淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1206200815114800
中文論文名稱 多標的遺傳演算法探討南化水庫最佳限水策略
英文論文名稱 Exploring Optimal Hedging Rules of The Nanhua Reservoir Using Multi-Objective Genetic Algorithm
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 黃景裕
研究生英文姓名 Jing-Yu Huang
學號 695480441
學位類別 碩士
語文別 中文
口試日期 2008-05-09
論文頁數 56頁
口試委員 指導教授-張麗秋
共同指導教授-蕭政宗
委員-張斐章
委員-施國肱
委員-黃文政
中文關鍵字 多標的遺傳演算法  Pareto最佳解  限水策略  缺水率  可利用水量 
英文關鍵字 multi-objective genetic algorithm  Pareto optimal solutions  hedging rule  shortage ratio  water availability 
學科別分類 學科別應用科學環境工程
中文摘要 本文研究目的為利用多標的遺傳演算法探討南化水庫乾旱時期最佳限水策略,限水策略以標準操作策略(SOP)為基礎並加入限水參數,限水策略依參數個數分為一點法、二點法、及三參數法,另依參數是否隨時間變化分為定值及時變限水策略,所考慮的參數時間變化頻率有半年變化、季變化及月變化。本文選用相互衝突的總缺水率與單旬最大缺水率作為衡量供水水庫營運效率的指標,並以非優勢排列遺傳演算法(NSGA-II)求解以此二缺水指標為標的函數的多標的Pareto最佳解。經應用於南化水庫分析後顯示增加限水參數個數及參數時間變化頻率可有效改善水庫限水效果,即 Pareto鋒線往減少總缺水率及單旬最大缺水率的方向移動,且其限水效果可相互疊加,因此在所分析的十二種限水策略中以三參數法月變化限水策略為最優。
英文摘要 This study aims to exploring optimal hedging rules using multi-objective genetic algorithm for the Nanhua Reservoir during droughts. Hedging parameters are added in the SOP-based rules to construct water-rationing measures. One-, two-, and three-parameter hedging rules associated with constant and time-varying hedging parameters are employed to investigate effects on water-shortage characteristics. Time-varying frequencies considered in this study include semi-annually, quarterly, and monthly varying. Two conflicting shortage indices, total shortage ratio and maximum 10-day shortage ratio, are used to evaluate operation performance of a water-supply reservoir. The Pareto optimal solutions of this multi-objective optimization are searched by the non-dominated shorting genetic algorithm II (NSGA-II). The proposed methodology is applied to the Nanhua Reservoir that is located in southern Taiwan. The results show that increasing time-varying frequency of hedging parameters can effectively reduce water-shortage characteristic, which are further improved by increasing numbers of hedging parameters. Thus, the three-parameter monthly varying hedging rule performs best among twelve hedging rules evaluated in this study.
論文目次 目錄
頁次
謝誌 I
中文摘要 II
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 IX
符號表 X
第一章、緒論 1
1.1研究動機及目的 1
1.2文獻回顧 2
1.3章節架構 4
第二章、研究方法 6
2.1限水策略 6
2.1.1標準操作策略 7
2.1.2一點法限水策略 8
2.1.3二點法限水策略 9
2.1.4三參數法限水策略 11
2.2時變性限水策略 12
2.3缺水指標 13
2.4多標的優選模式 14
2.5遺傳演算法(GA) 14
2.6非優勢排列遺傳演算法(NSGA-II) 21
第三章、個案研究 26
3.1南化水庫及甲仙攔河堰系統概述 26
3.2水庫及攔河堰系統之營運模式 28
第四章、結果與討論 31
4.1限水參數時間變化頻率對Pareto最佳解之影響 32
4.2限水參數個數對Pareto最佳解之影響 40
4.3不同限水策略後優選最佳解決策變數比較 44
第五章、結論與建議 50
5.1結論 50
5.2建議 50
參考文獻 52

參考文獻 1.Bayazit, M, and Unal, E., “Effects of hedging on reservoir performance,” Water Resources Research, Vol. 26, No. 4, pp. 713-719 (1990).
