淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1207200510553800
中文論文名稱 微小鑽石砂輪之研製
英文論文名稱 Design and Fabrication of a Micro-Diamond Wheel
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 羅瑞興
研究生英文姓名 Jui-Hsin Lo
學號 692340374
學位類別 碩士
語文別 中文
口試日期 2005-06-20
論文頁數 66頁
口試委員 指導教授-趙崇禮
委員-簡錫新
委員-鈕健
委員-劉益銘
委員-陳大同
委員-趙崇禮
中文關鍵字 微小鑽石砂輪  紫外光固化樹脂  結合劑  紫外光  鑽石磨粒 
英文關鍵字 micro-diamond grinding wheel  ultra-violet curable resin  bonding agent  UV-light  diamond abrasive 
學科別分類 學科別應用科學機械工程
中文摘要 傳統樹脂砂輪使用熱固性樹脂作為結合劑,但熱固性樹脂其固化時間長,樹脂內含有機溶劑而造成環境污染,且製作成本高。而紫外光固化樹脂其固化時間短,無環境污染之問題,製作成本低,故本研究利用紫外光固化樹脂最為微小鑽石砂輪之結合劑,並利用輪磨試驗來觀察經輪磨加工後砂輪與加工件表面形貌之改變,砂輪之切削能力探討等。
本研究首先對紫外光固化樹脂進行基本特性分析,如影響固化時間之因素及固化後之機械特性,爾後再以紫外光固化樹脂作為微小鑽石砂輪之結合劑,並進行輪磨實驗。經研究發現,紫外光固化樹脂中壓克力單體之官能基數會影響固化時間、固化後之機械特性及固化後之收縮量,且在加入鑽石磨粒後會使固化時間拉長。輪磨實驗結果得知,利用不同之結合劑配合不同之輪磨參數,其輪磨效果皆不同,若是結合劑中混合有三官能基與單官能基壓克力單體者,經輪磨加工後具有較佳的實驗結果。
最後,以紫外光固化樹脂作為微小鑽石砂輪之結合劑並且應用於輪磨加工上是可行的,將來應用於更精密之輪磨加工其發展性與實用性是可以值得去探討與研究。
英文摘要 The traditional grinding wheels, being normally produced using thermosetting resin as the bonding agent, have its shortages such as long curing time, containing volatile organic content which produced environmental pollution, and high manufacturing costs. The ultra-violet curable resins, using UV-light to cure, can improve those deficiencies. In the present research ultra-violet curable resins were used as bonding agent to produce micro-diamond grinding wheels. Efforts have been made to analyze the characteristics of ultra-violet curable resins, various combinations of resins/abrasives, and the mechanical properties of cured grinding wheels. The obtained grinding wheels were subsequently used to grind silicon specimens to investigate its machinability. The results showed that the number and type of functional groups possessed by the acrylate in UV-curable resins could have profound effects on curing time, shrinkage and mechanical properties. Owing to the absorption and reflection of UV-light introduced by the abrasives, the curing time might vary depending on the amount and type of abrasives being put into the resin. It was found that better grinding results were obtained when wheel was made using the mixture of tri-functional and mono-functional groups acrylate as the bond agent. It was showed in this study that using UV-curable resins as bonding agent to produce grinding wheel was feasible and worth spending more time for further development.
