§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1206200722152300
DOI 10.6846/TKU.2007.00325
論文名稱(中文) 尿素生化感測器之研究發展
論文名稱(英文) Development of Urea Biosensor
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 賴建宏
研究生(英文) Chien-Hung Lai
學號 694170019
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-05-22
論文頁數 86頁
口試委員 指導教授 - 林孟山
委員 - 陳壽椿
委員 - 傅明仁
委員 - 莊子超
關鍵字(中) 尿素
生化感測器
流動注射系統
關鍵字(英) Urea
Biosensor
Flow injection analysis
第三語言關鍵字
學科別分類
中文摘要
本實驗利用一氧化二銅(Copper(I) oxide)催化NH3還原的特性,配合Urease (EC 3.5.1.5)可將尿素水解產生NH3,將酵素與一氧化二銅分別修飾在雙玻璃碳電極之上下游,結合流注系統發展低電位氧化模式偵測,並以恆電位儀控制電位及接收訊號,以達發展尿素生化感測器之目的。
    此尿素生化感測器之最佳化製備條件是用碳膏與20%一氧化二銅均勻混和後,修飾在下游電極表面,置於40 ℃烘箱30分鐘乾燥後在上游電極滴加0.5 unit Urease (EC 3.5.1.5),靜置於4℃乾燥後再滴1 % 0.5 μl小牛血清蛋白,靜置於4 ℃乾燥後再1 % 0.5μl戊二醛,靜置於4 ℃乾燥即完成電極製備。在最佳化條件下,偵測環境為0.05 M pH 9 碳酸鹽緩衝溶液,偵測電位為200 mV (vs. Ag/AgCl),載體流速為0.5 ml/min,樣品迴路體積為50 μl,進行尿素的量測,所得此感測器分析特性如下:線性範圍為1-10 mM(R=0.99),電流密度為85.736 nA/mM,偵測極限(S/N=3)為85 μM,在精確度方面連續重覆偵測尿素20次操作下,所得到的相對標準差(RSD)為1.8%。且若在雙電極系統的上游電極修飾PbO2進行氧化前處理,可以避免環境中易氧化干擾物如多巴胺、腎上腺素、血清素、組織胺、乙醯苯酚、尿酸、抗壞血酸等。最後將此生化電極與標準方法進行相關性探討,其相關係數為0.995。
英文摘要
The copper(I) oxide based urea biosensor was fabricated in this experiment, and it possessed reduced overvoltage for ammonia determination. The enzyme Urease (EC 3.5.1.5) was drop-coated on the up-stream of dual electrode and subsequently
the NH3 was determination through copper(I) oxide modified down-stream
electrode.

    The preparation of this biosensor was as follows, carbon ink and 20% copper(I) oxide had been well mixed and drop-coated on the downsteam electrode ; the urease (0.5 unit) was dropped on the upstream and dried secondly;the 1% 0.5 μl bovine serum albumin drop-coated on the upstream and dried; the 1% 0.5 μl glutaraldehyde dropped on the upstream and dried finally. The optimized conditions in the 0.05M pH 9 carbonate buffer ; applied potential was 0.2 V (vs. Ag/AgCl) ; flow rate was 0.5 ml/min; sample loop was 50 μl. The analytical performances of biosensor equipped with linear range upto 10 mM(R=0.99) and sensitivity is 85.736 nA/mM, detection limit (S/N=3) was 85 μM, and precision is 1.8% by twenty successive measurement. In order to eliminate interference, PbO2 was used to pre-oxidize those easily oxidative compounds, such as ,dopamine, epinephrine, serotonin, histamine , acetaminophen ,uric acid, ascorbic acid. Compared with standard method (sigma640), the correlation coefficient was 0.995.
