron. 18 (2003) 943-951.
P. Bergveld, T. V. Anh Dam, D. Pijanowska, W. Olthuis, Highly sensitive glucose sensor based on work function changes measured by an EMOSFET, Analyst 128 (2003) 1062-1066.
S. Milardović, I. Kruhak, D. Iveković, V. Rumenjak, M. Tkalčec, B. S. Grabarić, Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode , Anal. Chim. Acta 350 (1997) 91-96.
H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, D. Qi, Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, -galactosidase and mutarotase in -cyclodextrin polymer, Anal. Chim. Acta 358 (1998) 137-144.
J. Anzai, Y. Kobayashi, Y. Suzuki, H. Takeshita, Q. Chen, T. Osa, T. Hoshi, X. Du, Enzyme sensors prepared by layer-by-layer deposition of enzymes on a platinum electrode through avidin–biotin interaction , Sens. Actuators B-chem. 52 (1998) 3-9.
H. Sakslund, J. Wang and O. Hammerich, Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8μm carbon fiber, J. Electroanal. Chem 402 (1996) 149-160.
J. Wang and L. Angnes, Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes, Anal. Chem. 64 (1992) 456-459.
Y. Ikariyama, S. Yamauchi, T. Yukiashi and H. Ushiodo, Electrochemical fabrication of amperometric micro-enzyme sensor, J. Electrochem. Soc. 136 (1989) 702-706.
J. Wang and O. Chen, Enzyme microelectrode array strips for glucose and lactate, Anal. Chem. 66 (1994) 1007-1011.
T. Abe, Y. Y. Lau and A. G. Ewing, Fluorescence imaging of gas-phase molecules produced by matrix-assisted laser desorption, Anal. Chem. 64 (1992) 2160-2163.
Q. Chi and S. Dong, Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode, Anal. Chim. Acta 278 (1993) 17-23.
H. Sakslund and J. Wang, O. Hammerich, Analysis of the factors determining the sensitivity of a miniaturized glucose biosensor made by codeposition of palladium and glucose oxidase onto an 8 m carbon fiber, J. Electroanal. Chem. 402 (1996) 149-160.
H. Sakslund and J. Wang, O. Hammerich, A critical evaluation of a glucose biosensor made by codeposition of palladium and glucose oxidase on glassy carbon, J. Electroanal. Chem. 374 (1994) 71-79.
J. Wang, N. Naser, L. Angnes, H. Wu and L. Chen, Metal-dispersed carbon paste electrodes, Anal. Chem. 64 (1992) 1285-1288.
J. Wang, J. Liu, L. Chen and F. Lu, Highly selective membrane-free, mediator-free glucose biosensor, Anal. Chem. 66 (1994) 3600-3603.
J. Wang, G. Rivas and M. Chicharro, Iridium-dispersed carbon paste enzyme electrodes, Electroanalysis 8 (1996) 434-437.
F. Tian and G. Zhu, Sol–gel derived iridium composite glucose biosensor , Sens. Actuators B chem. 86 (2002) 266-270.
K. Itaya, N. Shoji and I. Uchida, Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes, J. Am. Chem. Soc. 106 (1984) 3423-3429.
R. Garjonyte and A. Malinauskas, Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer , Sens. Actuators B chem. 56 (1999) 85-92.
R. Garjonyte and A. Malinauskas, Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine) films on a Prussian Blue-modified electrode , Sens. Actuators B chem. 63 (2000) 122-128.
Q. Chi, S. Dong, Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition, Anal. Chim. Acta 310 (1995) 429-436.
R. Garjonyte and A. Malinauskas, Amperometric glucose biosensors based on Prussian Blue– and polyaniline–glucose oxidase modified electrodes, Biosens. bioelectron. 15 (2000) 445-451.
J. Wang, X. Zhang and M. Prakash, Glucose microsensors based on carbon paste enzyme electrodes modified with cupric hexacyanoferrate, Anal. Chim. Acta 395 (1999) 11-16.
M. S. Lin, Y. C. Wu and B. I. Jan, Mixed-valance compound based biosensor, Biotech. & Bioeng. 62 (1999) 56-61.
M. S. Lin, T. F. Tseng, and W. C. Shih, Chromium(III) hexacyanoferrate (II)-based chemical sensor for the cathodic determination of hydrogen peroxide, Analyst 123 (1998) 159-163.
M. S. Lin, Wei Chung Shih, Chromium hexacyanoferrate based glucose biosensor, Anal. Chim, Acta 381 (1999) 183-189.
S. Milardovic, I. Kruhak, D. Ivekovic, V. Rumenjak, M. Tkalcec, B. S. Grabaric, Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode, Anal. Chim. Acta 350 (1997) 91-96.
D. R. Shankaran, N. Uehara and T. Kato, A metal dispersed sol–gel biocomposite amperometric glucose biosensor, Biosensors and Bioelectronics 18 (2003) 721-728.
S. Cosnier, A. Senilou, M. Gratzel, P. Comte, N. Vlachopoulos, N. J. Renault, and C. Martelet, A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide, J. Electroanal. Chem. 469 (1999) 176-181.
G. W. J. Harwood and C. W. Pouton, Amperometric enzyme biosensors for the analysis of drugs and metabolites, Advanced Drug Delivery. Reviews. 18 (1996) 163-191.
Y. Mishima, J. Motonaka, K. Maruyama, I. Nakabayashi, and S. Ikeda, Glucose sensor based on titanium dioxide electrode modified with potassium hexacyanoferrate(III) , Sens. Actuators B chem., 65 (2000) 343-345.
S. V. Dzyadevich, V. N. Arkhipova, A. P. Soldatkin, A. V. El’skaya, and A. A. Shul’ga, Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent, Anal. Chim. Acta 374 (1998) 11-18.
S. A. Jaffari and J. C. Pickup, Novel hexacyanoferrate (III)-modified carbon electrodes: application in miniaturized biosensors with potential for in vivo glucose sensing , Biosens. bioelectron. 11 (1996) 1167-1175.
