§ 瀏覽學位論文書目資料
系統識別號 U0002-1207200511301700
DOI 10.6846/TKU.2005.00849
論文名稱(中文) 設計與實現結合小波與模糊理論之電力品質分析晶片
論文名稱(英文) Design and Implementation of the Power Quality Analysis IC Based on Wavelet Transform and Fuzzy Theory
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 樊俊暉
研究生(英文) Chun-Hui Fan
學號 692390429
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-23
論文頁數 87頁
口試委員 指導教授 - 蕭瑛東(hsiao@ee.tku.edu.tw)
委員 - 李清吟(cylee@ntut.edu.tw)
委員 - 陳昭榮(crchen@ntut.edu.tw)
委員 - 劉志文(cwliu@cc.ee.ntu.edu.tw)
委員 - 黃培華(B0104@mail.ntou.edu.tw)
委員 - 蕭瑛東(hsiao@ee.tku.edu.tw)
關鍵字(中) 電力品質
小波轉換
模糊理論
可程式化系統晶片
關鍵字(英) Power Quality
Wavelet Transform
Fuzzy
SOPC
第三語言關鍵字
學科別分類
中文摘要
本論文提出一套結合小波轉換與模糊理論的電力品質分析及辨識系統,用以改善傳統電力品質分析與評估方法的缺失。
    傳統上分析電力品質干擾波形大多採用傅立葉轉換的方法,但是傅立葉轉換只能得到訊號在頻域上的特徵值,無法提供時域特性的分析。小波轉換為一種能夠同時提供頻率與時間的多重解析度轉換法,其轉換概念為將訊號輸入兩個不同的高頻與低頻率的濾波器,訊號可以經過高通濾波器後,能夠表現出訊號在高頻且短時間的特徵性。
    當訊號經過低通濾波器後,能夠表現訊號在低頻且長時間的特徵性,所以可以充分解析干擾事件在頻域及時域上的特性。當訊號經過小波轉換後所得到的大量運算結果,若是無一有效的系統來進行後續的分析及辨識工作,將使得這些數據毫無意義,又因為電力品質相關資料包含了許多不精確、不確定與含糊的特性,導致傳統的明確邏輯無法有效的分析及辨識這些數據,故本論文除了以小波轉換進行電力品質訊號分析外,並輔以模糊系統進行嚴重程度的評估,最後以系統可程式晶片發展平台實現之,並經模擬測試驗證其可行性與效能。
英文摘要
The traditional analytic method for the power quality disturbances is the Fourier transform, but the Fourier analysis does not consider frequency that might involve time. The advantage of the wavelet analysis is the use of a time-frequency multi-resolution property that allows the analysis of signals and systems with a very wide range of time constants. The wavelet analysis decomposes the signal into a smoothed and detail version by the low and high pass filter, respectively. Hence, the wavelet transform can be utilized to analyze the power quality disturbances both in frequency domain and time domain. The wavelet transform generates a lot of data. So, it is need to analyze and identify these data by an effective analytic method. By the way, because of the features of the power quality data with imprecision, uncertainty and vagueness, it is not easy to utilize the traditional method to analyze and identify these data. This work proposes the method combined with the wavelet transform and fuzzy modeling to analysis and identify the power quality problem. Moreover this work implements the proposed method in a chip based on the configuration of the system on a programmable chip (SOPC). Testing results demonstrated the practicality and advantages of the proposed method for application.