論文目次 目錄
中文摘要 I
英文摘要 II
致謝 IV
目錄 V
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 2
第二章 文獻回顧與理論基礎 3
2.1紫外光固化技術發展 3
2.2紫外光固化技術 3
2.3紫外光固化機制 5
2.4紫外光固化材料特性 5
2.5紫外光技術近年之應用 9
2.6磨削加工 11
2.7精密磨削 14
2.8紫外光固化技術與鑽石砂輪 17
第三章 實驗方法與設備 18
3.1實驗設計 18
3.2實驗設備 18
3.2.1紫外光固化設備 18
3.2.2輪磨設備 22
3.2.3量測儀器 23
3.3實驗流程圖 26
3.4實驗步驟 27
3.4.1紫外光固化試驗 27
3.4.2輪磨試驗 33
3.4.3撓性元件之彈性係數試驗及腐蝕試驗 35
3.4.4其他形狀之微鑽石砂輪製作 37
第四章 實驗結果與討論 39
4.1紫外光固化測試 39
4.1.1紫外光固化時間測試 39
4.1.2固化後樹脂之機械特性測試 40
4.1.3紫外光固化樹脂混合磨粒之探討 44
4.2 輪磨試驗 48
4.2.1切削力與磨耗比之探討 48
4.2.2輪磨後工件表面之觀察 50
4.2.3研磨後之砂輪表面觀察 52
4.2.4其他形狀之微鑽石砂輪製作結果 52
第五章 結論 59
參考文獻 61


表目錄
表2-1 光固化材料之應用領域 4
表2-2 光固化材料組成成分含量與功能 4
表2-3 單體的官能度與物性之關聯表 8
表2-4 常用之紫外光預聚合物結構與特性 9
表3-1 點光源機基本資料 19
表3-2 樹脂基本特性 20
表3-3 表面粗度儀規格表 23
表3-4 紫外光固化樹脂混合參數與基本特性表 27
表3-5 紫外光固化樹脂固化參數表 28
表3-6 固化厚度對固化時間之參數表 29
表3-7 固化面積對固化時間之參數表 29
表3-8 紫外光光源高度配置參數表 29
表3-9 混合碳化矽磨粒實驗參數表 32
表3-10 混合鑽石磨粒實驗參數表 33
表3-11 混合不同含量之鑽石磨粒實驗參數表 33
表3-12 結合劑混合參數 34
表3-13 輪磨加工參數表 35
表3-14 撓性元件量測數據表 36
表3-15 荷重與變形量之線性迴歸計算公式與結果 36
表4-1 各紫外光固化樹脂之固化時間表 41
表4-2 固化厚度對固化時間之影響 41
表4-3 固化面積對固化時間之影響 41
表4-4 紫外光光源高度配置對於固化面積之影響 42
表4-5 各紫外光固化樹脂固化後之機械性質 42
表4-6 各紫外光固化樹脂混合碳化矽磨粒之固化時間結果表 45
表4-7 吸水性測試結果表 46
表4-8 各紫外光固化樹脂混合鑽石磨粒之固化時間結果表 46
表4-9 改變固化厚度對於固化時間影響結果表 46
表4-10 混合不同含量之鑽石磨粒對固化時間影響結果表 48
表4-11 切削力與磨耗比紀錄表 50
表4-12 各微鑽石砂輪之尺寸 52
表4-13 輪磨參數G1,各結合劑加工後工件之表面粗糙度 53
表4-14 輪磨參數G2,各結合劑加工後工件之表面粗糙度 54
表4-15 輪磨參數G3,各結合劑加工後工件之表面粗糙度 55
表4-16 輪磨參數G4,各結合劑加工後工件之表面粗糙度 56


圖目錄
圖2-1 紫外光固化過程示意圖 5
圖2-2 光起始劑濃度與固化速率關係圖 8
圖2-3 Lortzs之切削、犁切與摩擦三階段模型 13
圖2-4 磨削加工磨粒移除材料之三種形態 13
圖2-5 Younis之切削、犁切與摩擦三階段的模型 14
圖2-6 砂輪之三種磨耗形式(A) Attririous wear (B) Grain fracture (C) Bond fracture 14
圖3-1 點光源機 19
圖3-2 壓克力單體與預聚合物之化學結構 21
圖3-3 轉盤示意圖 22
圖3-4 撓性元件示意圖 22
圖3-5 輪磨設備實體圖 23
圖3-6 表面粗度儀 25
圖3-7 光學顯微鏡 25
圖3-8 掃描式電子顯微鏡 25
圖3-9 固化實驗示意圖 28
圖3-10 彎曲強度實驗示意圖 30
圖3-11 楊氏係數實驗方法圖解 31
圖3-12 輪磨加工示意圖 34
圖3-13 撓性元件之荷重與變形量關係圖 36
圖3-14 撓性元件之彈性係數測試示意圖 37
圖3-15 棒狀砂輪製作示意圖 38
圖3-16 圓形薄片砂輪製作示意圖 38
圖3-17中空型圓形薄片砂輪製作示意圖 38
圖4-1 各紫外光固化樹脂固化時間分佈圖 42
圖4-2 固化厚度與固化時間關係圖 43
圖4-3 固化面積與固化時間關係圖 43
圖4-4 光源與玻璃載片之距離與固化面積關係圖 43
圖4-5 各紫外光固化樹脂之楊氏模數與彎曲強度分佈圖 44