I. L. Mattos, L. Gorton, T. Laurell, A. Malinauskas and A. A. Karyakin, Development of biosensors based on hexacyanoferrates , Talanta 52 (2000) 791-799.
R. S. Brown, J. H. T. Luong, A regenerable pseudo-reagentless glucose biosensor based on Nafion polymer and l,1'-dimethylferricinium mediator, Anal. Chim. Acta 310 (1995) 419-427.
J. Losada, I. Cuadrado, M. Moran, C. M. Casado, B. Alonso, and M. Barranco, Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors, Anal. Chim. Acta 338 (1997) 191-198.
J. Katrlik, R. Brandsteter, J. Svorc, M. Rosenberg, and S. Miertus, Mediator type of glucose microbial biosensor based on Aspergillus niger, Anal. Chim. Acta 356 (1997) 217-224.
H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, D. Qi, Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, -galactosidase and mutarotase in -cyclodextrin polymer, Anal. Chim. Acta 358 (1998) 137-144.
F. Tian and G. Zhu, Bienzymatic amperometric biosensor for glucose based on polypyrrole/ceramic carbon as electrode material, Anal. Chim. Acta 451 (2002) 251-258.
N. C. foulds and C. R. Lowe, Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers, Anal. Chem. 60 (1988) 2473-2478.
J. Katrlik, R. Brandsteter, J. Svorc, M. Rosenberg, S. Miertus, Mediator type of glucose microbial biosensor based on Aspergillus niger, Anal. Chim. Acta 356 (1997) 217-224.
P. C. Pandey, S. Upadhyay, N. K. Shukla and S. Sharma, Studies on the electrochemical performance of glucose biosensor based on ferrocene encapsulated ORMOSIL and glucose oxidase modified graphite paste electrode , Biosens. bioelectron. 18 (2003) 1257-1268.
J. Razumiene, A. Vilkanauskyte, V. Gureviciene, V. Laurinavicius, N. V. Roznyatovskaya, Y. V. Ageeva, M. D. Reshetova, and A. D. Ryabov, J. of Organometa. Chem. 668 (2003) 83-90.
Z. Wu, B. Wang, S. Dong, Erkang Wang, Amperometric glucose biosensor based on lipid film, Biosens. bioelectron. 15 (2000) 143-147.
C. Sun, W. Song, D. Zhao, Q. Gao, and H. Xu, Tetrabutylammonium– tetracyanoquinodimethane as electron-transfer mediator in amperometric glucose sensor, Microchem. J. 53 (1996) 296-302.
D. Centonze, I. Losito, C. Malitesta, F. Palmisano, and P. G. Zambonin, Electrochemical immobilisation of enzymes on conducting organic salt electrodes: characterisation of an oxygen independent and interference-free glucose biosensor, J. Electroanal. Chem. 43 (1997) 103-111.
J. Kulys, The carbon paste electrode encrusted with a microreactor as glucose biosensor, Biosens. bioelectron. 14 (1999) 473-479.
T. Ikeda, T. Shibata, and M. Senda, Amperometric enzyme electrode for maltose based on an oligosaccharide dehydrogenase-modified carbon paste electrode containing p-benzoquinone, J. Electroanal. Chem. 261 (1989) 351-362.
P. Wang, S. Amarasinghe, J. Leddy, M. Arnold, and J. S. dordick, Enzymatically prepared poly(hydroquinone) as a mediator for amperometric glucose sensors, Polymer 39 (1998) 123-127.
T. J. Ohara, R. Rajagopalan, and A. Heller, Glucose electrodes based on cross-linked bis(2,2'-bipyridine)chloroosmium(+/2+) complexed poly(1-vinylimidazole) films, Anal. Chem. 65 (1993) 3512-3517.
M. Pravda, C. M. Jungar, E. I. Iwuoha, M. R. Smyth, K. Vytras, A. Ivaska, Evaluation of amperometric glucose biosensors based on co-immobilisation of glucose oxidase with an osmium redox polymer in electrochemically generated polyphenol films, Anal. Chim. Acta 304 (1995) 127-138.
T. M. Park, E. I. Iwuoha, M. R. Smyth, R. Freaney and A. J. McShane, Sol-gel based amperometric biosensor incorporating an osmium redox polymer as mediator for detection of -lactate, Talanta 44 (1997) 973-978.
Y. Nakabayashi, A. Omayu, S. Morii, and S. Yagi, Evaluation of osmium(II) complexes as mediators accessible for biosensors , Sens. Actuators B chem. 66 (2000) 128-130.
C. Danilowicz, E. Corton, F. Battaglini, and E. J. Calvo, An Os(byp)2- ClPyCH2NHPoly(allylamine) hydrogel mediator for enzyme wiring at electrodes, Electrochim. acta. 43 (1998) 3525-3531.
C. Zhang, T. Haruyama, E. Kobatake and M. Aizawa, Evaluation of substituted-1,10-phenanthroline complexes of osmium as mediator for glucose oxidase of Aspergillus Niger, Anal. Chim. Acta 408 (2000) 225-232.
C. Zhang, T. Haruyama, E. Kobatake and M. Aizawa, Disposable electrochemical capillary-fill device for glucose sensing incorporating a water-soluble enzyme/mediator layer, Anal. Chim. Acta 442 (2001) 257-265.
S. Reiter, K. Habermuller and W. Schuhmann, A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films , Sens. Actuators B chem. 79 (2001) 150-156.
C. Zhang, Q. Gao, M. Aizawa, Flow injection analytical system for glucose with screen-printed enzyme biosensor incorporating Os-complex mediator, Anal. Chim. Acta 426 (2001) 33-41.
A. Silber, N. Hampp, W. Schuhmann, Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors, Biosens. bioelectron. 11 (1996) 215-223.
L. Mao, K. Yamamoto, Glucose and choline on-line biosensors based on electropolymerized Meldola's blue, Talanta 51 (2000) 187-195.
J. Kulys, H. E. Hansen T. B. Rasmussen, J. Wang, M. Ozsoz, Glucose biosensor based on the incorporation of Meldola Blue, Anal. Chim. Acta 288 (1994) 193-196.