第三語言摘要
論文目次
目錄

中文摘要.................................................i
英文摘要................................................ii
誌謝...................................................iii
目錄....................................................iv
圖索引.................................................vii
表索引..................................................xi

第一章 緒論..............................................1
       1.1 研究背景......................................1
       1.2 研究動機與目的................................2
       1.3 研究步驟與方法................................3
       1.4 論文內容概述..................................4
第二章 電力品質干擾事件..................................5
       2.1 前言..........................................5
       2.2 電力諧波干擾事件..............................7
       2.3 電壓閃爍干擾事件.............................12
       2.4 電壓突升干擾事件.............................15
       2.5 電壓突降與中斷干擾事件.......................16
第三章 小波分析理論.....................................19
       3.1 前言.........................................19
       3.2 小波轉換.....................................19
       3.3 小波轉換多重解析度分析.......................21
       3.4 小波轉換之分析方法...........................23
       3.5 小波轉換之硬體架構...........................24
          3.5.1 Daubechies濾波器模組驗證................27
          3.5.2 Gaussian小波轉換模組驗證................30
第四章 模糊理論.........................................34
       4.1 前言.........................................34
       4.2 模糊系統.....................................34
          4.2.1 模糊化機構..............................35
          4.2.2 模糊規則庫..............................35
              4.2.2.1 電力諧波模糊規則庫................36
              4.2.2.2 電壓閃爍模糊規則庫................38
              4.2.2.3 電壓突升模糊規則庫................39
              4.2.2.4 電壓突降或中斷模糊規則庫..........39
          4.2.3 模糊推論引擎............................40
          4.2.4 解模糊化機構............................42
       4.3 模糊系統之硬體架構...........................42
          4.3.1 事件選擇模組............................43
          4.3.2 模糊化模組..............................44
          4.3.3 模糊推論模組............................47
       4.4 解模糊化模組.................................49
第五章 電力品質辨識晶片硬體架構.........................52
       5.1 前言.........................................52
       5.2 電力品質辨識晶片系統開發環境.................52
           5.2.1 硬體發展平台...........................53
           5.2.2 軟體發展平台...........................55
      5.3 嵌入式Nios處理器之規劃........................60
      5.4 電力品質辨識系統資料驅動流程..................62
      5.5 電力品質辨識系統架構..........................63
第六章 電力品質辨識系統晶片之功能驗證...................75
      6.1 前言..........................................75
      6.2 電壓突升事件..................................77
      6.3 電壓突降事件..................................78
      6.4 電壓中斷事件..................................79
      6.5 電力諧波事件..................................80
      6.6 電壓閃爍事件..................................81
      6.7 結果討論......................................82
第七章 結論與未來展望...................................83
      7.1 結論..........................................83
      7.2 未來研究方向..................................83
參考文獻................................................84

圖索引

圖2.1電力諧波波形示意圖..................................7
圖2.2電壓閃爍波形示意圖.................................13
圖2.3 ΔV10評估法之視感度曲線圖..........................14
圖2.4電壓突升波形示意圖.................................15
圖2.5電壓突降波形示意圖.................................16
圖2.6電壓中斷波形示意圖.................................17
圖2.7 CBEMA電力品質標準.................................18
圖3.1 多重解析度分解空間................................23
圖3.2有限脈衝濾波器基本架構.............................24
圖3.3 二階層小波轉換分析示意圖..........................25
圖3.4 Guassian母波波形圖................................26
圖3.5 高斯小波轉換流程圖................................27
圖3.6 電壓中斷波形......................................28
圖3.7 經過Daubechies小波轉換結果........................28
圖3.8 Daubechies濾波器模組之系統方塊圖..................29
圖3.9 Daubechies濾波器模組之BDF示意圖...................29
圖3.10 Daubechies小波轉換硬體模擬結果...................30
圖3.11 電力諧波波形.....................................31
圖3.12 經過Gaussian小波轉換分析結果.....................31
圖3.13 Gaussian小波轉換模組之系統方塊圖.................32
圖3.14 Gaussian小波轉換模組之BDF示意圖..................32
圖3.15 Gaussian小波轉換硬體模擬結果.....................33
圖4.1 模糊系統基本架構圖................................35
圖4.2 Simplified Fuzzy-Singleton法運算流程..............41
圖4.3 模糊系統功能方塊圖................................43
圖4.4 事件選擇模組之BDF示意圖...........................43
圖4.5 事件選擇模組之模擬結果............................44
圖4.6 模糊化模組之BDF示意圖.............................46
圖4.7 模糊化模組之模擬結果..............................47
