淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1206200917100300
中文論文名稱 型二設限貝氏抽樣計畫之提前接受決策規則
英文論文名稱 Bayesian Sampling Plans for Type II Censored Data with an Early Acceptance Decision Rule
校院名稱 淡江大學
系所名稱(中) 統計學系碩士班
系所名稱(英) Department of Statistics
學年度 97
學期 2
出版年 98
研究生中文姓名 莊銘棋
研究生英文姓名 Ming-Chi Chuang
學號 696650067
學位類別 碩士
語文別 英文
口試日期 2009-05-22
論文頁數 49頁
口試委員 指導教授-蔡宗儒
委員-林豐澤
委員-蘇懿
委員-廖敏治
中文關鍵字 貝氏風險  提前接受決策規則  先驗分配  允收抽樣計畫  型二設限檢測 
英文關鍵字 Bayes risk  Early acceptance decision rule  Prior distribution  Acceptance sampling plan  Type II censored test 
學科別分類 學科別自然科學統計
中文摘要 本論文對型二設限指數分配壽命資料建立貝氏抽樣計畫之提前接受決策規則。文中並提供一個演算法來尋找最佳的貝氏抽樣計畫的提前接受決策規則。數值分析結果指出,本論文建議的提前接受決策規則有助於縮短壽命檢測之試驗時間。並且,舉出一個實例說明所建議方法之應用。
表單編號:ATRX-Q03-001-FM030-01
英文摘要 In this thesis, an early acceptance decision rule is considered to establish the Bayesian sampling scheme for type II censored exponential data. Algorithms are provided to determine the optimal Bayesian sampling plans with an early acceptance decision rule. Numerical results indicate that the proposed early acceptance decision rule helps to shorten the experimental time of a life test. Moreover, an example is used to illustrate the application of the proposed method.
表單編號:ATRX-Q03-001-FM031-01
論文目次 Contents
1 Introduction 1
2 Bayesian Sampling Plans with Type II Censoring 5
3 Bayesian Sampling Plans with an Early Acceptance Decision Rule 12
4 Example 18
5 Numerical Results 21
6 Conclusions 46

List of Tables
5.1 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 4, beta = 1.25, a0 = 7, a1 = 5, a2 = 5, and N = 800. . . . . . . . . . . . . 25
5.2 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 4, beta = 1.25, a0 = 7, a1 = 5, a2 = 5, and N = 1000. . . . . . . . . . . . 26
5.3 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 4, beta = 1.25, a0 = 7, a1 = 5, a2 = 5, and N = 1500. . . . . . . . . . . . 27
5.4 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 4, beta = 1.25, a0 = 7, a1 = 5, a2 = 5, and N = 2000. . . . . . . . . . . . 28
5.5 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 4, beta = 1.25, a0 = 7, a1 = 5, a2 = 5, and N = 3000. . . . . . . . . . . . 29
5.6 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 4, beta = 1.25, a0 = 7, a1 = 5, a2 = 5, and N = 5000. . . . . . . . . . . . 30
5.7 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 5, beta = 1.75, a0 = 7, a1 = 5, a2 = 5, and N = 800. . . . . . . . . . . . . 31
5.8 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 5, beta = 1.75, a0 = 7, a1 = 5, a2 = 5, and N = 1000. . . . . . . . . . . . 32
5.9 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 5, beta = 1.75, a0 = 7, a1 = 5, a2 = 5, and N = 1500. . . . . . . . . . . . 33
5.10 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 5, beta = 1.75, a0 = 7, a1 = 5, a2 = 5, and N = 2000. . . . . . . . . . . . 34
5.11 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 5, beta = 1.75, a0 = 7, a1 = 5, a2 = 5, and N = 3000. . . . . . . . . . . . 35
5.12 The minimum Bayes risks RS(nB, rB, deltaB) and optimal sampling plans for
alpha = 5, beta = 1.75, a0 = 7, a1 = 5, a2 = 5, and N = 5000. . . . . . . . . . . . 36
5.13 The correction rate of the early decision rule for C4 = 50 with 1000 repetitions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.14 The correction rate of the early decision rule for C4 = 60 with 1000 repetitions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.15 The correction rate of the early decision rule for C4 = 80 with 1000 repetitions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