H. Liu, T. Ying, K. Sun, H. Li, D. Qi, Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode, Anal. Chim. Acta 344 (1997) 187-199.
I. M. Alfaro, E. I. Pizarro, L. Rodriguez, and E. M. Valdes, The role of catecholamines as mediators in the glucose oxidase/glucose system, Bioelectrochem. and Bioenerg. 38 (1995) 307-313.
E. Ohasshi, and I. Karube, Development of a thin membrane glucose sensor using -type crystalline chitin for implantable biosensor, J. of Biotech. 40 (1995) 13-19.
C. Saby, F. Mizutani, and S. Yabuki, Glucose sensor based on carbon paste electrode incorporating poly(ethylene glycol) -modified glucose oxidase and various mediators, Anal. Chim. Acta 304 (1995) 33-39.
M. Khayyami, G. Johansson, D. Kriz, B. Xie, P. O. Larsson and B. Danielsson, Flow-injection determination of trace hydrogen peroxide or glucose utilizing an amperometric biosensor based on glucose oxidase bound to a reticulated vitreous carbon electrode, Talanta 43 (1996) 957-962.
J. J. Xu, Z. H. Yu and H. Y. Chen, Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion, Anal. Chim. Acta 463 (2002) 239-247.
G. Cui, S. J. Kim, S. H. Choi, H. Nam, and G. S. Cha, K. J. Paeng, A disposable amperometric sensor screen printed on a nitrocellulose strip: A glucose biosensor employing lead oxide as an interference-removing Agent, Anal. Chem. 72 (2000) 1925-1929.
S. Kumaran, C. Tran-Minh, Determination of organophosphorus and carbamate insecticides by flow injection analysis, Anal. Biochem. 200 (1992) 187.
J. L. Marty, N. Mionetto, T. Noguer, F. Ortega, C. Roux, , Enzyme sensors for the detection of pesticides, Biosens. Bioelectron. 8 (1993) 273-280.
E. Lorenzo, C. L. Rosa, F. Pariente, L. Hernandez, Determination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate, Anal. Chim. Acta 295 (1994) 273-282.
S. Alegret, D. Martorell, F. Cespedes, E. Martinez-Fabregas, Determination of organophosphorus and carbamate pesticides using a biosensor based on a polishable, 7,7,8,8-tetracyanoquino-dimethane- modified, graphite-epoxy biocomposite, Anal. Chim. Acta 337 (1997) 305-313.
P. Labbe, J. L. Besombes, S. Cosnier, G. Reverdy, A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides, Anal. Chim. Acta 311 (1995) 255-263.
J. Wang, V. B. Nascimento, S. A. Kane, K. Rogers, M. R. Smyth, L. Angnes, Screen-printed tyrosinase-containing electrodes for the biosensing of enzyme inhibitors, Talanta 43 (1996) 1903-1907.
G. A. Rechnitz, W. R. Everett, Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem. 70 (1998) 807-810.
S. Alegret, D. Martorell, F. Cespedes, E. Martinez-Fabregas, Amperometric determination of pesticides using a biosensor based on a polishable graphie-epoxy biocomposite, Anal. Chim. Acta 290 (1994) 343-348.
E. Lorenzo, J. M. Abad, F. Pariente, L. Herandez, H. D. Abruna, Determination of Organophosphorus and Carbamate Pesticides Using a Piezoelectric Biosensor, Anal. Chem. 70 (1998) 2848-2855.
T. Matsunaga, M. Okochi, Electrochemical sterilization of bacteria using a graphite electrode modified with adsorbed ferrocene, Electrochim. Acta 42 (1997) 3247-3250.
T. -T. Tomi, H. Y. Liu, M. J. Weaver, Intramolecular electron transfer at metal surfaces. III. Influence of bond conjugation on reduction kinetics of cobalt(III) anchored to metal surfaces via thiophenecarboxylate ligands, J. Am. Chem. Soc. 106 (1984) 1233-1239.
H. Y. Chen, H. X Ju,. D. M. Zhou, Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and nafion®, J. Electroanal. Chem. 408 (1996) 219-223.
W. J. Albery, M. J. Eddowes, H. A. O. Hill, A. R. Hillman, Mechanism of the reduction and oxidation reaction of cytochrome c at a modified gold electrode, J. Am. Chem. Soc. 103 (1981) 3904-3910.
K. Uosaki, T. Kondo, M. Yanagida, S. I. Nomura, T. Ito, pH-dependent photoinduced electron transfer at the gold electrode modified with a self-assembled monolayer of a porphyrin-mercaptoquinone coupling molecule, J. Electroanal. Chem. 438 (1997) 121 - 126.
J. R. Lenhard, R. W. Murray, Chemically modified electrodes. 13. Monolayer/multilayer:overage, decay kinetics, and solvent and interaction effects for ferrocenes covalently linked to platinum electrodes, J. Am. Chem. Soc. 100 (1978) 7870-7875.
D.C.-S. Tse,T. Kuwana, Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes, Anal. Chem. 50 (1978) 1315-1318.
B. J. Watkins, J. R. Behling, E. Kariv, L. L. Miller, Chiral electrode, J. Am. Chem. Soc. 97 (1975) 3549-3550.
A. N. K. Lau, L. L. Miller, Electrochemical behavior of a dopamine polymer. Dopamine release as a primitive analog of a synapse, J. Am. Chem. Soc. 105 (1983) 5271-5277.
Z. Gao, K. S. Siow, A. Ng, Y. Zhang, Determination of ascorbic acid in a mixture of ascorbic acid and uric acid at a chemically modified electrode, Anal. Chim. Acta 343 (1997) 49-57.
I. G. Casella, M. R. Guascito, A. M. Salvi, E. Desimoni, Analytica Chimica Acta Catalytic oxidation and flow detection of hydrazine compounds at a nafion∕ruthenium(III) chemically modified electrode, Anal. Chim. Acta 354 (1997) 333-341.
K. K. Kanazawa, A. F. Diaz, R. H. Geiss, W. D. Gill, J. F. Kwak, J. A. Logan, J. F. Rabolt, G. B. Street, Organic metals : polypyrrole, a stable synthetic metallic polymer, J. C. S. Chem. Comm. (1979) 854-855.
