淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1206201418350300
中文論文名稱 使用手機加速度計和陀螺儀之室內定位
英文論文名稱 Indoor Localization with Accelerometer and Gyroscope on Smartphone
校院名稱 淡江大學
系所名稱(中) 資訊工程學系資訊網路與通訊碩士班
系所名稱(英) Master's Program in Networking and Communications, Department of Computer Science and Information Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 彭威然
研究生英文姓名 Wei-Jan Peng
學號 601420242
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2014-06-09
論文頁數 85頁
口試委員 指導教授-許輝煌
委員-白敦文
委員-許輝煌
委員-林其誼
中文關鍵字 加速度計  陀螺儀  室內定位  行人航位推算 
英文關鍵字 Accelerometer  Gyroscope  Localization  PDR 
學科別分類 學科別應用科學資訊工程
中文摘要 在此研究中,我們希望可以做到以較低的成本和方便使用的方式來達到室內定位的效果。如今智慧型手機進步快速,戶外定位系統於手機上不再是新鮮的事情,但是如今的定位系統皆是使用衛星定位訊號來進行作業,在室內中使用並無法達到準確的效果,訊號會被建築物所遮蔽。因此我們希望藉此研究來做出一個使用其他方式來進行室內定位的系統。
目前各種熱門公共場所都是許多觀光客常常會去的地方,例如地下街,各百貨公司。而這些地方通常都很大,第一次去的民眾大多會逛一逛之後,搞不清楚自己目前所在的位置而迷路。如此狀況下,如果有一套室內定位系統,讓使用者隨時可以知道自己目前所在的位置是一件很方便的事情,因此我們設計了一套在室內GPS訊號不準確的室內也可以使用的室內定位系統。為了使用上方便,我們建構在現在幾乎人人皆有的智慧型手機上面。我們希望使用低成本且方便的方式來達到室內定位的效果,因此排除了在環境內架設感應器來定位的方式,而採用PDR (Pedestrian Dead Reckoning) 的方式來進行行人航位推算,即是假設起始位置已知,再以使用者走路的步數,步伐大小和方向來進行目前所在位置的推算。使用者以手動方式輸入目前所在位當作起始點位置,使用了手機內建的感應器來蒐集使用者步行的資訊。我們以加速度感應器來蒐集使用者在行走中所產生的加速度,觀察行走時所產生的加速度特徵,以此來做為判斷行走步數的依據,並且評估目前現有的步幅計算方法,取較適合本研究中使用的方法來計算步幅的大小。以陀螺儀感應器在行人轉向時所產生的數值變化,計算出使用者轉向的角度,以此方式獲得行人行走的資訊,再搭配上適當的地圖來獲得最後定位的結果,則可以達到低成本且方便的室內定位效果。
英文摘要 Many people get lost easily in public places if they are not familiar with the environment. It would be very helpful to have an indoor localization system. Many researches in indoor localization can be found in the literature. However, they usually need to deploy sensors in the environment. It is costly and inconvenient. In this research, we propose to develop a smartphone indoor positioning application based on accelerometer and gyroscope data. The PDR (Pedestrian Dead Reckoning) method is used to build this application. Calibration points are marked both on the floor ground and on the map of the application. The user first finds a calibration mark, stand on it and face the right direction. He/she then place the android icon (representing the user) on top of the calibration point. When he/she starts to move, the android icon also moves on the map following the real-time estimates of step length and orientation change for each step from accelerometer and gyroscope data, respectively. Preliminary results in walking distance and orientation estimation show high accuracy. The application seems promising and useful as long as a map and calibration marks are built in advance.
