淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1207200520225500
中文論文名稱 平面式超寬頻單極小天線的設計
英文論文名稱 Planar Ultra Wide Band Miniature Monopole Antenna Designs
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 賴辰銜
研究生英文姓名 Chen-Shian Lai
學號 692350696
學位類別 碩士
語文別 中文
口試日期 2005-06-13
論文頁數 58頁
口試委員 指導教授-李慶烈
委員-林俊華
委員-林丁丙
委員-丘建青
委員-賴友仁
委員-李慶烈
中文關鍵字 寬頻單極天線 
英文關鍵字 Planar  Monopole antenna  Ultra wide band  miniature 
學科別分類 學科別應用科學電機及電子
中文摘要 本篇論文探討一符合FCC要求3.1GHz ~ 10.6GHz超寬頻(UWB)單極小天線之設計。前人探討超寬頻天線大多屬三維結構(準2維)的半平面式寬頻單極(monopole),真正全平面二維的共平面或微帶激發的超寬頻平面單極天線仍不多,S11和輻射場型皆適用於超寬頻頻段的全平面天線目前尚無,所以本研究針對全平面式的結構,採用厚0.8mm的FR4基板,以相對介電係數為4.4來進行模擬並和實作相驗証,並進一步將此一全平面式天線結構縮小化,使擁有更小的單極面,更容易和印刷電路整合。吾人首先利用經驗公式得到初始之方形單極天線結構,並探討天線結構參數對 之影響,模擬結果顯示其中以gap的大小對 參數影響最大,本研究遂提出改變gap的形狀來同時達成寬頻及縮小化的目的,最佳化的結果顯示在H-plane上的全方向性輻射特性及E-plane之輻射特性也同時得到改善。
英文摘要 The goal of this thesis is to design a miniature fully-planar antenna that satisfies for UWB (3.1GHz~10.6GHz) released by the FCC. Most of the planar monopoles reside on a large orthogonal ground plane, and thus the antennas are not fully planar structures.. The fully planar coplanar waveguide-fed or microstrip-fed UWB monopole antennas have attracted the attention of many researchers. None of them has both the impedance bandwidth and radiation bandwidth covering the UWB simultaneously.
In this study, the UWB antennas are fabricated on an FR4 board of thickness 0.8mm, for which the relative dielectric constant 4.4 is used for design. In this paper, the miniature ultra wideband (UWB) fully-planar monopole antennas fed by microstrip line are investigated in order to take full advantages of the planar antenna structure, such as the light weight, small size, low cost, conformal and ease of integration with the microwave networks.
The empirical formula is employed to determine the initial size of a square monopole, by which the influences of the dimensions upon the reflection coefficient are investigated. It is found that the reflection coefficient is very sensitive to the gap. It is thus proposed to change the shape and size of the gap between the monopole and the ground in order to achieve the goal of miniature wideband antenna. The optimized results show that the radiation patterns in the E plane and the omni-directional characteristic in the H-plane are improved.
