淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1207200519151000
中文論文名稱 在延遲付款機制下零售商最佳補貨策略之退化性商品存貨模式
英文論文名稱 A study of optimal retail's ordering policies in the deteriorating items model under permissible delay in payments
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 93
學期 2
出版年 94
研究生中文姓名 翁明偉
研究生英文姓名 Ming-wei Weng
學號 692561250
學位類別 碩士
語文別 中文
第二語文別 中文
口試日期 2005-05-25
論文頁數 48頁
口試委員 指導教授-張紘炬
委員-李世昌
委員-溫博仕
中文關鍵字 退化性商品  延遲付款  平均成本  與時間相關需求 
英文關鍵字 deteriorating items  permissible delay in payments  average cost  time-varying demand 
學科別分類 學科別社會科學管理學
中文摘要 過去企業為了提升自身的競爭優勢,皆是以單方面的立場來考慮如何減少成本、增加利潤。但是今非昔比,單單只是提升自身的競爭力稍嫌不足,尚需要企業間的合作。透過供應鏈管理整合上、中、下游夥伴,彼此協商合作追求最大共同利益的管理模式。這是在現今市場交易中常常看到的現象之一,就是供應商會提供給零售商或是零售商給予顧客一延遲付款期限,不需要立即付錢,於期限到時再付即可。以及在期限內賣出的商品享有不需支付利息的好處,而對於供應商也會有吸引零售商與顧客購買其商品的好處。
本研究主要在同時考慮零售商與供應商、零售商與顧客彼此之間的合作關係下,考慮與時間有關之一般化需求的退化性商品且退化率為變動,其目的在平均成本最小化的原則下發展出一個存貨模式,推導出一個判斷準則提供零售商如何在不同延遲付款情況下,找出最小平均成本的存貨策略,以期能廣泛被運用在實務上。
第三章,我們將依據文獻探討所獲得之概念,進一步發展出本研究之模式,即建立一個同時考量與時間有關之一般化需求函數及供應商與零售商同時提供延遲付款機制之存貨模式,以提供零售商如何訂定最佳之存貨策略;第四章,我們將利用數值範例來對所提出模式之應用作驗證,並針對模式中各參數之變動如何影響存貨成本作一敏感性分析,以了解各參數對存貨模式的影響;最後,我們將於第五章中對本文提出一些結論,並進一步提出未來研究方向。
英文摘要 In the past, the enterprises increase their own competitive advantage by considering how to reduce cost and increase profit. On the other hand, they need not only increase their own competitive ability, but also cooperate with others. Through skill of supply chain management, they integrate upriver, center, and downriver partner in order to make greatly common benefit of management pattern each other. In practice, this is one phenomena that supplier would offer his retailers/customers a delay period ,which means the retailers/customers should not pay for the items immediately when the items are received from supplier. The retailers/customers could sell the goods and accumulate revenue and earn interest within the trade credit period, which may stimulate retailers and customers’ demand.
This study considers a general lot size inventory model for deteriorated items with time varying demand and deterioration rates not only between retailers and suppliers but also between retailers and customers. Under the condition, our model as an average cost minimization problem determine efficiently the retailer’s optimal ordering policies in order to let the model be used broadly in practice. In section 3, we attempt to develop a general inventory model for deteriorating items with time varying demand under the conditions of permissible delay in payments from the existing literature in order to determine the optimal ordering policies for retailers. In section 4, we use some numerical examples to illustrate the model and then make the discussion about sensitivity analysis for each parameter. In section 5, we make a summary and provide some suggestion for future research.