論文目次 目錄
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文組織與架構 5
第二章 文獻探討 7
2.1 Android系統 7
2.1.1 Android系統架構 7
2.1.2 Android Activity生命週期 9
2.2 手機感應器 10
2.2.1 加速度感應器 12
2.2.2 陀螺儀感應器與方向感應器 14
2.3 室內定位法 15
2.3.1 WI-FI與RFID 15
2.3.2 Pedestrian Dead Reckoning 17
2.4 計步器 18
2.5 方向判斷 20
2.6 步幅計算 21
第三章 系統流程與方法 24
3.1 系統流程 24
3.2 資料擷取 26
3.3 資料前處理 27
3.4 行走步數偵測 29
3.4.1 Sliding Window方法 29
3.4.2 Zero-Crossing方法 33
3.5 步伐大小估計 35
3.6 轉向角度計算 36
3.7 室內定位方法 39
3.7.1 起始點設定與地圖載入 39
3.7.2 整合推算定位結果 40
3.7.3 所在位置校正 41
第四章 實驗結果與分析 42
4.1 開發平台 42
4.2 系統介面 43
4.3 實驗結果分析 47
4.3.1 步數判斷 48
4.3.2 轉向角度 50
4.3.3 步伐大小 51
4.3.4 定位結果分析 53
第五章 結論與未來發展 61
5.1 結論 61
5.2 未來發展 61
參考文獻 63
附錄1 終點定位結果圖 70
附錄2 英文論文 80

圖目錄
圖 1. Android系統架構圖[10] 8
圖 2. Activity 生命週期[11] 9
圖 3. 加速度感應器原理 12
圖 4. 手機三軸座標 13
圖 5. Wi-Fi定位示意圖 16
圖 6. PDR架構圖 18
圖 7. 行走示意圖 22
圖 8. 系統流程圖 24
圖 9. Acc經過濾波比較 28
圖 10. 建立視窗示意圖 30
圖 11. 視窗向右滑動示意圖 30
圖 12. 視窗中誤判示意圖 31
圖 13. 行走步伐較大時誤判情況 33
圖 14. Zero-Crossing示意圖 34
圖 15. 行人轉向座標軸與手機座標軸關係 36
圖 16. 原地轉向測試 38
圖 17. 定位座標表示 40
圖 18. 地圖中加入校正點 41
圖 19. 功能選單 44
圖 20. 系統介面圖1 45
圖 21. 系統介面圖2 46
圖 22. 淡江大學工學大樓八樓平面圖 47
圖 23. 手持裝置晃動較大時測試結果 54
圖 24. 較注重裝置穩定下的測試結果 54
圖 25. 終點定位結果圖(長距離) 58
圖 26. 終點定位結果圖(短距離) 59

表格目錄
表格 1 . Android平台支援的感應器類型[13] 10
表格 2. 四種步數判斷方法錯誤率比較[35] 20
表格 3. 感應器取樣間隔時間比較[44] 27
表格 4. Sliding Window行走50步測試結果 49
表格 5. Zero-Crossing行走50步測試結果 49
表格 6. 右轉90度(-90度)測試結果 50
表格 7. 左轉90度(90度)測試結果 51
表格 8. 步行直線10公尺測試結果 52
表格 9. 終點定位結果(長距離) 56
表格 10. 終點定位結果(短距離) 57
參考文獻 [1] “3Q13 Mobile OS Market share,” http://www.idc.com/getdoc.jsp?containerId=prUS24442013 (last accessed Mar 18, 2014)
[2] Kim, Y. U., Kang, S. K., & Jung, S. T. (2009, August). Design and implementation of a lip reading system in smart phone environment. 2009 IEEE International Conference on Information Reuse & Integration, IRI'09. (pp. 101-104). IEEE.
[3] Bai, Y. W., Wu, S. C., & Tsai, C. L. (2012). Design and implementation of a fall monitor system by using a 3-axis accelerometer in a smart phone. In IEEE Transactions on Consumer Electronics, 58(4), 1269-1275. IEEE.
[4] Viet, V. Q., Lee, G., & Choi, D. (2012, February). Fall Detection Based on Movement and Smart Phone Technology. In 2012 IEEE RIVF International Conference on In Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), (pp. 1-4). IEEE.
[5] Pernek, I., Stiglic, G., & Kokol, P. (2012, June). How Hard Am I Training? Using Smart Phones to Estimate Sport Activity Intensity. In 2012 IEEE 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW), (pp. 65-68). IEEE.