論文目次 第一章 序論................................................. 1
1.1 簡介.................................................. 1
1.2 研究目的.............................................. 2
1.3 論文架構.............................................. 2
第二章 平面寬頻單極天線設計................................. 7
2.1 設計原理分析.......................................... 7
2.2 傳統寬頻天線的演..................................... 10
2.3 全平面正方形單極天線初始結構的計算................... 12
2.3.1 全平面梯型單極天線................................. 13
2.4 天線接地面和金屬貼片的結構參數原理分析............... 14
2.5 改變gap形狀達成方形單極及縮小化單極的設計............16
2.5.1 UEOG型天線.........................................16
2.5.2 LEOG型天線.........................................17
2.5.3 BEOG型天線.........................................18
2.2.4 Miniature型天線....................................18
第三章 天線輻射場之量測和比較.............................. 36
3.1 天線輻射場型之量測.................................. 36
3.2 各種類型天線之綜合比較............................... 36第四章 結論................................................ 53
參考文獻.................................................... 55
附錄一...................................................... 58
圖目錄
圖1.1 無線通訊技術之(a)頻寬、(b)空間訊息量比較............5
圖2.1 無窮長偶極圓錐形天線之立體構.........................20
圖2.2 有限長度h的偶極圓錐形天線........................... 20
圖2.3(a)有限長度偶極天線(b)類比成有限長傳輸線..........21
圖2.4 (a) 單極天線(b)圓錐形天線(c)火山煙狀天線之二維結構
圖........................................................ 21
圖2.5 水滴狀天線之二維結構圖.............................. 22
圖2.6 水滴狀天線的演化順序................................ 22
圖2.7 水滴狀天線的VSWR 之頻率響應......................... 23
圖2.8 水滴狀天線在(a)3GHz(b)6GHz(c)9GHz(d)12GHz 之輻
射場型.................................................... 23
圖2.9 圓柱體之立體結構,半徑為r、高度為L..................24
圖2.10 矩形單極微帶天線的二維結構圖.......................24
圖2.11 梯形單極天線的結構圖...............................25
圖2.12 梯型天線11 S 模擬及實測比較圖.........................25
圖2.13 初始正方形單極天線的結構...........................26
圖2.14 接地面(ground)微小變動對11 S 參數之影響...............26
圖2.15,金屬貼片微小變動對11 S 參數之影響....................27
圖2.16 初始正方形單極天線由Lg=15 往金屬貼片端看入之阻抗圖.27
圖2.17 初始正方形單極天線(1)由Feed 端看入之|S11 |的模擬(2)Lg=15
往金屬貼片端看入之|S11 |的模擬圖............................ 28
圖2.18 方形單極天線(g=0.7mm)由饋入線看入之Smith chart 變化圖
....................................................... 28
圖2.19 方形單極天線(g=0.7mm)之等效電路模型.................29
圖2.20 UEOG 型天線11 S 模擬及實測比較圖.......................29
圖2.21 UEOG 型天線結構圖...................................30
圖2.22 UEOG 型天線結構之近似圖.............................30
圖2.23 LEOG 型天線11 S 模擬及實測比較圖.......................31
圖2.24 LEOG 型天線結構圖...................................31
圖2.25 BEOG 型天線11 S 模擬及實測比較圖.......................32
圖2.26 BEOG 型天線結構圖...................................32
圖2.27 Miniature 型天線|S11 |的模擬及實測比較圖..............33
圖2.28Miniature 型天線由饋入端(Lg)看入之11 S 模擬在Smith Chart
的變化圖.................................................. 33
圖2.29 Miniature 型天線由饋入端(Lg)看入之11 S 實測在Smith Chart的變化圖.................................................. 34
圖2.30 Miniature 型天線結構圖..............................34
圖3.1 Trapezoidal 型天線天線之E-plane(y-z 平面)輻射場型實測(at
f=3、4、5、6 GHz) ......................................... 38
圖3.2 Trapezoidal 型天線天線之E-plane(y-z 平面)輻射場型實測(at
f=7、8、9、10GHz) ......................................... 39
圖3.3 Trapezoidal 型天線天線之H-plane(x-z 平面)輻射場型實測(at
f=3、4、5、6 GHz) ......................................... 40
圖3.4 Trapezoidal 型天線天線之H-plane(x-z 平面)輻射場型實測(at
f=7、8、9、10GHz) .........................................41
圖3.5 BEOG 型天線天線之E-plane(y-z 平面)輻射場型實測(at f=3、
4、5、6 GHz) ..............................................42
圖3.6 BEOG 型天線天線之E-plane(y-z 平面)輻射場型實測(at f=7、
8、9、10GHz) ..............................................43
圖3.7 BEOG 型天線天線之H-plane(x-z 平面)輻射場型實測(at f=3、
4、5、6) ..................................................44
圖 3.8 BEOG 型天線天線之H-plane(x-z 平面)輻射場型實測(at f=7、
8、9、10GHz) ...............................................45

圖3.9 Miniature 型天線之E-plane(y-z 平面)輻射場型實測(at f=3、
4、5、6GHz) ...............................................46
圖3.10 Miniature 型天線之E-plane(y-z 平面)輻射場型實測(at
f=7、8、9、10GHz) ..........................................47
圖3.11 Miniature 型天線之H-plane(x-z 平面)輻射場型實測(at
f=3、4、5、6GHz) ..........................................48
圖3.12 Miniature 型天線之H-plane(x-z 平面)輻射場型實測(at
f=7、8、9、10GHz) ..........................................49
圖3.13 Trapezoida 型、BEOG 型及Miniature 型的H-plane 實測之輻
射Gain 值比較圖............................................50
圖3.14 各種天線由饋入端看到的有效負載之阻抗................51
表目錄
表一 各種天線的間隙大小gap(x) 的數值變化:負值代表重疊,x1-x8
代表不同位置[單位:mm] .....................................51
表二 Trapezoidal 型、BEOG 型、Miniature 型,金屬貼片(patch)尺
寸比較表[單位:mm] .........................................52
參考文獻 [1] David G. Leeper, “Wireless Data Blaster”, Scientific American, 2002 May.