A. Ciszewski, G. Milczarek, Glassy carbon electrode modified by conductive, polymeric nickel(II) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media, J. Electroanal. Chem. 426 (1997) 125-130.
T. Komori, T. Nonaka, Electroorganic reactions on organic electrodes. 3. Electrochemical asymmetric oxidation of phenyl cyclohexyl sulfide on poly(L-valine)-coated platinum electrodes, J. Am. Chem. Soc. 105 (1983) 5690-5691.
R. W. Murray, R. A. Reed, L. Geng, Solid state voltammetry of electroactive solutes in polyethylene oxide polymer films on microelectrodes, J. Electroanal. Chem. 208 (1986) 185-193.
R. P. Baldwin, J. K. Christensen, L. Kryger, Voltammetric determination of traces of nickel(II) at a chemically modified electrode based on dimethylglyoxime-containing carbon paste, Anal. Chem. 58 (1986) 1790-1798.
P. K. Ghosh, A. J. Bard, Clay-modified electrodes, J. Am. Chem. Soc. 105 (1983) 5691-5693.
J. M. Zen, P. J. Chen, A Selective Voltammetric Method for Uric Acid and Dopamine Detection Using Clay-Modified Electrodes, Anal. Chem. 69 (1997) 5087-5093.
C. G. Murray, R. J. Nowak, D. R. Rolison, Electrogenerated coatings containing zeolites, J. Electroanal. Chem. 164 (1984) 205-210.
H. Y. Chen, A. M. Yu, H. L. Zhang, Catalytic oxidation of uric acid at the polyglycine chemically modified electrode and its trace determination, Analyst 122 (1997) 839-841.
H. Y. Chen, A. M. Yu, Electrocatalytic oxidation and determination of ascorbic acid at poly(glutamic acid) chemically modified electrode, Anal. Chim. Acta 344 (1997) 181-185.
J. M. Zen, Y. S. Ting, Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode, Anal. Chim. Acta 342 (1997) 175-180.
J. M. Zen, W. M. Wang, G. Ilangovan, Adsorptive potentiometric stripping analysis of dopamine on clay-modified electrode, Anal. Chim. Acta 372 (1998) 315-321.
T. -F. Kang, Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications, Anal. Chim. Acta 354 (1997) 343-349.
H. Y. Chen, J. A. Ni, H. X. Ju, D. Leech, Amperometric determination of epinephrine with an osmium complex and Nafion double-layer membrane modified electrode, Anal. Chim. Acta 378 (1999) 151-157.
B. Zinger, L. L. Miller, Timed release of chemicals from polypyrrole films, J. Am. Chem. Soc. 106 (1984) 6861-6863.
R. C. Engstrom, V. A. Strasser, Characterization of electrochemically pretreated glassy carbon electrodes, Anal. Chem. 56 (1984) 136-141.
T. Nagaoka, T. Yoshino, Surface properties of electrochemically pretreated glassy carbon, Anal. Chem. 58 (1986) 1037-1042.
I. Hu, D. H. Karweik, T. Kuwana, Activation and deactivation of glassy carbon electrodes, J. Electroanal. Chem. 189 (1985) 59-72.
R. M. Wightman, K. J. Stutts, P. M. Kovach, W. G. Kuhr, Enhanced electrochemical reversibility at heat-treated glassy carbon electrodes, Anal. Chem. 55 (1983) 1632-1634.
M. Poon, R. L. McCreey, In situ laser activation of glassy carbon electrodes, Anal. Chem. 58 (1986) 2745-2750.
M. Poon, R. L. McCreey, Repetitive in situ renewal and activation of carbon and platinum electrodes: application to pulse voltammetry, Anal. Chem. 59 (1987) 1615-1620.
P. Bertocchi, E.Ciranni, D. Compagnone, V. Magearu, G. Palleschi, S. Pirvutoiu, L. Valvo, Flow injection analysis of mercury(II) in pharmaceuticals based on enzyme inhibition and biosensor detection, J. Pharm. Biomed. Anal. 20 (1999) 263-269.
J. Riber, C. de la Fuente, M. D. Vazquez, M. L. Tascόn, P. Sánchez Batanero, Electrochemical study of antioxidants at a polypyrrole electrode modified by a nickel phthalocyanine complex. Application to their HPLC separation and to their FIA system detections, Talanta 52 (2000) 241-252.
A. Aminot, R. Kerouel, D. Birot, A flow injection-fluorometric method for the determination of ammonium in fresh and saline waters with a view to in situ analyses, Wat. Res. 35 (2001) 1777-1785.
A. G. Lista, M. E. Palomeque, B. S. Fernández Band, Flow-injection fluorimetric determination of mercury(II) with calcein, Talanta 50 (1999) 881-885.
K. W. M. Siu, G. J. Gardner, S. S. Berman, Ion spray mass spectrometry/ mass spectrometry: quantitation of tributyltin in a sediment reference material for trace metals, Anal. Chem. 61 (1989) 2320-2322.
H. F. Schröder, Tracing of surfactants in the biological wastewater treatment process and the identification of their metabolites by flow injection-mass spectrometry and liquid chromatography-mass spectrometry and -tandem mass spectrometry, J. Chromatogr. A 926 (2001) 127-150.
B. R. LaFreniere, R. S. Houk, D. R. Wiederin, V. A. Fassel, Direct detection of vacuum ultraviolet radiation through an optical sampling orifice: determination of nonmetals in gaseous samples by inductively coupled plasma atomic emission spectroscopy, Anal. Chem. 1988, 60, 23-26.
J. Szpunar, J. Bettmer, M. Robert, H. Chassaigne, K. Cammann, R. Lobinski, O. F. X. Donard, Validation of the determination of copper and zinc in blood plasma and urine by ICP MS with cross-flow and direct injection nebulization, Talanta 44 (1997) 1389-1396.
S. V. Olesik, S. B. French, M. Novotny, Reaction monitoring in supercritical fluids by flow injection analysis with Fourier transform infrared spectrometric detection, Anal. Chem. 58 (1986) 2256-2258.