圖4-6 混合碳化矽磨粒之固化時間分佈圖 47
圖4-7 混合鑽石磨粒之固化時間分佈圖 47
圖4-8 不同含量之鑽石磨粒與固化時間關係圖 48
圖4-9 加工參數G1,利用不同結合劑加工後之工件表面 (a)結合劑種類:B1 (b) a之放大 (c)結合劑種類:B2 (d) c之放大 (e)結合劑種類:B3 (f) e之放大 53
圖4-10 加工參數G2,利用不同結合劑加工後之工件表面 (a)結合劑種類:B1 (b) a之放大 (c)結合劑種類:B2 (d) c之放大 (e)結合劑種類:B3 (f) e之放大 54
圖4-11 加工參數G3,利用不同結合劑加工後之工件表面 (a)結合劑種類:B1 (b) a之放大 (c)結合劑種類:B2 (d) c之放大 (e)結合劑種類:B3 (f) e之放大 55
圖4-12 加工參數G4,利用不同結合劑加工後之工件表面 (a)結合劑種類:B1 (b) a之放大 (c)結合劑種類:B2 (d) c之放大 (e)結合劑種類:B3 (f) e之放大 56
圖4-13 砂輪表面形貌 (a)輪磨加工參數:G1-B1 (b)輪磨加工參數:G2-B1 (c)輪磨加工參數:G3-B1 (d)輪磨加工參數:G4-B1 57
圖4-14 砂輪表面形貌 (a)輪磨加工參數:G1-B2 (b)輪磨加工參數:G2-B2 (c)輪磨加工參數:G3-B2 (d)輪磨加工參數:G4-B2 57
圖4-15 砂輪表面形貌 (a)輪磨加工參數:G1- B3 (b)輪磨加工參數:G2- B3 (c)輪磨加工參數:G3- B3 (d)輪磨加工參數:G4- B3 58
圖4-16 各式砂輪製作成品圖 58

參考文獻 【1】王德海,江欞,“紫外光固化材料之理論與應用”,科學出版社,北京市,2001。
【2】J. Kindernay, A. Blazkova, J. Ruda, V.J. Covicova, Z.J. kova, “Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer”, Journal of Photochemistry and Photobiology A, Chemistry, Vol. 151, pp. 229-236, 2002.
【3】樊美公,“光化學基本原理與光子學材料科學”,科學出版社,北京市,2000。
【4】D. Christian, “Light-induced crosslinking polymerization”, Polymer International, Vol. 51, pp. 1141-1150, 2002.
【5】N.S. Allen, “Photoinitiators for UV and visible curing of coatings: Mechanisms and properties”, Journal of Photochemistry and Photobiology A, Chemistry, Vol. 100, pp. 101-107, 1996.
【6】J. Segurola, N.S. Allen, M. Edge, A.M. Mahona, S. Wilson, “Photoyellowing and discolouration of UV cured acrylated clearcoatings systems: Influence of photoinitiator type”, Polymer Degradation and Stability, Vol. 64, pp. 39-48, 1999.
【7】C.S.B. Ruiz, L.D.B. Machado, J.E. Volponi, E.S. Pino, “Influence of sample composition and processing parameters on the UV cure of clear coatings”, Nuclear Instruments and Methods in Physics Research B, Vol. 208, pp. 309-313, 2003.
【8】徐福熙,“如何選擇及使用紫外線/可見光硬化樹脂型接著劑”, 化工科技與商情,第27期,pp. 1-6,2001。
【9】J. Kindernay, A. Blažková, J. Rudá, V. Jancovicová, Z. Jakubiková, “Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer”, Journal of Photochemistry and Photobiology A, Chemistry, Vol. 151, pp. 229-236, 2002.