第三語言摘要
論文目次
目錄 (Contents)
論文提要內容………………………………………………………I
Abstract…………………………………………………………II
目錄………………………………………………………………III
圖表目錄…………………………………………………………VI
第一章 序論………………………………………………………1
1-1 生化感測器的定義與組成……………………………………1
   1-1-1辨識元固定方法………………………………………2
    1-1-1-1 物理吸附法………………………………………2
    1-1-1-2 陷阱法……………………………………………2
    1-1-1-3 電沉積法…………………………………………3
    1-1-1-4 混合法……………………………………………4
    1-1-1-5 交聯法……………………………………………4
1-2化學修飾電極簡介……………………………………………5
    1-2-1 化學吸附法……………………………………………6
    1-2-2 共價鍵結法……………………………………………6
    1-2-3 高分子薄膜塗佈法……………………………………7
    1-2-4 非均相材料混合法……………………………………8
1-3 一氧化二銅性質與應用………………………………………10
    1-3-1 一氧化二銅性質………………………………………10
    1-3-2 一氧化二銅應用………………………………………11
1-4 流動分析系統…………………………………………………12
1-5 銨根之研究……………………………………………………15
    1-5-1光化學法………………………………………………15
    1-5-2 電化學法………………………………………………17
1-6 尿素之研究……………………………………………………19
    1-6-1 尿素形成與代謝………………………………………19
    1-6-2 尿素的臨床意義………………………………………22
    1-6-3 治療……………………………………………………22
1-7 尿素生化感測器………………………………………………25
    1-7-1 光化學法………………………………………………25
    1-7-2 電化學法………………………………………………27
1-8 本研究的目的………………………………………………34

第二章 實驗部份

2-1 儀器…………………………………………………………35
2-2 藥品…………………………………………………………35
2-3 實驗步驟……………………………………………………36
2-4 最佳化條件探討……………………………………………37
    2-4-1  辨識層組成最佳化探討……………………………37
     2-4-1-1 酵素修飾方法探討………………………………38
     2-4-1-2  酵素含量之探討…………………………………38
     2-4-1-3  小牛血清蛋白與戊二醛比例之探討……………38
     2-4-1-4  一氧化二銅與導電碳膠組成(催化劑含量)…39
    2-4-2  偵測操作條件探討…………………………………39
     2-4-2-1  偵測電位探討……………………………………39
     2-4-2-2  環境酸鹼度之探討………………………………39
     2-4-2-3  緩衝溶液種類之探討……………………………39
     2-4-2-4  緩衝溶液濃度之探討……………………………39
     2-4-2-5  電解質氯化鈉濃度之探討………………………40
     2-4-2-6  載體流速之探討…………………………………40
     2-4-2-7  載體迴路體積之探討……………………………40

2-5 尿素生化感測器特性探討…………………………………40

第三章 結果與討論

3-1 電化學偵測機制的探討……………………………………41
3-2 偵測條件之最適化…………………………………………45
    3-2-1  辨識層組成最佳化探討……………………………45
     3-2-1-1  酵素修飾方法探討………………………………45
     3-2-1-2  酵素含量之探討…………………………………47
     3-2-1-3  小牛血清蛋白與戊二醛比例之探討…………50
     3-2-1-4  一氧化二銅與導電碳膠組成(催化劑含量) … 50
    3-2-2  偵測操作條件探討…………………………………53
     3-2-2-1  偵測電位探討……………………………………53
     3-2-2-2  偵測環境之酸鹼度探討…………………………53
     3-2-2-3  緩衝溶液種類之探討……………………………55
     3-2-2-4  緩衝溶液濃度之探討……………………………57
     3-2-2-5  電解質氯化鈉濃度之探討………………………57
     3-2-2-6  載體流速之探討…………………………………60
     3-2-2-7  載體迴路體積之探討……………………………63

3-3 相關性探討………………………………………………………69

3-4 結論………………………………………………………………71 
圖表目錄
圖(一) : Cu2O修飾電極之循環伏安圖………………………………42
   以循環伏安法檢視修飾50% Cu2O修飾電極之電化學行為,在0.05 M pH 7 碳酸鹽緩衝溶液中,掃描速率為50 mV/sec。
圖(二) : 循環伏安法探討50% Cu2O修飾電極對於銨根偵測特性.44
   50% Cu2O修飾電極,在0.05 M pH 9 碳酸鹽緩衝溶液中,連續添加1 mM氯化銨之循環伏安法電化學行為,掃描速率為50 mV/sec。
圖(三): 尿素生化感測器之電子傳遞機制示意圖…………………46
圖(四): 酵素修飾方法之探討………………………………………48
圖(五): 酵素修飾比例之探討………………………………………49
圖(六): 小牛血清蛋白與戊二醛比例之探討………………………51
圖(七): 一氧化二銅與導電碳膠組成 (催化劑含量)………………52
圖(八): 偵測電位探討………………………………………………54
圖(九): 環境酸鹼度之探討…………………………………………56
圖(十): 緩衝溶液種類之探討………………………………………58
圖(十一): 緩衝溶液濃度之探討……………………………………59
圖(十二): 電解質氯化鈉濃度之探討………………………………61
圖(十三): 載體流速之探討…………………………………………62
圖(十四): 載體迴路體積之探討……………………………………64
圖(十五): 校正曲線…………………………………………………66
圖(十六): 尿素生化感測器再現性探討……………………………68
圖(十七): 相關性探討………………………………………………70
表(一)     實驗最佳化條件與分析特性……………………………65
表(二)     尿素生化感測器之干擾物分析…………………………67
附圖 (A)   實驗裝置示意圖…………………………………………72
附圖 (B)   流體三電極反應槽裝置圖………………………………73
參考文獻
1 A. Neubauer, D. Pum, U. B. Sleytr, I. Klimant, O. S. Wolfbeis,
Fiber-optic glucose biosensor using enzyme membranes with 2-D
crystalline structure. Biosens. Bioelectron. 11 (1996) 317-325.
