淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1206200800113100
中文論文名稱 利用遺傳演算法串疊牛頓法重建半空間介電物體之影像
英文論文名稱 Image Reconstruction of Half Space Dielectric Objects by a Cascaded Method
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 孫積賢
研究生英文姓名 Chi-Hsien Sun
學號 695440023
學位類別 碩士
語文別 中文
口試日期 2008-06-05
論文頁數 56頁
口試委員 指導教授-丘建青
委員-林丁丙
委員-丘增杰
委員-錢威
委員-丘建青
委員-李慶烈
中文關鍵字 逆散射  介質物體  半空間  穩態遺傳演算法  串疊法 
英文關鍵字 Inverse Problem  Dielectric Cylinder  Half Space  Steady-State Genetic Algorithm  Cascaded Method 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文模擬研究介質掩埋物體的電磁成像重建。設有一空間分成兩個半空間,ㄧ未知的不均勻介質物體掩埋在其中一半空間,吾人可以在另一半空間中安排入射波,其入射波採用多方向連續照射之方式,以收集較完整之材質特性資訊。於理論推導方面,本研究考慮完整之非線性公式,以提高解之精確度。
數值方法之執行過程,即使介電物體具有較複雜之材質特性分佈(不平滑),或者介電體材質特性分佈與環境之材質特性具有較高之對比度,此數值方法亦能適用。
就大部分較簡單之例子而言,遺傳演算法即可得到相當良好之解。然而,對於較複雜之例子,即考驗著遺傳演算法之強健性。本論文以演傳演算法所得之解,當作牛頓法之初始猜測值。藉由遺傳演算法之全域搜尋特性,以求得可接受之解,期望此解對於區域性搜尋之牛頓法而言,可能為適當之初始猜測值。串疊之方法比較單一遺傳演算法,或者單一牛頓迭代法,其解之精確度勢必較高。本研究模擬之數值結果顯示,此串疊之數值方法運用於重建非均勻介電物體之材質特性分佈,得到良好之重建結果。
英文摘要 In this paper, a cascaded method is employed to determine the permittivity distribution of a dielectric cylinders buried in a half-space. Assume that dielectric cylinders of unknown permittivity distribution is buried in one half-space and scatters the field incident from another half-space where the scattered filed is measured. Based on the boundary condition and the measured scattered field, a set of nonlinear integral equations is derived and the imaging problem is reformulated into an optimization problem. A cascaded method which composed a genetic algorithm (GA) and a Newton iteration is used to maximize the objective function. First, the inverse problem is recast as a global nonlinear optimization problem, which is solved by a steady-state genetic algorithm (SSGA). Then, the solution obtained by the SSGA is taken as an initial guess for the Newton-type iteration method. Numerical results show that the performance of this combination method is better than the individual SSGA and the individual Newton-type iteration method. Satisfactory reconstruction has been obtained by using this cascaded method.
論文目次 目錄
第一章 簡介..............................................................................................1
1.1 研究動機與相關文獻.................................................................1
1.2 本研究之貢獻.............................................................................7
1.3 各章內容簡述.............................................................................8
第二章 非均勻介電物體之電磁成像......................................................9
2.1 理論推導.....................................................................................9
2.2 數值方法.....................................................................................12
2.2.1 差動法於積分方程式之應用............................................12
2.2.2 散射場之計算與.... .............................................. ............14
2.2.3 遺傳演算法........................................................... ............14
2.2.4 遺傳演算法於逆散射之應用............................................24
2.2.5 牛頓迭代法於逆散射之應用............................................25
2.2.6 串疊方法於逆散射之應用................................................27
第三章 數值模擬結果..............................................................................31
第四章 結論..............................................................................................41
參考文獻....................................................................................................46


圖目錄
圖2.1在半空間中,非均勻介質物體在X,Y平面上的示意圖............29
圖2.2 遺傳演算法之流程圖...................................................................30
圖3.1 模擬之環境結構圖.......................................................................35
圖3.2 第一個例子之介電係數分佈圖 (a) (b) (c)..................................36
圖3.3 第二個例子之介電係數分佈圖 (a) (b) (c)..................................37
圖3.4 第三個例子之介電係數分佈圖 (a) (b) (c)..................................38
圖3.5 第四個例子之介電係數分佈圖 (a) (b) (c)..................................39
圖3.5 第四個例子之介電係數分佈圖 (d) (e)........................................40




表目錄
表2.1 遺傳演算法相關之名詞解釋與中英對照表................................23
參考文獻 參考文獻
[1] F. Cakoni and D. Colton, “Open problems in the qualitative approach to inverse electromagnetic scattering theory,” Euro. Jnl. of Applied Mathematics, pp. 1–15, 2004.