圖4.8 模糊推論引擎模組之BDF示意圖.......................48
圖4.9 模糊推論引擎模組之模擬結果........................49
圖4.10 解模糊化模組之BDF示意圖..........................50
圖4.11 解模糊化模組之模擬結果...........................51
圖5.1 Nios系統發展平台..................................53
圖5.2 Quartus® II 設計流程..............................56
圖5.3 合成設計流程圖....................................57
圖5.4 佈局佈線流程圖....................................58
圖5.5 功能與時序模擬流程圖..............................58
圖5.6 時序分析流程圖....................................59
圖5.7 編程和配置流程圖..................................60
圖5.8 SOPC Builder操作畫面..............................61
圖5.9 Nios嵌入式處理器之BDF示意圖.......................61
圖5.10 電力品質辨識系統資料驅動流程圖...................62
圖5.11 電力品質辨識系統硬體架構方塊圖...................63
圖5.12 均方根模組之BDF示意圖............................64
圖5.13 均方根模組之模擬結果.............................65
圖5.14 事件驅動模組之BDF示意圖..........................65
圖5.15 事件驅動模組之模擬結果...........................66
圖5.16 綜合分析模組之BDF示意圖..........................67
圖5.17 綜合分析模組之模擬結果...........................68
圖5.18 booth演算法運算流程圖............................69
圖5.19 乘法器模組之BDF示意圖............................69
圖5.20 乘法器模組之模擬結果.............................70
圖5.21 binary division演算法流程圖......................71
圖5.22 除法器模組之BDF示意圖............................72
圖5.23 除法器模組之模擬結果.............................72
圖5.24 開根號模組之BDF示意圖............................73
圖5.25 開根號模組之模擬結果.............................74
圖6.1 電力品質辨識系統模組之BDF示意圖...................75
圖6.2 電力品質辨識系統模組之硬體資源使用統計表..........76
圖6.3 輸入測試之電壓突升波形............................77
圖6.4 電壓突升事件分析結果..............................77
圖6.5 輸入測試之電壓突降波形............................78
圖6.6 電壓突降事件分析結果..............................78
圖6.7 輸入測試之電壓中斷波形............................79
圖6.8 電壓中斷事件分析結果..............................79
圖6.9 輸入測試之電力諧波波形............................80
圖6.10 電力諧波事件分析結果.............................80
圖6.11 輸入測試之電壓閃爍波形...........................81
圖6.12 電壓閃爍事件分析結果.............................81

表索引

表2.1 IEEE電力系統電磁現象種類及特性表...................6
表2.2 120V-69kV配電系統諧波標準限制值..................10
表2.3配電系統電壓諧波標準限制值.........................11
表2.4 3.3kv-22.8kV電力系統諧波管制標準.................11
表2.5 ΔV10視感度曲線對應之係數..........................14
表3.1 Daubechies濾波器係數..............................26
表3.2 Daubechies濾波器模組輸出入埠之規格................30
表3.3 Gaussian小波轉換模組輸出入埠之規格................33
表4.1 個別諧波電壓失真嚴重等級規則庫....................37
表4.2 第n級諧波電流失真嚴重等級規則庫...................37
表4.3 總諧波電壓失真嚴重等級規則庫......................37
表4.4 總諧波電流失真嚴重等級規則庫......................38
表4.5 電壓閃爍嚴重等級規則庫............................38
表4.6 電壓突升嚴重等級之規則庫..........................39
表4.7 電壓突降及中斷嚴重等級規則庫......................40
表4.8事件選擇模組之規格.................................44
表4.9 模糊系統輸入變數與資料型態........................45
表4.10 模糊化模組之規格.................................46
表4.11 模糊推論引擎模組之規格...........................48
表4.12解模糊化模組之規格................................50
表5.1 Cyclone EP1C20F400C7規格..........................54
表5.2 均方根模組之輸出入訊號規格........................64
表5.3 事件驅動模組之輸出入訊號規格......................66
表5.4 綜合分析模組之輸出入訊號規格......................67
表5.5 booth乘法模組之輸出入訊號規格.....................70
表5.6 除法器模組之輸出入訊號規格........................72
表5.7 開根號模組之輸出入訊號規格........................73
表6.1 電力品質辨識系統模組輸出入埠之規格................76
參考文獻
參考文獻
[1] M. Brent Hughes, John S. Chan, and Don O. Koval, “Distribution Customer Power Quality Experience,” IEEE Trans. On Industry Applications, vol.29, No.6, Nov.–Dec. 1993, pp. 1204-1211.
[2] E. W. Gunther and H. Mehta, “A Survey of Distribution System Power Quality – Preliminary Results,” IEEE Trans. On Power Delivery, vol. 10, No. 1, Jan. 1995, pp. 322-329.
[3] J. W. Gray and F. J. Haydock, “Industrial Power Quality Considerations When Installing Adjustable Speed Drive Systems,” IEEE Trans. On Industry Applications, vol. 32, No. 3, May-Jun. 1996, pp. 646-652.
[4] W. E. Reid, “Power Quality Issues-Standards and Guidelines,” IEEE Trans. On Industry Applications, vol. 32, No. 3, May-Jun. 1996, pp. 625-632.
[5] S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, and B. C. Bhatt, “Characterization of Distribution Power Quality Events with Fourier and Wavelet Transforms,” IEEE Trans. On Power Delivery, vol. 15, No. 1, Jan. 2000, pp. 247-254.
[6] D. E. Newland, “An Introduction to Random Vibrations, Spectral and Wavelet Analysis Longman Scientific & Technical,” England, 1993.
[7] G. T. Heydt, P. S. Fjeld, C. C. Liu, D. Pierce, L. Tu, and G. Hensley, “Applications of the Windowed FFT to Electric Power Quality Assessment,” IEEE Trans. on Power Delivery, vol. 14, No. 4, Oct. 1999, pp. 1411-1416.