【10】M. Awokola, W. Lenhard, H. Löffler, C. Flosbach, P. Frese, “UV crosslinking of acryloyl functional polymers in the presence of oxygen”, Progress in Organic Coatings, Vol. 44, pp. 211-216, 2002.
【11】林和玫,“陽離子型UV固化技術與應用”,化工資訊與商情,第21期,pp. 41-47,2005。
【12】B. Nabeth, J.F. Gerard, J.P. Pascault, “Dynamic mechanical properties of UV-curable polyurethane acrylate with various reactive diluents”, Journal of Applied Polymer Science, Vol. 60, pp. 2113-2123, 1996.
【13】D.S. Kim, W.H. Seo, “Ultraviolet-curing behavior and mechanical properties of a polyester acrylate resin”, Journal of Applied Polymer Science, Vol. 92, pp. 3921-3928, 2004.
【14】F. Michael, Lucey, Member, “UV curable coatings for electronic components”, IEEE Transactions on Components Packaging and Manufacturing Technology A, Vol. 17, pp. 326-333, 1994.
【15】劉建量,“UV Curing 發展簡介與應用”,化工科技與商情,第41期,pp. 1-4,2003。
【16】S. Oestreich, S. Struck, “Additives for UV-curable coatings and inks”, Macromolecular Symposia, Vol. 187, pp. 333-342, 2002.
【17】A. Wenning, “Tailor-made UV-curable powder clear coatings for metal application”, Macromolecular Symposia, Vol. 187, pp. 597-603, 2002.
【18】Y. Morii, “A study on UV-curable adhesive sealant for LCD panel”, Electronics and Communications in Japan, Vol. 83, pp. 21-27, 2000.
【19】K. Rhodes, “Adhesives deliver low shrink, low stress bonds and fast UV cure”, Proceedings of SPIE, Vol. 4253, pp. 92-107, 2001.
【20】Z. Huang, J.C. Sanders, C. Dunsmor, H. Ahmadzadeh, J.P. Landers, “A method for UV-bonding in the fabrication of glass electrophoretic microchips”, Electrophoresis, Vol. 22, pp. 3924-3929, 2001.
【21】Q. Xia, C. Keimei, H. Ge, Z. Yu, W. Wu, S.Y. Chou, ”Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography”, Applied Physics Letters, Vol. 83, pp. 4417-4419, 2003.
【22】T. Bailey, B. Smith, B.J. Choi, M. Colburn, M. Meissl, S.V. Sreenivasan, J.G. Ekerdt, C.G. Willsona, “Step and flash imprint lithography: Defect analysis”, The Journal of Vacuum Science Technology B, Vol. 19, pp. 2806-2810, 2001.
【23】鄭瑞庭,“簡介紫外光硬化奈米轉印技術”,機械工業雜誌,257期,pp. 163-174,2004。
【24】T. Tanaka, Y. Isono, “New development of a grinding wheel with resin cured by ultraviolet light”, Journal of materials Processing Technology, Vol. 113, pp. 385-391, 2001.
【25】M.J. Hillier, “On a three-dimensional model of surface grinding process”, International Journal of Machine Tool Design and Research, Vol. 6, pp. 109-113, 1966.
【26】K.V. Kumar, M. Cozminca, Y. Tanaka, M.C. Shaw, “A new method of studying the performance of grinding wheels”, ASME Journal of Engineering for Industry, Vol. 102, pp. 80-84, 1980.
【27】M.C. Shaw, C. Milton, “Principles of abrasive processing”, Oxford University Press, 1996.
【28】S. Malkin, “Grinding technology: Theory and applications of machining with abrasives”, Ellis Horwood and John Wiley, New York, 1989.
【29】S. Malkin, “Selection of operation parameter in surface grinding of steels”, ASME Journal of Engineering for Industry, Vol. 98, pp. 56-62, 1976.
【30】E. Pecherer, and S. Malkin, “Grinding of steels with cubic boron nitride (CBN)”, Annals of the CIRP, Vol. 33, pp. 211-215, 1984.
【31】C. Rubenstein, “The mechanics of grinding”, International Journal of Machine Tool Design and Research, Vol. 12, pp. 127-139, 1972.