2.Bekele, E. G., and Nicklow, J. W., “Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms,” Water Resources Research, 41, W10406, doi: 10.1029/ 2005WR004090 (2005).
3.Burn, D. H., and Yulianti, J. S., “Waste-load allocation using genetic algorithms,” Journal of Water Resources Planning and Management, ASCE, Vol. 127, No. 2, pp. 121-129 (2001).
4.Deb, K. and Goyal, M. “A combined genetic adaptive search (GeneAS) for engineering design,” Computer Science and Informatics 26(4), 30-45 (1996)
5.Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197 (2002).
5.Deb, K., Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Chichester, pp. 389-400 (2001).
6.Deb, K., “Optimization for Engineering Design: Algorithms and Examples,” New Delhi: Prentice-Hall(1995).
7.Draper, A. J., and Lund, J. R., “Optimal hedging and carryover storage value,” Journal of Water Resources Planning and Management, ASCE, Vol. 130, No. 1, pp. 83-87 (2004).
8.Hashimoto, T., Stedinger, J. R., and Loucks, D. P., “Reliability, resiliency, and vulnerability criteria for water resources system performance evaluation,” Water Resources Research, Vol. 18, No. 1, pp. 14-20 (1982).
9.Holland, J. 1975, “Adaption in Natural and Artificial Systems”, University of Michigan Press: Ann Arbor, MI.
10.Huang, W. C., and Yuan, L. C., “A drought early warning system on real-time multireservoir operations,” Water Resources Research, 40, W060401, doi: 10.1029/ 2003WR002910 (2004).
11.Huang, W. C., and Chou, C. C., “Drought early warning system in reservoir operation: Theory and practice,” Water Resources Research, 41, W11406, doi: 10.1029/ 2004WR003830 (2005).
12.Kapelan, Z. S., Savic, D. A., and Walters, G. A., “Multiobjective sampling design for water distribution model calibration,” Journal of Water Resources Planning and Management, ASCE, Vol. 129, No. 6, pp. 466-479 (2003).
13.Kapelan, Z. S., Savic, D. A., and Walters, G. A., “Multiobjective design of water distribution systems under uncertainty,” Water Resources Research, 41, W11407, doi: 10.1029/ 2004WR003787 (2005).
14.Kim, T., Heo, J. H., Jeong, C. S., “Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms,” Hydrological Processes, Vol. 20, No. 9, pp. 2057-2075 (2006).
15.Khu, S. T., and Madsen, H., “Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration,” Water Resources Research, 41, W03004, doi: 10.1029/ 2004WR003041 (2005).
16.Lund, J. R., and Reed, R. U., “Drought water rationing and transferable rations,” Journal of Water Resources Planning and Management, ASCE, Vol. 121, No. 6, pp. 429-437 (1995).
17.Moy, W. S., Cohon, J. L., and ReVelle, C. S., “A programming model for analysis of reliability, resilience, and vulnerability of water supply reservoir,” Water Resources Research, Vol. 22, No. 4, pp. 489-498 (1986).
18.Muleta, M. K., and Nicklow, J. W., “Decision support for watershed management using evolutionary algorithms,” Journal of Water Resources Planning and Management, ASCE, Vol. 13, No. 6, pp. 409-426 (2005).
19.Neelakantan, T. R., and Pundarikanthan, N. V., “Hedging rule optimization for water supply reservoir system,” Water Resources Management, Vol. 13, No. 6, pp. 409-426 (1999).
20.Prasad, T. D., and Park, N. S., “Multiobjective genetic algorithms for design of water distribution networks,” Journal of Water Resources Planning and Management, ASCE, Vol. 130, No.1, pp. 73-82 (2004).
21.Prasad, T. D., Walters, G. A., and Savic, D. A., “Booster disinfection of water supply networks: Multiobjective approach,” Journal of Water Resources Planning and Management, ASCE, Vol. 130, No. 5, pp. 367-376 (2004).