論文目次 表目錄 II
圖目錄 III
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 3
1.3 研究方法與步驟 4
1.4 研究架構 5
第二章 文獻探討 6
2.1 傳統存貨之基本觀念與存貨模式分類 6
2.2 退化性商品之相關文獻 8
2.3 延遲付款退化性商品存貨模式 13
第三章 模式建立與求解 15
3.1 前言 15
3.2 模式假設及符號說明 15
3.2.1 符號說明: 15
3.2.2 模式假設: 16
3.3 最佳平均成本模式推導 17
3.3.1 情況Ⅰ 17
3.3.2 情況Ⅱ 23
3.3.3 情況Ⅲ 26
3.4 求解過程 30
3.5 判斷法則 33
第四章 數值範例 35
4.1 範例1 35
4.2 範例2 36
4.3 範例3 37
4.4 敏感度分析 38
第五章 結論與未來研究方向 42
5.1 結論 42
5.2 未來研究方向 43
表目錄
表2.1:Raafat與Silver之分類比較表 7
表2.2:Raafat與Nahmias之退化性商品分類比較表 9
表4.1: 與需求參數 、 、 敏感度分析表 39
表4.2: 與需求參數 、 、 敏感度分析表 40
圖目錄
圖 1.1 本論文研究流程圖 4
圖 3.1 之存貨圖形 18
圖 3.2 之存貨圖形 23
圖 3.3 之存貨圖形 27



參考文獻 中文部份
[1] 陳文慶(2002),損耗性商品在延遲付款期限下之供應鏈存貨模式,私立中原大學工業工程學系碩士學位論文
[2] 楊志德(2002),需求與價格有關且部分欠撥之退化性產品的生產批量存貨模式,私立淡江大學管理科學研究所碩士學位論文
[3] 羅偉碩(2004)。供應鏈管理。台北縣:普林斯頓國際。

英文部分
[1] Aggarwal, V. & Bahari-Kashani, H. (1991) Synchronized prodection policies for deteriorating items in a declining market. IIE Transactions, 23, 185-197.
[2] Aggarwal, S. P. & Jaggi, C. K.(1995) Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46, 658-662.
[3] Andijani, A & Al-Dajani. (1998) Analysis of deteriorating inventory/production systems using a linear quadratic regular. European Journal of Operational Research, 10(6), 82-89.
[4] Benkherouf, L & Mahmoud, M.G. (1992) On an inventory model with deterioration and increasing time-varying demand and shortages. Technical Report, College of Sciences, King Saud university.
[5] Balkhi, Z.T. & Benkherouf, L. (1996) On the optimal Replenishment schedule for an inventory system with deteriorating items and time-varying demand and production rates. Computer and Industrial Engineering, 30, 823-829.
[6] Bhunia, A.K. & Maity, M. (1998) Deteriorating inventory model for deteriorating items with finite rate of replenishment dependent on inventory level. Computers & Operations Research, 25(11), 997-1006.
[7] Balkhi, Z.T. (1999) On the global optimal solution to an integrated inventory System with general time-varying demand, production and deterioration rates. European Journal of Operational Research, 114, 29-37.
[8] Balkhi, Z. T. & Benkherouf(2004) On an inventory model for deteriorating items with stock dependent and time-varying demand rates.Computers and Operations Research, 31(2), 223-240.
[9] Chung K.J. & Ting P.S. (1993) A heuristic for replenishment of deteriorating items with a linear trend in demand. Journal of the Operational Research Society, 44, 1235-1241.
[10] Chang, H.J. & Dye, C.Y. (1999) An EOQ model for deteriorating items with time-varying demand and partial backlogging. Journal of the Operational Research Society, 50, 1176-1182.
[11] Chang, C.T.(2004) An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity , International Journal of Production Economics, 88, 3(18), 307-316.
[12] Davis, R. A. & Gaither, N. (1985). Optimal ordering policies under conditions of extended payment privileges. Management Science, 31(40), 499-509.
[13] Ghare, P. M. & Schrader, G. F. (1963). A model for an exponentially decaying inventory. Journal of Industrial Engineering, 14, 238-243.
[14] Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(4), 335-338.
[15] Goswami, A & Chaudhuri K.S. (1992)Variations of order-level inventory models for deteriorating items. International Journal of Production Economics, 27, 111-117.
[16] Giri, B.C., Chakrabarty, T. & Chaudhuri, K.S. (2000) A note on a lot sizing heuristic for deteriorating items with time-varying demands and shortages, 27(6) ,495-505.
[17] Harris, F.W.(1915) Operations cost, Factory Series 5.
[18] Hadley, G. & Whitin, T. M. (1961) An Optimal Final Inventory Model. Management Science, 7, 179-183.