M. L. Ramos, J. F. Tyson, D. J. Curran, Determination of acetaminophen by flow injection with on-line chemical derivatization:Investigations using visible and FTIR spectrophotometry, Anal. Chim. Acta 364 (1998) 107-116.
M. D. Luque De Castro, M. T. Tena, Hyphenated flow injection systems and high discrimination instruments, Talanta 42 (1995) 151-169.
E. Lenz, S. Taylor, C. Collins, I. D. Wilson, D. Louden, A. Handley, Flow injection analysis with multiple on-line spectroscopic analysis (UV, IR, 1H-NMR and MS), J. Pharm. Biomed. Anal. 27 (2002) 191-200.
Ruzicka, J.; Hansen, E. H. Flow Injection Analysis 2nd ed., Wiley, New York, 1988,
K. N. Andrew, N. J. Blundell, D. Price, P. J. Worsfold, Nonreaction of phosphotyrosine with the folin phenol reagent, Anal. Chem. 66 (1994) 917-918.
R. Appelqvist, G. M. Varga, Enzymatic determination of glucose in a flow system by catalytic oxidation of the nicotinamide coenzyme at a modified electrode, Anal. Chim. Acta 169 (1985) 237-247.
G. J. Moodu, G. S. Sanghera, J. Am. Chem. Soc. 111 (1986) 1235.
K. Kim, M. J. K, Isocitrate analysis using a potentiometric biosensor with immobilized enzyme in a FIA system, Food res. int. 36 (2003) 223-230.
R. T. Dufford, Luminescence of Grignard compounds in electric and magnetic fields, and related electrical phenomena, J. Am. Chem. Soc. 49 (1927) 1858-1864.
Newton Harvey, Luminescence during electrolysis, J. Am. Chem. Soc. 33 (1929) 1456-1459.
L. R. Faulkner, Chemiluminescence from electron-transfer processes, Methods enzymol. 57 (1978) 494-526.
J. P. Paris, Warren W. Brandt, Charge transfer luminescence of a ruthenium(Ⅱ)chelate, J. Am. Chem. Soc. 81 (1959) 5001-5002.
Allen J. Bard, Mark M. Richter, Electrogenerated chemiluminescence. 62. Enhanced ECL in bimetallic assemblies with ligands that bridge isolated chromophores, Anal. Chem. 70 (1998) 310-318.
A. Juris, V. Balzani, Ru(Ⅱ) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence, Coord. chem. rev. 84 (1988) 85-227.
Seth C. Rasmussen, Mark M. Richter, Eugene Yi, Helen Place, Karen J. Brewer, Synthesis and characterization of a serious of novel rhodium and iridium complexes containing polypyridyl bridging ligand: potential uses in the Development of Multimetal Catalysts for Carbon Dioxide Reduction, Inorg. Chem. 29 (1990) 3926-3932.
Karen J. Brewer, W. Rorer Murphy, Jr., Stanford R. Spurlin, John D. Petersen. The next generation of (polyazine) ruthenium(Ⅱ) complexes, Inorg. Chem. 25 (1986) 882-884.
Mark M. Richterf, Karen J. Brewer, Osmium(II)/Ruthenium(II) trimetallics Incorporating polyazine bridging ligands: Isovalent near-IR absorbers with unique electrochemical behavior, Inorg. Chem. 32 (1993) 5762-5768.
Nurhan E. Tokel, Allen J. Bard, Electrogenerated Chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridyl)ruthenium(Ⅱ) dichloride, J. Am. Chem. Soc. 94 (1972) 2862-2863.
Deniz Ege, William G. Becker, Allen J. Bard, Electrogenerated chemiluminescent determination of Ru(bpy)32+ at low levels, Anal. Chem. 56 (1984) 2413-2417.
G. F. Blackburn, H. P. Shan, J. H. Kenten, J. Leland, R. A. Kamin, J. Link, J. Peterman, M. J. Powell, A. Shah, D. B. Talley, Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics, Clin. Chem. 37 (1991) 1534-1539.
Xiao-Hong Xu, Allen J. Bard, Immobilization and hybridization of DNA on an aluminum(II1) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection, J. Am. Chem. Soc. 117 (1995) 2627-2631.
Mats Ohlin, Michel Silvester, V. A. Sundqvist, Carl A. K. Borrebaeck, Cytomegalovirus glycoprotein B-Specific antibody analysis using electrochemiluminescence detection-based techniques, Clin. diagn. lab. immunol. 4 (1997) 107-111.
L. R. Faulkner, A. J. Bard, In Electroanalytical Chemistry, Vol.10, A. J. Bard, Ed., Marcel Dekker, New York, 1977,
A. W. Knight, A revieew of recent trends in analytical applications of electrogenerated chemiluminescence, Trends Anal. Chem. 18 (1999) 47-62.
A. W. Knight, G. M. Greenway, Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence. A review, Analyst 119 (1994) 879-890.
L. R. Faulkner, Chemiluminescence from electron-transfer processes, Methods enzymol. 57 (1978) 494-526.
G. M. Greenway, Analytical application of electrogenerated chemi- luminescence, Trends Anal. Chem. 9 (1990) 200.
G. C. Fiaccabrino, R. L. Smith, Electrochemiluminescence of Tris- (2,2-bipyridine)ruthenium in Water at Carbon Microelectrods, Anal. Chem. 70 (1998) 4157-4161.
Jiangbo Ouyang, Thomas C. Zietlow, Michael D. Hopkins, Fu-Ren F. Fan, Harry B. Gray, Allen J. Bard, Electrochemistry and electrogenerat-ed chemiluminescence of Mo2CI4(Pme3)4, J. Phys. Chem. 90 (1986) 38-41.
Robert D. Mussell, Daniel G. Nocera, Partitioning of the Electrochemical Excitation Energy in the Electrogenerated Chemiluminescence of Hexanuclear Molybdenum and Tungsten Clusters, Inorg. Chem. 29 (1990) 3711-3717.