22.Reed, P., Minsker, B. S., and Goldberg, D. E., “Simplifying multiobjective optimization: An automated design methodology for the nondominated sorted genetic algorithm-II,” Water Resources Research, 39, 1196, doi: 10.1029/ 2002WR001483 (2003).
23.Reddy, M. J., and Kumar, D. N., “Optimal reservoir operation using multi-objective evolutionary algorithm,” Water Resources Management, Vol. 20, No. 6, pp. 861-878 (2006).
24.Shiau, J. T., “Water release policy effects on the shortage characteristic for the Shihmen Reservoir System during drought,” Water Resources Management, Vol. 17, No. 6, pp. 463-480 (2003).
25.Shiau, J. T., and Lee, H. C., “Derivation of optimal hedging rules for a water-supply reservoir through compromise programming,” Water Resources Management, Vol. 19, No. 2, pp. 111-132 (2005).
26.Shiau, J. T., and Wu, F. C., “Pareto-optimal solution for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime,” Water Resources Research, 43, W06433, doi: 10.1029/ 2006WR005523 (2007).
27.Shih, J. S., and ReVelle, C., “Water-supply operations during drought: Continuous hedging rule,” Journal of Water Resources Planning and Management, ASCE, Vol. 120, No. 5, pp. 613-629 (1994).
28.Shih, J. S., and ReVelle, C., “Water-supply operations during drought: A discrete hedging rule,” European Journal of Operational Research, Vol. 82, pp. 163-175 (1995).
29.Srinivasan, K., and Philipose, M. C., “Evaluation and selection of hedging policies using stochastic reservoir simulation,” Water Resources Management, Vol. 10, No. 3, pp. 163-188 (1996).
30.Suen, J. P., and Eheart, J. W., “Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime,” Water Resources Research, 42, W03417, doi: 10.1029/ 2005WR004314 (2006).
31.Tu, M. Y., Hsu, N. S., and Yeh, W. W-G., “Optimization of reservoir management and operation with hedging rules,” Journal of Water Resources Planning and Management, ASCE, Vol. 129, No. 2, pp. 86-97 (2003).
32.Vamvakeridou-Lyroudia, L. S., Walters, G. A., and Savic, D. A., “Fuzzy multiobjective optimization of water distribution networks,” Journal of Water Resources Planning and Management, ASCE, Vol. 131, No. 6, pp. 467-476 (2005).
33.Wright, A. “Genetic algorithms for real parameter optimization.” In Foundations of Genetic Algorithms 1 (FOGA-1), pp. 205-218 (1991).
34.Yandamuri, S. R., Srinivasan, M. K., and Bhallamudi, S. M., “Multiobjective optimal waste load allocation models for rivers using nondominated sorting genetic algorithm-II,” Journal of Water Resources Planning and Management, ASCE, Vol. 132, No. 3, pp. 133-143 (2006).
35.Zitzler, E. Thiele, L., and Deb, K., “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evolutionary Computation, Vol. 8, No. 2, pp. 173-196 (2000).
36.台灣省政府水利處,「南部區域水資源聯合運用研究(八十六年度研究報告)」 (1997)。
37.蕭政宗,「乾旱時期水庫供水策略與缺水影響分析」,農業工程學報,第四十六卷,第二期,第54-74頁 (2000)。
38.經濟部水利處水利規劃試驗所,「美濃水庫規劃檢討一、基本設計資料補充調查與檢討(一)高屏溪水源運用檢討工作」 (2002)。
39.李皓志、蕭政宗,「考慮不同替代入流量之水庫限水策略」,農業工程學報,第四十九卷,第一期,第61-77頁 (2003)。
40.周乃昉、林政浩,「應用平均缺水率制定水庫運用規線」,第十五屆水利工程研討會論文集,中壢,第C49-C56頁 (2006)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-06-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-06-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信