[2] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Second
Edition, John Wiley, New York, 1998.
[3] M. Y. Lu and C. S. Shi, “A High-Quality Ultra-Wideband Omni-Direction Antenna”, Electromagnetic Compatibility Proceedings, 1997 International Symposium on, 21-23 May 1997, pp. 122-125.
[4] John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, Third
Edition, McGraw-Hill, New York, 2002.
[5] D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley,
1989.
[6] T. Taniguchi and T. Kobayashi, “An Omnidirectional And Low-VSWR Antenna for
the FCC-Approved UWB Frequency Band”, Antennas and Propagation Society
International Symposium, 2003. IEEE, Volume: 3,June 22-27, 2003, pp.460-463.
[7] H. Kawakami and G.Sato, “Broadband Characteristics Of Rotationally Symmetric Antennas And Thin Wire Constructs,” IEEE Trans. Antennas Propagat.,vol.AP-35, pp.26-32, Jan.1987.
[8]H. Nakano, N. Ikeda, Y.Wu, R.Suzuki, H.Mimaki,and J. Yamauchi,”Realization Of Dual-Frequency And Wide-Band VSWR Performances Using Normal Helical And Inverted-Fantennas, “IEEE Trans. Antennas Propagat.,vol.46,pp.788-793,June1998.
[9] S. D. Rogers and C. M. Butler, ”Cage Antennas Optimized For Band-Width,” Electron. Lett., vol. 36, no. 11, pp. 932-933,2000.
[10] W. Cho. M. Kanda, H. Hwang, and M. W. Howard,” A Disk-Loaded Thick Cylindrical Dipole Antenna For Validation Of An EMC Test Site From 30 to 300MHz,”IEEE Trans. Electromagn. Compat., VOl. 42, pp. 172-180, May2000.
[11] Zhi Ning Chen, “Novel Bi-Arm Rolled Monopole For UWB Applications” IEEE Transactions on antennas and propagation, vol.53 , no.2 February2005
[12] Zhi Ning Chen, “Broadband Roll Monopole” IEEE Transactions on antennas and propagation, vol.51 , no.11, Novermber 2003
[13] David G. Leeper, “Wireless Data Blaster”, Scientific American, 2002 May
[14] M.J. Ammann, “The Pentagonal Planar Monopole For Digital Mobile Terminal; Bandwidth Considerations And Modeling”, Antennas and Propagation, 2001, 11th International Conference on(IEE Conf. Publ. No. 480), Volume: 1, 17-20 April 2001 Page(s): 82-85. vol.1
[15] J.A. Evans, M.J. Ammann, “Planar Trapezoidal And Pentagonal Monopoles With Impedance Bandwidths In Excess Of 10:1”, Antennas and Propagation Society, 1999. IEEE International Symposium 1999, Volume: 3, 11-16 July 1999 Page(s): 1558-1561
[16] Z.N. Chen, “Impedance Characteristics Of Trapezoidal Planar Monopole Antennas”, Microwave and Optical Technology Letters, 2000, 27, (2), 120-122
[17] M.J. Ammann, Zhi Ning Chen, “Wideband Monopole Antennas For Multi-Band Wireless Systems”, Antennas and Propagation Magazine, IEEE, Volume: 45 Issue: 2, April 2003 Page(s): 146-150
[18] G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[19] M. Hammoud, P. Poey, F. Colombel, “Matching The Input Impedance Of a Broadband Disc Monopole“, Electronics Letters, Volume: 29 Issue: 4, 18 Feb. 1993 Page(s): 406-407.