[8] S. Mallat, “ A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, No. 7, Jul. 7, Jul. 1989, pp. 674-693.
[9] S. Mallat, “ Multiresolution Channel Decomposition of Images and Wavelet Models,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, No. 7, Dec. 1989, pp. 2091-2110.
[10] S. Mallat, “ Multiresolution Approximation and Wavelet,” Trans. Am. Mach. Intel., vol. 135, No. 7, 1989, pp. 69-88.
[11] A. Grossman and J. Morlet, “Decompositions of Hardy Functions into Square Integrable Wavelets of Constant Shape,” SIAM Journal of Mathematical Analysis, vol. 15, No. 4, JUL. 1984, pp. 723-736.
[12] Raghuveer M. Rao and Ajit S. Bopardikar, Wavelet Transforms: Introduction to Theory and Application, Addison Wesley Longman Inc., 1998.
[13] C. Sidney Burrus, Ramesh A. Gopinath, Haitao Guo, Wavelets and Wavelet Transforms, Prentice-Hall Inc., 1998.
[14] IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std 1159-1995, 2 Nov. 1995.
[15] R. C. Dugan, M. F. McGranaghan and H. W. Beaty, Electrical Power Systems Quality, 5th ed., Mc Graw-Hill Inc., 1996.
[16]江榮城,「諧波概論與諧波事故問卷調查」,電力電子技術,第47期, 1998年10月,15-36頁。
[17]江榮城,電力品質實務(一),全華科技圖書股份有限公司,台北,2001。
[18] IEEE Recommended Practice and Requirements for Harmonic Control in Electrical Power Systems, IEEE Standard 519-1992, 1993.
[19] ITI (CBEMA) Curve Application Note, Information Technology Industry Council, 2000.
[20]陳建亨,設計以小波轉換為基礎之電力品質分析晶片,私立淡江大學電機工程學系碩士論文,2004。
[21] Z. Peng, B. Wang, G. Liao, “A Method of Designing Optimal Wavelet Filter Banks,” International Conference on Signal Processing, vol. 1, Oct. 1998, pp. 253-256.
[22] C. Y. Chien, Y. T. Hsiao, J. H. Chen, I. M. Wu, Y. H. Chen, “Discrete Wavelet Transform for Short Time Power Quality,” Proceedings of the 24th Symposium Electrical Power Engineering, Tainan, Taiwan, vol. 1, Nov. 2003, pp. 389-393.
[23]石凱文,以離散小波轉換為基礎之動態偵測與物件追跡,中華大學資訊工程學系碩士論文,2001。
[24] L. A. Zadeh, “Fuzzy Set,” Information and Control, vol.8, 1965, pp. 338-353.
[25]鄭惠文,設計電力品質指標用之模糊邏輯晶片,私立淡江大學電機工程學系碩士論文,2004。
[26] E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning using Linguistic Synthesis,” IEEE Trans. on Computers, vol. C-26, 1977, pp. 1182-1191.
[27] P. M. Larsen, “Industrial applications of fuzzy logic control,” Int. J. Mach. Studies, vol. 12, 1980, pp. 3-10.
[28] Y. Tsuakmoto, “An Approach of Fuzzy Reasoning Method,” Advances in Fuzzy Set Theory and Applications, M. M. Gupta, R. K. Ragade and R. R. Yager, Eds. Amsterdam: North-Holland, 1979.
[29] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Applications to Modeling and Control,” IEEE Trans. Syst. Man. Cybern., vol. SMC-15, no. 1, 1985, pp. 116-132.
[30] Mizumoto, M., “Product-sum-gravity method = fuzzy singleton-type reasoning method = simplified fuzzy reasoning method,” Proc. 5th IEEE Conf. On Fuzzy Systems, New Orleans, Vol.3, pp.2098-2102, 1996.
[31] “mnl_nios2_board_cyclone_1c20,” [Online]. Available: http://www.altera.com/literature/manual/mnl_nios2_board_cyclone_1c20.pdf 
[32] “intro_to_quartus2_trad_chinese,” [Online]. Available:  http://www.altera.com.cn/literature/manual/cn/intro_to_quartus2_trad_chinese.pdf 
[33] William Stallings, Computer Organization and Architecture , Prentice- Hall International Inc., 1996.
[34] Yamin Li, Wanming Chu, “A New Non-Restoring Square Root Algorithm and Its VLSI Implementation,” IEEE International Conference on Oct., 1996.
論文全文使用權限
校內
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信