[19] Haley, C. W. & Higgins, R. C. (1973) Inventory policy and trade credit Financing. Management Science, 20(4), 464-471.
[20] Hax, A. C. & Candea, D. (1984) Production and Inventory
Management, Prentic-Hall, 133-134.
[21] Hollier, R.H. & Mak, K.L. (1983) Inventory replenishment policies for deteriorating items in a declining market. International Journal of Production Research, 21(7), 813-826.
[22] Haiping, U &Wang, H. (1990) An economic ordering policy model for deteriorating items with time proportional demand. European Journal of Operational Research, 46, 21-27.
[23] Hariga, M. & A. Alyan. (1997) A lot sizing heuristic for deteriorating items with shortages in growing and declining markets, 24(11), 1075-1083.
[24] Huang, Y.F.(2003) Optimal retailer’s ordering policies in the EOQ
model under trade credit financing. Journal of the Operational Research Society, 54, 1011–1015.
[25] H.J. Chang & C.Y. Dye(2003) The effect of credit period on the optimal lot size for deteriorating items with time varying demand and deterioration rates. Asia-Pacific Journal of Operational Research.
[25] Jammal, A. M. M., Sarker, B. R. & Wang, S. (1997) An ordering policies for deteriorating items with allowable shortages and permissible delay in payment. Journal of the Operational Research Society, 48, 826-833.
[26] Kingsman, B. G. (1983) The effect of payment rules on ordering and stocking in purchasing. Journal of the Operational Research Society, 34(11), 1085-1098.
[27] Liao, H. C., Tsai, C. H. & Su, C. T. (2000) An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63, 207-214.
[28] Mak, K. L. (1982) A production lot size inventory model for deteriorating items. Computers and Industrial Engineering, 6(4),309-317.
[29] Mandal, B. N. & Phaujdar, S. (1989) Some EOQ models under permissible delay in payments. International Journal of Management Science, 5(2), 99-108.
[30] Mandal, B. & Pal, A.K. (1998) Order level inventory system with ramp type demand for deteriorating items. Journal of Interdisciplinary Mathematics , 1, 49-66.
[31] Nahmias, S. (1978) Perishable inventory theory:a review .Operations Research, 30(4), 680-708.
[32] N.H.Shah & Y.K.Shah. (1993) A lot size model for exponentially decaying inventory under known price increase. Journal of Industrial Engineering, 22, 1-3.
[33] Ouyang, L.Y., Chang, C.T. & Teng, J.T.(2003) An EOQ model for deteriorating items under supplier credits linked to ordering quantity. Applied Mathematical Modelling, 27(12), 983-996.
[34] Prasad, S. (1994) Classification of inventory models and systems, International Journal of Production Economics, 34, 209-222.
[35] Raafat, F.,Wolfe, P. M. & Eldin, H. K. (1991) An inventory model for deteriorating item. Computers and Industrial Engineering, 20(1), 89-94.
[36] Silver, E. A. (1981) Operations research in inventory management:a review and critique, Operations Research, 29(4), 628-645.
[37] Shah, V. R., Patel, N. C. & Shah, D. K. (1988) Economic ordering quantity when delay in payments of order and shortages are permitted. Gujarat Statistical Review, 15(2), 52-56.
[38] Tersine, R. J. (1994) Principles of Inventory and Materials
Management, PTR prentice Hall, Englewood Cliffs, New Jersey, 95
[39] Teng, J.T., Chern, M.S., Yang, H.L. & Wang, Y.L. (1999) Deterministic lot size inventory models with shortages and deteriorating for fluctuating demand. Operations Research Letters, 24, 65-72.
[40] Teng, J.T. & Yang, H.L. (2004) Deterministic economic order quantity models with partial backlogging when demand and cost are fluctuating with time. Journal of the Operational Research Society, 55(5), 495-503.
[41] Xu, H. & Wang, H. (1992) An economic ordering policy model for deteriorating items with time proportional demand. European Journal of Operational Research, 24, 21-27.
[42] Yan, H. & Cheng, T.E.C. (1998) Optimal production stopping a restating times for an EOQ model with deteriorating items. Journal of the Operational Research Society, 1288-1295.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信