Arnd Vogler, Horst Kunkely, Electrochemiluminescence of Tetrakis (diphosphonato)diplatinate(Ⅱ), Angew. Chem. Int. Ed. Engl. 23 (1984) 316-317.
J. Kim, F. F. Fan, A. J. Bard, Chi-Ming Che, H. B. Gray, Electrogenerated chemiluminescence. On the electrogenerated chemiluminescence of tetrakis(pyrophosphito)diplatinate(Ⅱ), Pt2(p2O5H2)44-, Chemical Physics Letters 121 (1985) 543-546.
E. J. Dose, L. J. Wilson, Synthesis and Electrochemical and Photoemission Properties of Mononuclear and Binuclear Ruthenium(I1Complexes Containing2,2’-Bipyridine, 2,9-Dimethyl- 1,lO-phenanthroline, 2,2’-Bipyrimidine, 2,2’-Biimidazole, and 2-Pyridinecarboxaldimine Ligands, Inorg. Chem. 17 (1978) 2660-2666.
Aaron I. Baba, Harry E. Ensley, Russell H. Schmehl, Influence of Bridging Ligand Unsaturation on Excited State Behavior in Mono- and Bimetallic Ruthenium(I1) Diimine Complexes, Inorg. Chem. 34 (1995) 1198-1207.
Israel Rubinstein and Allen J. Bard, Electrogenerated chemiluminescen-ce. 37. Aqueous ecl systems based on tris(2,2'-bipyridine)ruthenium(2+) and oxalate or organic acids, J. Am. Chem. SOC. 103 (1981) 512-516.
Yanbing Zu and Allen J. Bard, Electrogenerated Chemiluminesce-nce. 66. The role of direct coreactant oxidation in the Rutheniumtris(2,2׳)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity, Anal. Chem. 72 (2000) 3223-3232.
Henry S. White and Allen J. Bard, Electrogenerated Chemilumin-escence. 41.Electrogenerated chemiluminescence and chemilumines-cence of the Ru(2,2’-bpy)2+-S2O82- system in acetonitrile-water solutions, J. Am.Chem. Soc. 104 (1982) 6891-6895.
R. D. Gerardi, N. W. Barnett, Analytical applications of tris(2,2’-bipyridyl)ruthenium(III) as a chemiluminescent reagent, Anal. Chim. Acta., 378 (1999) 1-41.
G. G. Guilbault, K. A. Fähnrich, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta 54 (2001) 531-559.
A. F. Martin, T. A. Nieman, Chemiluminescence biosensors using tris-(2,2’-bipyridyl)-ruthenium(II) and dehydrogenases immobilized in cation exchange polymers, Biosens. bioelectron. 12 (1997) 479-489.
R. Lejeune, L. Thunus, C. Dodeigne, Chemiluminescence as a diagnostic tool. A review, Talanta 51 (2000) 415-439.
K. E. Haapakka, J. J. Kankare, The mechanism of the electrogenerated chemiluminescence of luminol in aqueous alkaline solution, Anal. Chim. Acta. 138 (1982) 263-275.
Christophe A. Marquette, Loïc J. Blum, Luminol electrochemiluminescence- based fibre optic biosensor for flow injection analysis of glucose and lactate in natural samples, Anal. Chim. Acta. 381 (1999) 1-10.
Andrew W. Knight, Gillian M. Greenway, Relationship between structural attributes and observer electrogenerated chemiluminescence activity of tertiary amines as potential analysis for the tris(2,2-bipyridine) ruthenium(Ⅱ) ECL reaction A review, Analyst 11 (1996) 101R-106R.
Neil D. Danielson, James B. Noffsinger, Generation of chemilum-inescence upon reaction of aliphatic amines wuth tris(2,2'-bipyridine) ruthenium(Ⅲ), Anal. Chem. 59 (1987) 865-868.
S. F. Nelsen, Ionization from nitrogen and oxygen lone pairs: A comparison of trialkylamine, dialkyl ether, tetraalkylhydrazine, anddialkyl peroxide photoelectron spectroscopic ionization potentials, J. org. chem. 49 (1984) 1891-1897.
P. H. Cannington, N. S. Ham, He(Ⅰ) and He(Ⅱ) photoelectron spectra of glycine and related molecules, J. electron spectros. relat. phenomena. 32 (1983) 139-151.
R. A. Marcus, P. Siders, Quantum effects for electron-transfer reactions in the inverted region, J. Am. Chem. Soc. 103 (1981) 748-752.
J. P. Preston, T. A. Nieman, An electrogenerated chemiluminescence probe and its application utilizing tris(2,2¢-bipyridyl)ruthenium(II) and luminal chemiluminescence without a flowing stream, Anal. Chem. 68 (1996) 966-970.
J. B. Noffsinger, N. D. Danielson, Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III), Anal. Chem. 59 (1987) 865-868.
Tomlin, C.D.S., The Pesticide Manual: A World Compendium, 10 Edition, British Crop Protection Council, Surrey, UK, 1997.
Tomlin, C.D.S., The Pesticide Manual: A World Compendium, 10 Edition, British Crop Protection Council, Surrey, UK, 1997.


Tomlin, C.D.S., The Pesticide Manual: A World Compendium, 10 Edition, British Crop Protection Council, Surrey, UK, 1997.
U.S. Environmental Protection Agency, Guidance for the Re-registration of Pesticide Products Containing Propanil as the Active Ingredient, USEPA Case 0226, 12-23-87, U. S. Gov. Printing Office, Washington DC, 1987.
http://www.epa.gov/iris/subst/0186.htm
C. F. Cuff, W. Zhao, T. Nukui, R. Schafer, J. B. Barnett, 3,4-Dichloropropionanilide-Induced Atrophy of the Thymus : Mechanisms of Toxicity and Recovery, Fundam. appl. toxicol. 33 (1996) 83-90.
M. Eddleston, M. Rajapakshe, D. Roberts, K. Reginald, M. H. Rezvi Sheriff, W. Dissanayake, N. Buckley, Severe propanil [N-(3,4-dichlorophenyl) propanamide] pesticide self-poisoning, J. Toxicol.-Clin. Toxicol. 40 (2002) 847-854.