[6] Gao, C., Kong, F., & Tan, J. (2009, December). Healthaware: Tackling obesity with health aware smart phone systems. In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), (pp. 1549-1554). IEEE.
[7] Niu, X., Zhang, Q., Li, Y., Cheng, Y., & Shi, C. (2012, April). Using inertial sensors of iphone 4 for car navigation. In 2012 IEEE/ION Position Location and Navigation Symposium (PLANS), (pp. 555-561). IEEE.
[8] Yang, P., Wu, W., Moniri, M., & Chibelushi, C. C. (2013). Efficient object localization using sparsely distributed passive RFID tags. IEEE Transactions on Industrial Electronics, 60(12), 5914-5924. IEEE.
[9] Koo, J., & Cha, H. (2012). Unsupervised Locating of WiFi Access Points Using Smartphones. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(6), 1341-1353. IEEE.
[10] “Wiki, Android,” http://zh.wikipedia.org/wiki/Android (last accessed Mar 18, 2014)
[11] “Android Activity,” http://developer.android.com/reference/android/app/Activity.html (last accessed Mar 18, 2014)
[12] Ma, Z., Qiao, Y., Lee, B., & Fallon, E. (2013, June). Experimental evaluation of mobile phone sensors. In Signals and Systems Conference (ISSC 2013), 24th IET Irish (pp. 1-8). IET.
[13] “Android Sensor Overview,” http://developer.android.com/guide/topics/sensors/sensors_overview.html (last accessed Mar 18, 2014)
[14] Lou, X., Shi, J., Zhang, W., & Jin, Y. (2005, December). Study on the packaging technology for a high-G MEMS accelerometer. In Electronic Packaging Technology Conference, 2005. EPTC 2005. Proceedings of 7th (Vol. 1, pp. 4-pp). IEEE.
[15] Sun, S. C., & Shi, G. C. (2009, January). Research on the output characteristics of MEMS convective accelerometer under heavy impact. In 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009. (pp. 33-36). IEEE.
[16] Hsu, C. H., & Yu, C. H. (2009, July). An Accelerometer based approach for indoor localization. In Ubiquitous, Autonomic and Trusted Computing, 2009. UIC-ATC'09. Symposia and Workshops on (pp. 223-227). IEEE.
[17] Fahim, M., Fatima, I., Lee, S., & Lee, Y. K. (2012, February). Daily life activity tracking application for smart homes using android smartphone. In 2012 14th International Conference on Advanced Communication Technology (ICACT), (pp. 241-245). IEEE.
[18] Dernbach, S., Das, B., Krishnan, N. C., Thomas, B. L., & Cook, D. J. (2012, June). Simple and complex activity recognition through smart phones. In 2012 8th International Conference on Intelligent Environments (IE), (pp. 214-221). IEEE.
[19] Oner, M., Pulcifer-Stump, J. A., Seeling, P., & Kaya, T. (2012, August). Towards the run and walk activity classification through step detection-An android application. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE (pp. 1980-1983). IEEE.
[20] Barthold, C., Subbu, K. P., & Dantu, R. (2011, October). Evaluation of gyroscope-embedded mobile phones. In 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), (pp. 1632-1638). IEEE.
[21] “Wiki, Hall effect,” http://zh.wikipedia.org/wiki/霍爾效應 (last accessed Mar 18, 2014)
[22] Sousa, M., Techmer, A., Steinhage, A., Lauterbach, C., & Lukowicz, P. (2013, March). Human tracking and identification using a sensitive floor and wearable accelerometers. In 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom), (pp. 166-171). IEEE.
[23] Shin, B., Lee, J. H., Lee, H., Kim, E., Kim, J., Lee, S., ... & Lee, T. (2012, October). Indoor 3D pedestrian tracking algorithm based on PDR using smarthphone. In 2012 12th International Conference on Control, Automation and Systems (ICCAS), (pp. 1442-1445). IEEE.
[24] Zhang, R., Bannoura, A., Hoflinger, F., Reindl, L. M., & Schindelhauer, C. (2013, February). Indoor localization using a smart phone. In 2013 IEEE Sensors Applications Symposium (SAS), (pp. 38-42). IEEE.