List of Figures
3.1 Flowchart of the proposed early decision rule. . . . . . . . . . . . . . . . . 17
4.1 The searching procedure of the early decision rule: (a) m = 6, (b) m = 7,
(c) m = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1 The value of phi for various batch sizes with C4 = 50, alpha = 4 and beta = 1.25. . 40
5.2 The value of phi for various batch sizes with C4 = 50, alpha = 5 and beta = 1.75. . 41
5.3 The value of phi for various batch sizes with C4 = 60, alpha = 4 and beta = 1.25. . 42
5.4 The value of phi for various batch sizes with C4 = 60, alpha = 5 and beta = 1.75. . 43
5.5 The value of phi for various batch sizes with C4 = 80, alpha = 4 and beta = 1.25. . 44
5.6 The value of phi for various batch sizes with C4 = 80, alpha = 5 and beta = 1.75. . 45

參考文獻 [1] Chen, J., Choy, S.T.B., and Li, K.-H. (2004). Optimal Bayesian sampling acceptance
plan with random censoring. European Journal of Operational Research, 155(3): 683-
694.
[2] Chen, J., Li, K.-H., and Lam, Y. (2007). Bayesian single and double variable sampling
plans for the Weibull distribution with censoring. European Journal of Operational
Research, 177(2): 1062-1073.
[3] Chen, J. and Lam, Y. (1999a). Bayesian variable sampling plans for a general life
distribution with type I censoring. OR Transaction, 3: 29-45.
[4] Chen, J. and Lam, Y. (1999b). Bayesian variable sampling plan for the Weibull
Distribution with Type I Censoring. Acta Mathematicae Applicatae Sinica, 15(3):
269-280.
[5] Fertig, K.W. and Mann, N.R. (1974). A decision-theoretic approach to defining variable
sampling for exponential and Gaussian process. Journal of the American Statististical
Association, 69(347): 665-671.
[6] Hald, A. (1967). Asymptotic properties of Bayesian single sampling plans. Journal
of the Royal Statistical Society Series B, 29(1): 162-173.
[7] Hald, A. (1968). Bayesian single sampling attribute plans for continuous prior distributions.
Technometrics, 10(4): 667-683.
[8] Hald, A. (1981). Statistical Theory of Sampling Inspection by Attributes, Academic
Press, New York.
[9] Huang, W.-T. and Lin, Y.-P. (2002). An improved Bayesian sampling plan for exponential
population with type I censoring. Communication in Statistics - Theory and
Methods, 31(11): 2003-2025.
[10] Huang, W.-T. and Lin, Y.-P. (2004). Bayesian sampling plans for exponential distribution
based on uniform random censored data. Computational Statistics and Data
Analysis, 44(4): 669-691.
[11] Kwon, Y.I. (1996). A Bayesian life test sampling plan for products with Weibull
lifetime distribution sold under warranty. Reliability Engineering and System Safety,
53(1): 61-66.
[12] Lam, Y. (1988a). A decision theory approach to variable sampling plans. Scienta
Sinica, Series A, 31: 129-140.
[13] Lam, Y. (1988b). Bayesian approach to single variable sampling plans. Biometrika,
75(2): 387-391.
[14] Lam, Y. (1990). An optimal single variable sampling plan with censoring. The Statistician,
39(1): 53-66.
[15] Lam, Y. (1994). Bayesian variable sampling plans for the exponential distribution
with type I censoring. The Annals of Statistics, 22(2): 696-711.
[16] Lam, Y. and Choy, S.T.B. (1995). Bayesian variable sampling plans for the exponential
distribution with uniformly distributed random censoring. Journal of Statistical
Planning and Inference, 47(3): 277-293.
[17] Lam, Y. and Lau, L.C. (1993). Optimal single variable sampling plans. Communications
in Statistics - Simulation and Computation, 22: 371-286.
[18] Lin, T.-P., Liang, T.-C., and Huang, W.-T. (2002). Bayesian sampling plan for exponential
distribution based on type I censoring data. Annals of the Institute of
Statistical Mathematics, 54(1): 100-113.
[19] Nigm, A.M. and Ismail, M.A. (1985). Bayesian life test sampling plans for the two
parameter exponential distribution. Communications in Statistics - Simulation and
Computation, 14(3): 691-707.
[20] Thyregod, P. (1974). Bayesian single sampling acceptance plans for finite lot sizes.
Journal of the Royal Statistical Society, Series B, 36(2): 305-319.
[21] Thyregod, P. (1975). Bayesian Single Sampling Plans for Life-Testing with Truncation
of the Number of Failures. Scandinavian Journal of Statistics, 2(2): 61-70.
[22] Wetherill, G.B. and K‥ollerst‥om, J. (1979). Sampling inspection simplified (with discussion).
Journal of the Royal Statistical Society Series B, 142(1): 1-32.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-06-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-06-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信