H. A. Moye, C. J. Miles, Postcolumn photolysis of pesticides for fluorometric determination by high-performance liquid chromatography, Anal. Chem. 60 (1988) 220-226.
D. Barceló, I. Ferrer, Determination and stability of pesticides in freeze-dried water samples by automated on-line solid-phase extraction followed by liquid chromatography with diode-array detection, J. Chromatogr. A 737 (1996) 93-99.
M. Natangelo, S. Tavazzi, R. Fanelli, E. Benfenati, Analysis of some pesticides in water samples using solid-phase microextraction–gas chromatography with different mass spectrometric techniques, J. of Chromatogr. A 859 (1999) 193-201.
J. Begerow, K. Wittke, H. Hajimiragha, L. Dunemann, Determination of dichloroanilines in human urine by GC–MS, GC–MS–MS, and GC–ECD as markers of low-level pesticide exposure, J. of Chromatogr. B 755 (2001) 215-228.
N. Priyantha, D. Weerabahu, Amperometric sensor for Propanil, Anal. Chim. Acta 320 (1996) 263-268.
A. M. Oliveira Brett, E. M. Garrido, J. L. F. C. Lima, C. Delerue-Matos, F. Borges, A. M. S. Silva, Electrochemical oxidation of propanil and related N-substituted amides, Anal. Chim. Acta 434 (2001) 35-41.
F. Borges, E. M. Garrido, J. L. F. C. Lima, C. Delerue-Matos, A. M. S. Silva, J. A. P. Piedade, A. M. Oliveira Brett, Electrochemical and spectroscopic studies of the oxidation mechanism of the herbicide Propanil, J. Agric. Food Chem. 51 (2003) 876-879.
R. E. Hoagland, G. Graf, An aryl acylamidase from tulip which hydrolyzes 3′,4′-dichloropropionanilide, Phytochemistry 11 (1972) 521-527.
G. Engelhardt, P. R. Wallinoefer, R. Plapp, Purification and properties of an aryl acylamidase of Bacillus sphaericus, catalyzing the hydrolysis of various phenylamide herbicides and fungicides, Appl. Microbiol. 26 (1973) 709-718.
World Health Organization, Chlorophenols other than pentachlorophenol, International Programme on Chemical Safety- Environmental Health Criteria 93, World Health Organization, Geneva, 1989.
IARC, Re-evaluation of some organic chemicals, Hydrazine, and Hydrogen Peroxide, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, vol. 71, IARC Press, Lyon, France, 1999, pp. 769-816.
National Cancer Institute, Bioassay of 2,4,6-trichlorophenol for possible carcinogenicity, National Cancer Institute, Bethesda, MD, 1979 (NCI-CG-TR-155).
US Enveronmental Protection Agency, Phenols, U.S. EPA Method 604, US Enveronmental Protection Agency, Washington, DC, 1985 (40 CFR part 136).
Office of Solid Waste, Gas chromatography/mass spectrometry for semi-volatile organics, capillary column technique, test method for evaluating solid waste, U.S. EPA Method 8270, 3rd ed., US Enveronmental Protection Agency, Washington, DC, 1986 (SW 846).
P. Bartels, E. Ebeling, B. Krämer, H. Kruse, N. Osius, K. Vowinkel, O. Wassermann, J. Witten, C. Zorn, Determination of chlorophenols in urine of children and suggestion of reference values, Fresenius J. Anal. Chem. 365 (1999) 458-464.
R. P. Schneider, C. L. Gabelish, P. Crisp, Simultaneous determination of chlorophenols chlorobenzenes and chlorobenzoates in microbial solutions using pentafluorobenzylbromide derivatization and analysis by gas chromatography with electron-capture detection, J. Chromatogr. A 749 (1996) 215-228.
J. Pawllszyn, K. D. Buchholz, Optimization of solid-phase microextraction conditions for determination of phenols, Anal. Chem. 66 (1994) 160-167.
J.-F. Jen, M.-C. Wei, Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography–electron-capture detection, J. Chromatogr. A 1012 (2003) 111-118.
J. Namieśnik, A. Kot-Wasik, D. Dabrowska, R. Kartanowicz, Simultaneous Determination of selected phenoxyacid herbicides and chlorophenols in surface and seawater by HPLC coupled to DAD, Anal. Lett. 37 (2004) 545-560.
J. H. T. Luong, S. Zhao, An electrocatalytic approach for the measurement of chlorophenols, Anal. Chim. Acta 327 (1996) 235-242.
T. Yao, K. Kotegawa, A flow injection biosensor system for highly selective detection of 2,4,6-trichlorophenol based on preoxidation by ceric sulfate, Anal. Sci. 19 (2003) 829-833.
T. Nyokong, T. Mafatle, Use of cobalt(II) phthalocyanine to improve the sensitivity and stability of glassy carbon electrodes for the detection of cresols, chlorophenols and phenol, Anal. Chim. Acta 354 (1997) 307-314.
J. Wang, S.-P. Chen, M. S. Lin, Use of different electropolymeriztion conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films, J. Electroanal. Chem. 273 (1989) 231-242.
J. F. Hedenburg, H. Freiser, Anodic voltammetry of phenols, Anal. Chem. 66 (1953) 1355-1358.
Survey of 400 US readers from T&M Word, EDN, Design, News, and R&D Magazines, March 2002.
IARC, Overall evaluations of carcinogenicity, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Supplement 7, IARC Press, Lyon, France, 1987, p207.
P. A. Cruickshank, H. C. Jarrow, Ethylenethiourea degradation, J. Agric. Food Chem., 21 (1973) 333-335.
R. E. Hoagland, A. E. Frear, Behavior and fate of ethylenethiourea in plants, J. Agric. Food Chem. 24 (1976) 129-133.
R. R. King, Derivatization of ethylenethiourea with m-trifluoromethylbenzyl chloride for analysis by electron-capture gas chromatography, J. Agric. Food Chem. 25 (1977) 73-75.