[2] A. E. Hooper and H. N. Hambric, Unexploded ordinance (UXO): “The problem. in detection and identification of visually obscured targets,” C.E. Baum, ed., Taylor and Francis, Philadelphia, pp. 1-8, 1999.
[3] B. Borden, Radar Imaging of Airborne Targets, IOP Publishing, Bristol 1999.
[4] X. Li, S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, no. 8, pp. 1856–1865, Aug. 2004.
[5] Q. Fang, P. M. Meaney, and K. D. Paulsen, “Microwave imaging
reconstruction of tissue property dispersion characteristics utilizing
multiple-frequency informatio,” IEEE Transactions on Microwave
Theory and Techniques., Vol. 52, no. 8, pp. 1866–1875, Aug. 2004.
[5] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging. Bristol, U.K.: IOP Publishing Ltd., 1998.
[6] S. Caorsi, A. Massa, M. Pastorino, and A. Rosani, “Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, no. 8, pp. 1908–1916, Aug. 2004.
[7] T. J. Cui and W. C. Chew, “Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth,” IEEE Trans. Geosicence and Remote sensing, Vol. 38, pp. 2033 -2041, Jul. 2000.
[8] T. J. Cui and W. C. Chew, “Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space,” IEEE Transactions on Antennas and Propagation, Vol. 50, pp. 42 -49, Jan. 2002
[9] P. Meincke, “Linear GPR inversion for lossy soil and a PlanarAir–soil interface,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, pp.2713-2721, Dec. 2001.
[10] G. Leone and F. Soldovieri, “Analysis of the distorted born approximation for subsurface reconstruction: truncation and uncertainties,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, pp.66-74, Jan. 2003.
[11] I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering techniques for microwave imaging of binary objects,” IEEE Transactions on Microwave Theory and Techuiques, Vo. 50, pp. 1439-1441, May 2002.
[12] D. Franceschini and A. Massa, “On the enhancement of the reconstruction accuracy obtained with a multisource/multi-illumination inverse scattering technique,” IEEE Antennas and wireless Propagation Letters, Vol. 4, pp. 194-197, 2005.
[13] M. J. Akhtar, and A.S. Omar, “Reconstructing permittivity profiles using integral transforms and improved renormalization techniques”, IEEE Transactions on Microwave Theory and Techniques, Vol. 48, pp.1385 - 1393, Aug. 2000
[14] H. Zhou, M. Sato, T. Takenaka, and G. Li, “Reconstruction from antenna-transformed radar data using a time-domain reconstruction method,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, NO. 3, pp. 2527 -2538, Mar 2007.
[15] I. T. Rekanos and A. Raisanen, “Microwave imaging in the time domain of buried multiple scatterers by using an FDTD-Based optimization technique,” IEEE Transactions on Magnetics, Vol. 39, pp. 1381-1384, May 2003.
[16] T. Huang and A. S. Mohan, “A microparticle swarm optimizer for the reconstruction of microwave images,” IEEE Transactions on Antennnas and Propagation, Vol. 55, NO. 3, pp. 568-576, Mar 2007
[17] E.L. Miller, M. Kilmer and C. Rappaport, “A new shape-based method for object localization and characterization from scattered field data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, pp. 1682 -1696, Jul. 2000
[18] M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in tow-dimensional structures by means of GA-based strategies,” IEEE Transactions on Antennas and Propagation, Vol. 55, NO. 1, pp. 205-215, Jan. 2007.
[19] G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-newton method within the second-order born approximation to buried objects,” IEEE. Geoscience and Remote Sensing Letters, Vol. 4, NO. 1, pp. 51-55, Jan. 2007.
[20] F. Soldovieri and R. Persico, “Reconstruction of an embedded slab from multifrequency scattered field data under the distorted born approximation,” IEEE Transactions on Antennas and Propagation, Vol. 52,NO. 9, pp. 2348-2356, Sept. 2004.
[21] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I, ” Inverse Problems, vol. 6, pp. 635-641, Aug.1990.