2 I. Chudovova, E. Vrvova, M. Kodicek, J. Janovcova and J. Kas, Fiber
optic biosensor for the determination of -glucose based on absorption
changes of immobilized glucose oxidase. Anal. Chim. Acta 319 ( 1996)
103-110.
3 C. Tran-Minn, D. Valin, Enzyme-bound thermistor as an enthalpimetric
sensor. Anal. Chem. 50 (1978) 1874-1878.
4 W. Welsch, C. Klein, M. V. Schickfus, S. Hunklinger, Development of a
Surface Acoustic Wave Immunosensor. Anal. Chem., 68 (1996) 2000
-2004.
5 D. G. Buerk, Biosensors theory and application, 1993, p1
6 S.B. Primrose, Molecular Biotechnolog, 2nd Ed, Chapter 7 , pp 100,
Blackwell Scientific Publication, Astralia (1991)
7 S.J. Updike, G.P. Hicks, The enzyme electrode, Nature, 214 (1967)
986-988.
8 G. G. Guilbault, F. R. Shu, Enzyme electrodes based on the use of a
carbon dioxide sensor. Urea and L-tyrosine electrodes, Anal. Chem. 44
(1972) 2161-2165.
9 H. Liu, J. Deng, Amperometric glucose sensor using tetrathiafulvalene
in Nafion gel as electron shuttle, Anal. Chim. Acta 300 (1995) 65-70.
10 J. Wang, L. Angnes, Miniaturized glucose sensors based on
electrochemical codeposition of rhodium and glucose oxidase onto
75
carbon-fiber electrodes, Anal. Chem. 64 (1992) 456-459.
11 M. S. Lin, W. C. Shih, Chromium hexacyanoferrate based glucose
biosensor, Anal. Chim. Acta 381 (1999) 183-189.
12 C.P. Remirez, D.J. Caruana, Immobilisation of glucose oxidase in
electrodeposited copper, Electrochem. Commun. 8 (2006) 450–454.
13 J. Wang, M. S. Lin, Mixed plant tissue carbon paste bioelectrode, Anal.
Chem. 60 (1988) 1545-1548.
14 L. Gorton, H. I. Karan, P. D. Hale, T. Inagaki, Y. Okamoto,T. A.
Skotheim, A glucose electrode based on carbon paste chemically
modified with a ferrocene-containing siloxane polymer and glucose
oxidase, coated with a poly(ester-sulfonic acid) cation-exchanger, Anal.
Chim. Acta 228 (1990) 23-30.
15 J. Wang, U. A. Kirgoz, J. W. Mo, J. Lu, A. N. Kawde,A. Muck,
Glassy carbon paste electrodes , Electrochem. Commun. 3 (2001)
203-208.
16 J. Wang, Q. Chen, M. Pedrero, Highly selective biosensing of lactate at
lacetate oxidase containing rhodium-dispersed carbon paste
electrodes,Anal. Chim. Acta 304 (1995) 41-46.
17 E. V. Ivanova, V. S. Sergeeva, J. Oni, C. Kurzawa, Evaluation of
redox mediators for amperometric biosensors: Ru-complex modified
carbon-paste/enzyme electrodes, Bioelectrochem. 60 (2003) 65– 71.
18 Y. G. Li, Y.X. Zhou, J.L. Feng, Z. H. Jiang, L. R. Ma, Immobilization
of enzyme on screen-printed electrode by exposure to glutaraldehyde
vapour for the construction of amperometric acetylcholinesterase
electrodes, Anal. Chim. Acta 382 (1999) 277-282.
76
19 A. Haouz, S. Stieg, Continuous monitoring of D-glucose and L-lactate
by flow injection analysis, Enzyme Microb. Technol. 30 (2002)
129–133.
20 V.K. Gade, D.J. Shirale, P.D. Gaikwad, P.A. Savale, K.P. Kakde,
H.J. Kharat, M.D. Shirsat, Immobilization of GOD on
electrochemically synthesized Ppy–PVS composite film by
cross-linking via glutaraldehyde for determination of glucose , React.