[25] Ausmeier, B., Campbell, T., & Berman, S. (2012, September). Indoor Navigation Using a Mobile Phone. In 2012 African Conference on Sofware Engineering and Applied Computing (ACSEAC), (pp. 109-115). IEEE.
[26] “RFID Journal,” http://www.rfidjournal.com (last accessed Mar 18, 2014)
[27] 鄭文昌、江文生、詹銘浩、廖孟祥、王逸凡. (2010). 主動式rfid應用於室內自動定位系統. 第五屆智慧生活科技研討會,
[28] Ni, L. M., Liu, Y., Lau, Y. C., & Patil, A. P. (2004). LANDMARC: indoor location sensing using active RFID. Wireless networks, 10(6), 701-710.
[29] Jin, G. Y., Lu, X. Y., & Park, M. S. (2006, June). An indoor localization mechanism using active RFID tag. In IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006. (Vol. 1, pp. 4-pp). IEEE.
[30] Polito, S., Biondo, D., Iera, A., Mattei, M., & Molinaro, A. (2007, September). Performance evaluation of active RFID location systems based on RF power measures. In 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2007. (pp. 1-5). IEEE.
[31] Gusenbauer, D., Isert, C., & Krosche, J. (2010, September). Self-contained indoor positioning on off-the-shelf mobile devices. In 2010 international conference on Indoor positioning and indoor navigation (IPIN), (pp. 1-9). IEEE.
[32] Park J., Kim Y., & Lee J. M. (2012). Waist mounted pedestrian dead-reckoning system. In 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 335-336.
[33] Pratama, A. R., & Hidayat, R. (2012, September). Smartphone-based Pedestrian Dead Reckoning as an indoor positioning system. In 2012 International Conference on System Engineering and Technology (ICSET), (pp. 1-6). IEEE.
[34] Jayalath, S., & Abhayasinghe, N. (2013, April). A gyroscopic data based pedometer algorithm. In 2013 8th International Conference on Computer Science & Education (ICCSE), (pp. 551-555). IEEE.
[35] Marschollek, M., Goevercin, M., Wolf, K. H., Song, B., Gietzelt, M., Haux, R., & Steinhagen-Thiessen, E. (2008, August). A performance comparison of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE (pp. 1319-1322). IEEE.
[36] Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, (3), 230-236.
[37] Ying, H., Silex, C., Schnitzer, A., Leonhardt, S., & Schiek, M. (2007, January). Automatic step detection in the accelerometer signal. In 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007) (pp. 80-85). Springer Berlin Heidelberg.
[38] Tundo, M. D., Lemaire, E., & Baddour, N. (2013, May). Correcting Smartphone orientation for accelerometer-based analysis. In 2013 IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), (pp. 58-62). IEEE.
[39] Kang, W., Nam, S., Han, Y., & Lee, S. (2012, September). Improved heading estimation for smartphone-based indoor positioning systems. In 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), (pp. 2449-2453). IEEE.
[40] Shih, W. Y., Chen, L. Y., & Lan, K. C. (2012, December). Estimating walking distance with a smart phone. In 2012 Fifth International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), (pp. 166-171). IEEE.
[41] Alvarez, D., Gonzalez, R. C., Lopez, A., & Alvarez, J. C. (2006, August). Comparison of step length estimators from weareable accelerometer devices. In 2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. EMBS'06. (pp. 5964-5967). IEEE.
[42] Weinberg, H. (2002). Using the ADXL202 in pedometer and personal navigation applications. Analog Devices AN-602 application note.
[43] Sayeed, T., Sama, A., Catala, A., & Cabestany, J. (2013, September). Comparison and adaptation of step length and gait speed estimators from single belt worn accelerometer positioned on lateral side of the body. In 2013 IEEE 8th International Symposium on Intelligent Signal Processing (WISP), (pp. 14-20). IEEE.
[44] “Android Sensor Manager,” http://developer.android.com/reference/android/hardware/SensorManager.html (last accessed Mar 18, 2014)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-06-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-06-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信