[22] R. F. Harrington, “Field computation by moment methods,” New York: Macmillan, 1968.
[23] M. M. Ney, A. M. Smith, and S. S. Stuchly, “A solution of electromagnetic imaging using pseudoinverse transformation,“ IEEE Trans. Med. Imag., Vol. MI-3, pp. 155-162, Dec. 1984
[24] R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[25] N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[26] T. H. Chu and N. H. Farhat, “Polarization effects in microwave diversity imaging of perfectly conducting cylinders,” IEEE Trans. Antennas Propagat., vol.37, pp. 235-244, Feb. 1989.
[27] D. B. Ge, “A study of Lewis method for target-shape reconstruction,” Inverse Problems, vol. 6, pp. 363-370, Jun. 1990.
[28] T. H. Chu and D. B. Lin, “Microwave diversity imaging of perfectly conducting objects in the near-field region,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[29] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas Propagate., vol. AP-29,pp.232-238, Mar. 1981.
[30] W. Tobocman, “Inverse acoustic wave scattering in two dimensions from impenetrable targets,” Inverse Problems, vol. 5,pp. 1131-1144,Dec. 1989.
[31] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1631- 1639, Sept. 1991.
[32] G. P. Otto and W. C. Chew, “Microwave inverse scattering-local shape function imaging for improved resolution of strong scatters,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. I, Jan. 1994.
[33] D. Colton and P. Monk, “Anovel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region D,” SIAMJ. Appl. Math., vol. 46, pp. 506-523, Jun. 1986.
[34] A. Kirsch, R. Kress, P. Monk and A. Zinn, “Two methods for solving the inverse acoustic scattering problem,” Inverse Problems, vol. 4, pp.749-770, Aug. 1988.
[35] F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inverse Problems, vol. 10, pp. 375-385, 1994.
[36] R. E. Kleinman and P. M. van den Berg, “Two-dimensional locationand shape reconstruction,” Radio Science, vol. 29, pp. 1157-1169, Jul.-Aug. 1994.
[37] S. Caorsi, G. L. Gragnani, and M. Pastorina, “An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1062-1067, Jun. 1991.
[38] S. Caorsi, G. L. Gragnani, and M. Pastorino, “Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 581-589, May 1994.
[39] S. Caorsi, G.L. Gragnani, and M. Pastorino, “Numerical electromagnetic inverse-scattering solution for two-dimensional infinite dielectric cylinders buried in a lossy half-space,” IEEE Trans. Antennas Propagat., Vol. AP-41, pp. 352-356, Feb. 1993.
[40] Z. Xiong and A. Kirsch, “Three-dimensional earth conductivity inversion,” J. omput. Appl. Math., vol. 42, pp. 109-121, 1992.
[41] T. M. Habashy and M. L. Oristaglio, “Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity,” Radio Science, vol. 29, pp. 1101-1118, Jul.-Aug. 1994.
[42] W. Wang and S. Zhang, “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Trans. Antennas Propagat., Vol. AP-40, pp. 1292-1296, Nov. 1992.
[43] Matteo Pastorino, Andrea Massa, and Salvatore Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 3, pp. 573-578, Jun. 2000.
[44] Salvatore Caorsi, Andrea Massa, and Matteo Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, pp. 1697-1708, Jul. 2000.
[45] Ali Yapar, Hülya Şahintürk, Ibrahim Akduman, and Rainer Kress, “One-dimensional profile inversion of a cylindrical layer with inhomogeneous impedance boundary: a Newton-type iterative solution,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 10, pp. 2192-2199, Oct. 2005.
[46] Ioannis T. Rekanos, Traianos V. Yioultsis, and Constantinos S. Hilas, “An inverse scattering approach based on the differential E-formulation,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 7, pp. 1456-1461, Jul. 2004.
[47] Cho-Ping Chou and Yean-Woei Kiang, “Inverse scattering of dielectric cylinders by a cascaded TE-TM method,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No.10, pp.1923-1930, Oct. 1999.
[48] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Transactions on Antennas and Propagation, Vol. AP-29, No. 2, pp. 232-238, Mar. 1981.
[49] C. C. Chiu and Y. W. Kiang, “Microwave imaging of multiple conducting cylinders,” IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, pp. 933-941, Aug. 1992.