Funct. Polym. 66 (2006) 1420–1426.
21 C. Bourdillon, C. Demaille, J. Gueris, J. Moiroux and J. M. Saveant, J.
Am. Chem. Soc. 115 (1993) 12264-12269.
22 M. S. Vreeke, P. Rocca, Electroanalysis 8 (1996) 56-60.
23 K. Narasinhan, L. B. Wingard, Anal. Chem. 58 (1986) 2984-2987.
24 H. Li, S. H. Park, J. H. Reif, T. H. LaBean, H. Yan, DNA-templated
self-assembly of protein and nanoparticle linear arrays, J. Am. Chem.
Soc. 126 (2004) 418-419.
25 R. Liang, J. Qiu, P. Cai, A novel amperometric immunosensor based
onthree-dimensional sol-gel network and nanoparticle self-assemble
technique, Anal.Chim. Acta 534 (2005) 223-229.
26 C. H. Lim, C. D. Ki, T. H. Kim, J. Y. Chang, Use of aromatic
polyimide as anon-cross-linked molecular imprinting material,
Macromolecules 37 (2004) 6-8.
27 J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, Polyaniline nanofibers:
facile 313 synthesis and chemiacl sensors, J. Am. Chem. Soc. 125
(2003) 314-315.
28 C. Drew, X. Liu, D. Ziegler, X. Wang, F. F. Bruno, J. Whitten, L. A.
77
Samuelson, J.Kumar, Metal oxide-coated polymer nanofibers, Nano.
Lett. 3 (2003) 143-147.
29 L. Zernichow, W. Lund, Size exclusion chromatography of aluminium
species innatural waters, Anal. Chim. Acta 300 (1995) 167-171.
30 J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by
nafiontoward the preparation of amperometric biosensors, J. Am.
Chem. Soc. 125 (2003) 2408-2409.
31 P. Tomcik, C. E. Banks, T. J. Davies, R. G. Compton, A self-catalytic
carbon paste electrode for the detection of vitamin B12, Anal. Chem.
76 (2004) 161-165.
32 S. M. Marxer, M. H. Schoenfisch, Sol-gel derived potentiometric pH
sensors, Anal. Chem. 77 (2005) 848-853.
33 A. Abbaspour, M. A. Mehrgardi, Electrocatalytic oxidation of guanine
and DNA on a carbon paste electrode modified by cobalt
hexacyanoferrate films, Anal. Chem. 76 (2004) 5690-5696.
34 F. Bender, A. Skrypnik, A. Voigt, J. Marcoll, M. Rapp, Selective
detection of HFC and HCFC refrigerants using a surface acoustic wave
sensor system, Anal. Chem. 75 (2003) 5262-5266.
35 S. Jadhav, E. Bakker, Selectivity behavior and multianalyte detection
capability of voltammetric ionophore-based plasticized polymeric
membrane sensor, Anal.Chem. 73 (2001) 80-90.
36 L. Gou, C. J. Murphy, Solution-Phase Synthesis of Cu2O Nanocubes,
Nano Letters 3 (2003) 231-234.
37 Y. Xie, C. Huber, Electrocatalysis and Amperometric Detection Using
an Electrode Made of Copper Oxide and Carbon Paste, Anal. Chem. 63
78
(1991) 1714-1719.
38 T. Cataldi, D. Centonze, Development of a carbon composite electrode
made from polyethylene and graphite Powder modified with copper (I)
oxide, Anal. Chim. Acta 326 (1996) 107-115.
39 T. Cataldi, D. Centonze, I. G. Casella, E. Desimoni, Anion-exchange
chromatography with electrochemical detection of alditols and sugars
at a Cu2O-carbon composite electrode, J. Chromatography A. 773
(1997) 115-121.
40 B. Palenzuela, B.M. Simonet , R.M. Garc´ıa, A. R´ıos, M. Valcárcel,
Amperometric screening of bacterial food contaminationusing a
composite modified electrode, Anal. Chim. Acta 524 (2004) 167–174.
41 J. Ruzicka, Flow Injection Analysis, P. J. Elving, Ed.; JOHN WILEY
& SONS, NEW YORK, 1981
42 P. Bertocchi, E.Ciranni, D. Compagnone, V. Magearu, G. Palleschi, S.
Pirvutoiu, L. Valvo, Flow injection analysis of mercury(II) in
pharmaceuticals based on enzyme inhibition and biosensor detection, J.
Pharm 20 (1999) 263-269.