[20] N. P. Agrawall, G. Kumar, K. P. Ray, “New Wideband Monopole Antennas”, Antennas and Propagation Society International Symposium, 1997Digest, Volume: 1, 13-18July 1997 Page(s): 248-251 Vol.1
[21] N. P. Agrawall, G. Kumar, K. P. Ray, “Wide-Band Planar Monopole Antennas”, Antennas and Propagation, IEEE Transactions on, Volume: 46 Issue: 2, Feb 1998 Page(s): 294-295
[22] L. Desclos, M. Madihian, J. M. Floch, T. Ohsawa, “1.6-6 GHz Optimized Antennas For Indoor Wireless LAN Applications”, Wireless Applications Digest, 1997, IEEE MTT-S Symposium on Technologies for, 23-26 Feb. 1997 Page(s): 39-42
[23] E. Antonino-Daviu, M. Cabedo-Fabres, M. Ferrando-Bataller, A. Valero-Nogueira, “Wideband Double-Ded Planar Monopole Antennas”, Electronics Letters, Volume: 39 Issue: 23, 13 Nov. 2003 Page(s): 1635-1636
[24] P. V. Anob, K. P. Ray, G. Kumar, “Wideband Orthogonal Square Monopole Antennas With Semi-Circular Base”, Antennas and Propagation Society International Symposium, 2001 IEEE, Volume: 3, 8-13 July 2001 Page(s): 294-297 vol.3
[25] Kin-Lu Wong, Yi-Fang Lin, “Stripline-Fed Printed Triangular Monopole”, Electronics Letters, Volume: 33 Issue: 17, 14 Aug. 1997 Page(s): 1428-1429
[26] J. M. Johnson, Y. Rahmat-Samii, “The Tab Monopole”, Antennas and Propagation, IEEE Transactions on, Volume: 45 Issue: 1, Jan. 1997 Page(s): 187-188
[27] J. M. Johnson, Y. Rahmat-Samii, “Wideband Tab Monopole Antenna Array For Wireless Adaptive And Mobile Information Systems Application”, Antennas and Propagation Society International Symposium, 1996. AP-S. Digest, Volume: 1, 21-26 July 1996 Page(s): 718-721 Vol. 1
[28] 林鼎富,印刷式超寬頻天線, 碩士論文,國立交通大學電信工程學系, 2003年6月
[29] 施廷諺,超寬頻單極微帶天線, 專題報告,淡江大學電機工程學系, 2003年11月
[30] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Second Edition, John Wiley, New York, 1998
[31] M. Y. Lu and C. S. Shi, “A High-Quality Ultra-Wideband Omni-Direction Antenna”, Electromagnetic Compatibility Proceedings, 1997 International Symposium on, 21-23 May 1997, pp. 122-125
[32] D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley, 1989
[33] John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, Third Edition, McGraw-Hill, New York, 2002
[34] T. Taniguchi and T. Kobayashi, “An Omnidirectional And Low-VSWR Antenna For The FCC-Approved UWB Frequency Band”, Antennas and Propagation Society International Symposium, 2003. IEEE, Volume: 3,June 22-27, 2003, pp.460-463
[35] IE3D 7.0, Zeland Software, Inc., Fremont, CA, 2000
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信