USDA, Field crops. Final estimates 1992-1997, National Agriculture Statistics Service Statistical Bulletin, No. 947, USDA, 1998, p107, http://www.usda.gov/nass/pubs/histdata.htm.
USDA, Field crops. Final estimates 1997-2002, National Agriculture Statistics Service Statistical Bulletin, No. 982, USDA, 2004, p109, http://www.usda.gov/nass/pubs/histdata.htm.
IARC, Overall evaluations of carcinogenicity, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Supplement 7, IARC Press, Lyon, France, 1987, p359.
IARC, Tobacco smoking, IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, vol. 38, IARC Press, Lyon, France, 1986, 421 pp.
N. L. Benowitz, The role of nicotine in smoking-related cardiovascular disease, Prev. Med. 26 (1997) 412-417.
L. P. Dwoskin, P. A. Crooks, Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking, Biochem. Pharmacol. 54 (1997) 743-753.
T. P. George, C. D. Verrico, R. H. Roth, Effects of repeated nicotine pre-treatment on mesoprefrontal dopaminergic and behavioral responses to acute footshock stress, Brain Res. 801 (1998) 36-49.
A. J. Rogers, L. D. Denk, P. M. Wax, Catastrophic brain injury after nicotine insecticide ingestion, J. Emerg. Med. 26 (2004) 169-172.
J. F. Pankow, A consideration of the role of gas particle partitioning in the deposition of nicotine and other tobacco smoke compounds in the respiratory tract, Chem. Res. Toxicol. 14 (2001) 1965-1980.
E. Leete, in: S. W. Pelletier (Ed.), Alkaloids Chemical and Biological Perspectives, Vol. I, Wiley, New York, 1983, p. 86.
M. Osler, Preventative Medicine. 27 (1998) 438-443.
B. Siegmund, E. Leitner, W. Pfannhauser, Determination of the nicotine content of various edible nightshades (solanaceae) and their products and estimation of the associated dietary nicotine intake, J. Agri. Food Chem. 47 (1999) 3113-3120.
B. Siegmund, E. Leitner, W. Pfannhauser, Development of a simple sample preparation technique for gas chromatographic-mass spectrometric determination of nicotine in edible nightshades (Solanaceae), J. Chromatogr. A 840 (1999) 249-260.
S. A. Al-Tamrah, Spectrophotometric determination of nicotine, Anal. Chim. Acta 379 (1999) 75-80.
C. Oddoze, A. M. Pauli, J. Pastor, Rapid and sensitive high-performance liquid chromatographic determination of nicotine and cotinine in nonsmoker human and rat urines, J. Chromatogr. B 708 (1998) 95-101.
H. James, Y. Tizabi, R. Taylor, Rapid method for the simultaneous measurement of nicotine and cotinine in urine and serum by gas chromatography-mass spectrometry , J. Chromatogr. B 840 (1998) 87-93.
B. Siegmund, D. E. Leyden, E. Zikulnig, E. Leitner, M. Murkovic, W. Pfannhauser, H. Reif, The contribution of dietary nicotine and dietary cotinine to salivary cotinine levels as a nicotine biomarker, Food. Chem. 74 (2001) 259-265.
E. Cognard, C. Staub, Determination of Nicotine and Its Major Metabolite Cotinine in Plasma or Serum by Gas Chromatography-Mass Spectrometry Using Ion-Trap Detection, Clin. Chem. Lab. Med. 41 (2003) 1599-1607.
E. Davoli, L. Stramare, R. Fanelli, L. Diomede, M. Salmona, Rapid solid-phase extraction method for automated gas chromatographic-mass spectrometric determination of nicotine in plasma, J. Chromatogr. B 707 (1998) 312-316.
H. Shin, J. Kim, Y. Shin, S. Jee, Sensitive and simple method for the determination of nicotine and cotinine in human urine, plasma and saliva by gas chromatography-mass spectrometry, J. Chromatogr. B 769 (2002) 177-183.
A. A. M. Stolker, W. Niesing, E. A. Hogendoorn, A. B. Rambali, W. Vleeming, Determination of nicotine and cotinine in rat plasma by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1020 (2003) 35-43.
M. R. Clench, E. E. K. Baidoo, R. F. Smith, L. W. Tetler, Determination of nicotine and its metabolites in urine by solid-phase extraction and sample stacking capillary electrophoresis-mass spectrometry, J. Chromatogr. B 796 (2003) 303-313.
L. Campanella, G. Favero, M. Tomassetti, Direct determination of nicotine in antismoking pharmaceutical products and in tobacco using an inhibition biosensor, Anal. Letters. 34 (2001) 855-866.
Y. Tan, J. Yin, C. Liang, H. Peng, L. Nie, S. Yao, A study of a new TSM bio-mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine, Bioelectrochemistry 53 (2001) 141-148.
M. S. Lefar, W. Chow, A. Guardigli, Determination of some acidic herbicides by thin-layer chromatography, J. Agric. Food Chem. 28 (1980) 258-261.
R. C. Gardner, R. L. McKellar, A method to determine dinoseb residues in crops and soil by gas chromatography, J. Agric. Food Chem. 19 (1971) 1181-1182.
M. T. Ragab, C. F. Everett, A. C. DeMarco, Analysis of potatoes treated with dinoseb and chlorbromuron herbicides, J. Agric. Food Chem. 31 (1983) 449-451.
S. Y. Szeto, P. M. Price, High-performance liquid chromatography method for the determination of dinoseb application to the analysis of residues in raspberries, J. Agric. Food Chem. 39 (1991) 1614-1617.
R. T. Krause, Y. Wang, Oxidative detection of coulometrically reduced organonitro pesticides in reversed-phase high-performance liquid chromatography, J. Chromatogr. A 459 (1988) 151-162.
S. R. J. Reddy, M. Sreedhar, T. M. Reddy, K. R. Sirisha, Differntial pulse adsorptive stripping voltammetric determination of dinoseb and dinoterb at a modified electrode, Anal. Sci. 19 (2003) 511-516.
論文使用權限
  • 不同意紙本論文無償授權給館內讀者為學術之目的重製使用。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信