【32】M. Younis, M.M. Sadek, T.E. Wardani, “A new approach to development of a grinding force model”, ASME Journal of Engineering for Industry, Vol. 109, pp. 306-313, 1987.
【33】S.S. Law, S.S. Wu, “Simulation study of the grinding process”, ASME Journal of Engineering for Industry, Vol. 95, pp. 972-978, 1973.
【34】X. Chen and W.B. Rowe, “Analysis and simulation of the grinding process. part1: Generation of the grinding wheel surface”, International Journal of Machine Tools and Manufacture, Vol. 36, pp. 871-882, 1996.
【35】X. Chen, D.R. Allanson, W.B. Rowe, “Life cycle model of the grinding process”, Computers in Industry, Vol. 36, pp. 5-11, 1998.
【36】W. Lortz, “A model of the cutting mechanism in grinding”, Wear, Vol. 53, pp. 115-128, 1979.
【37】H.S. Qi, W.B. Rowe, B. Mills, “Experimental investigation of contact behavior in grinding”, Tribology International, Vol. 30, pp. 283-294, 1997.
【38】M. Alfares, A. Elsharkawy, “Effect of grinding force on the vibration of grinding machine spindle system”, International Journal of Machine Tools and Manufacture, Vol. 40, pp. 2003-2030, 2000.
【39】E.P. Degarmo, J.T. Black, R.A. Kohser, “Materials and processes in manufacturing”, Wiley, Ninth Edition, New York, pp. 661, 2003.
【40】X. Chen, R.W. Brian, “Analysis and simulation of the grinding process part І:Generation of the grinding wheel surface”, International Journal of Machine Tools and Manufacture, Vol. 36, pp. 871-882, 1996.
【41】X. Chen, R.W. Brian, “Analysis and simulation of the grinding process part П:Mechanics of grinding”, International Journal of Machine Tools and Manufacture, Vol. 36, pp. 883-889, 1996.
【42】X. Chen, R.W. Brian, “Analysis and simulation of the grinding process part Ш:Comparison with experiment”, International Journal of Machine Tools and Manufacture, Vol. 36, pp. 897-906, 1996.
【43】X. Chen, R.W. Brian, “Analysis and simulation of the grinding process part ІV:Effect of wheel wear”, International Journal of Machine Tools and Manufacture, Vol. 38, pp. 41-49, 1998.
【44】宋健民,“鑽石磨輪的簡介”,機械工業雜誌,254 期,pp. 148-159,2004。
【45】J. Qian, W. Li, H. Ohmori, “Precision internal grinding with a metal-bonded diamond grinding wheel”, Journal of Materials Processing Technology, Vol. 105, pp. 80-86, 2000.
【46】W.K. Chen, H. Huang, “Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels”, Journal of Materials Processing Technology, Vol. 140, pp. 217-223, 2003.
【47】S.Y. Luo, Y.S. Liao, C.C. Chou, J.P. Chen, “Analysis of the wear of a resin-bonded diamond wheel in grinding of tungsten carbide”, Journal of Materials Processing Technology, Vol. 69, pp. 289-296, 1997.
【48】S.Y. Luo, Y.C. Liu, “Effect of copper filler of resin-bonded diamond composites on the wear behaviors under a dry condition”, Journal of Materials Processing Technology, Vol. 96, pp. 215-224, 1999.
【49】S.Y. Luo, Y.S. Liao, C.C. Chou, T.C. Chen, “Performance of powder filled resin-bonded diamond wheels in the vertical dry grinding of tungsten carbide”, Journal of Materials Processing Technology, Vol. 118, pp. 329-336, 2001.
【50】S.B. Lee, Y. Tani, T. Enomoto, K. Yanagihra, W. Peng, “Development of an ultra-thin dicing blade applying ultra-violet curable resin”, 日本機械學會論文集, C篇, 69卷, pp. 2180-2185, 2003.
【51】S.B. Lee, Y. Tani, T. Enomoto, K. Yanagihra, K. Yanaka, “Development of a three-layered thin dicing blade applying ultra-violet curable resin”, International Conference on Leading Edge Manufacturing in 21st Century, pp. 333-338, 2003.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-11-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-11-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信