[50] W. Rieger, A. Buchau, C. Huber, G. Lehner, and W. M. Rucker, “A New Approach to the 2D Inverse Electromagnetic Medium Scattering Problem: Reconstruction of Anisotropic Objects”, IEEE Transactions on Magnetics, Vol. 36, No. 4, Jul. 2000.
[51] C. C. Chiu and P. T. L, “Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,” IEE Proc.-Micro. Antennas Propagat., Vol. 143, pp.249-253, Jun. 1996.
[52] M. Benedetti, M. Donelli, and A. Massa, “Multicrack Detection in Two-Dimensional Structures by Means of GA-Based Strategies,” IEEE Transaction on Antennas and Propagation., Vol. 55, no. 1, pp.205 - 215 Jan. 2007
[53] A. Qing, “An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the real-coded genetic algorithm,” Microwave and Optical Technology Letters, Vol. 30, pp. 315-320, Sept. 2001.
[54] W. Chien, C. H. Huang and C. C Chiu, “Cubic-Spline expansion for a Two-Dimensional Periodic Conductor in Free Space,” International Journal of Applied Electromagnetics and Mechanics. Vol. 24, No. 1-2, Nov. 2006
[55] W. Chien, C. C. Chiu and C. L. Li, “Cubic-Spline Expansion with GA for a Conducting Cylinder Buried in a Slab Medium,” Electromagnetics Vol. 26, No. 5, pp. 329-343, Jul. 2006.
[56] Y. C. Chen, Y. F. Chen, C. C. Chiu and C. Y Chang, “Image Reconstruction of Buried Perfectly Cylinder Illuminated by Transverse Electric Waves, ” International Journal of Imaging Systems and Technology Vol. 15 , pp. 261-265, Apr. 2006
[57] E. Bermani, S. Caorsi, and M. Raffetto, “Microwave Detection and Dielectric Characterization of Cylindrical Objects from Amplitude-Only Data by Means of Neural Networks”, IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, Sept. 2002.
[58] S. Caorsi and P. Gamba, “Electromagnetic Detection of Dielectric Cylinders by a Neural Network Approach”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, Mar. 1999.
[59] T. S. Low and B. Chao, “The use of finite elements and neural networks for the solution of inverse electromagnetic problems,” IEEE Transactions on Magnetic, Vol. 28, pp. 3811-3813, May 1992.
[60] A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,”, IEEE Transactions on Antennas and Propagations, Vol. 51, Issue 6, pp. 1251-1262, Jun. 2003.
[61] A. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Transactions on. Antennas and Propagations, Vol. 52, Issue 5, pp. 1223-1229, May 2004.
[62] A. Qing , “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006
[63] Donelli, M.; Massa, A.,”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques Vol. 53, Issue 5, pp. 1761 – 1776, May 2005
[64] Huang, T.; Mohan, A.S,”;Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp. 852 - 855 ,2005
[65] Donelli, M.; Franceschini, G.; Martini, A.; Massa, A.;” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp. 298 – 312, Feb. 2006
[66] Franceschini, G.; Donelli, M.; Azaro, R.; Massa, A.;” Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach ” IEEE Transactions on Geoscience and Remote Sensing. Vol. 44, Issue 12, pp. 3527 - 3539 ,Dec. 2006
[67] A. Ishimaru, “Electromagnetic wave propagation, radiation and scattering,” Englewood Cliffs, NJ: Prentice-Hall,1991
[68] C. C. Chiu and Y. M. Kiang, “Inverse scattering of a buried conducting cylinder,” Inv. Prob., Vol.7, pp. 187-202, Apr. 1991.
[69] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning. Addison Wesley, 1989.
[70] J. Michael Johnson and Yahya Rahmat-Samii, ”Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, Vol. 39, No.4, pp.7-21, Aug. 1997.
[71] J.A. Vasconcelos, J. A. Ramírez, R. H. C. Takahashi, and R. R. Saldanha, “Improvements in genetic algorithms,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3414-3417, Sept. 2001.
[72] Nadine Joachimowicz, Christian Pichot, and Jean-Paul Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Transactions on Antennas and Propagation, Vol. 39, No. 12, pp. 1742-1752, Dec. 1991.
[73] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in FORTRAN, Second Edition. The Press Syndicate of the University of Cambridge, 1992.
[74] J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Transactions on Antennas and Propagation. Vol. 13, pp. 334-341, May 1965.


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-06-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-06-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信