43 J. Riber, C. de la Fuente, M. D. Vazquez, M. L. Tascόn, P. Sánchez
Batanero, Electrochemical study of antioxidants at a polypyrrole
electrode modified by a nickel phthalocyanine complex. Application to
their HPLC separation and to their FIA system detections, Talanta 52
(2000) 241-252.
44 A. Aminot, R. Kerouel, D . Birot, A flow injection-fluorometric
method for the determination of ammonium in fresh and saline waters
with a view to in situ analyses, Wat. Res. 35 (2001) 1777-1785.
79
45 A. G. Lista, M. E. Palomeque, B. S. Fernández Band, Flow- injection
fluorimetric determination of mercury(II) with calcein, Talanta 50
(1999) 881-885.
46 K. W. M. Siu, G. J. Gardner, S. S. Berman, Ion spray mass
spectrometry/ mass spectrometry: quantitation of tributyltin in a
sediment reference material for trace metals, Anal. Chem. 61 (1989)
2320-2322.
47 H. F. Schröder , Tracing of surfactants in the biological wastewater
treatment process and the identification of their metabolites by flow
injection-mass spectrometry and liquid chromatography-mass
spectrometry and -tandem mass spectrometry, J. Chromatogr. A 926
(2001) 127-150.
48 B. R. LaFreniere, R. S. Houk, D. R. Wiederin, V. A. Fassel, Direct
detection of vacuum ultraviolet radiation thro ugh an optical sampling
orifice:determination of nonmetals in gaseous samples by inductively
coupled plasma atomic emission spectroscopy, Anal. Chem. 60 (1988)
23-26.
49 J. Szpunar, J. Bettmer, M. Robert, H. Chassaigne, K. Cammann, R.
Lobinski, O. F. X. Donard, Validation of the determination of copper
and zinc in blood plasma and urine by ICP MS with cross-flow and
direct injection nebulization, Talanta 44 (1997) 1389-1396.
50 S. V. Olesik, S. B. French, M. Novotny, Reaction monitoring in
supercritical fluids by flow injection analysis with Fourier transform
infrared spectrometric detection, Anal. Chem. 58 (1986) 2256-2258.
51 M. L. Ramos, J. F. Tyson, D. J. Curran, Determination of
80
acetaminophen by flow injection with on-line chemical
derivatization:Investigations using visible and FTIR
spectrophotometry, Anal. Chim. Acta 364 (1998) 107-116.
52 M. D. Luque De Castro, M. T. Tena, Hyphenated flow injection
systems and high discrimination instruments, Talanta 42 (1995)
151-169.
53 E. Lenz, S. Taylor, C. Collins, I. D. Wilson, D. Louden, A. Handley,
Flow injection analysis with multiple on-line spectroscopic analysis
(UV, IR, 1H-NMR and MS), J. Pharm. Biomed. Anal. 27 (2002)
191-200.
54 M. A. Arnold, T. J. Ostler, Fiber optic ammonia gas sensing probe,
Anal. Chem. 58 (1986) 1137-1140.
55 C. Preininger, G. J. Mohr, I. Klimant O. S. Wolfbeis, Ammonia
fluorosensorsbased on reversible lactonization of polymer-entrapped
rhodamine dyes and the effects of plasticizers, Anal. Chim. Acta 334
(1996) 113-123.
56 C. Preininger, G. J. Mohr, Fluorosensors for ammonia using
rhodamines immobilized in plasticized poly(vinyl chloride) and in
sol-gel; a comparative study, Anal. Chim. Acta 342 (1997) 207-213.
57 B. Onida, S. Fiorilli, L. Borello, G. Viscardi, D. Macquarrie, E.
Garrone, Mechanism of the optical response of mesoporous silica
impregnated with Reichardt’s dye to NH3 and other gases, J. Phys.
Chem. B 108 (2004) 16617-16620.
58 S. Tao, L. Xu, J. C. Fanguy, Optical fiber ammonia sensing probes
using reagent immobilized porous silica coating as transducers , Sens.
81
Actuators B 115 (2006) 158–163.
59 M. W. Weatherburn, Phenol-Hypochlorite Reaction for Determination
of Ammonia, Anal. Chem. 39 (1967) 971-974.
60 K. T. Lau, S. Edwards, D. Diamond, Solid-state ammonia sensor based
on Berthelot’s reaction, Sens. Actuators B 98 (2004) 12–17.
61 I. Lähdesmäki, A. Lewenstam,,A. Ivaska, A polypyrrole-based
amperometric ammonia sensor, Talanta 43 (1996) 125-134.
62 P. Heiduschka, M. Preschel, M. Rösch, W. Göpel, Regeneration of an
electropolymerised polypyrrole layer for the amperometric detection of
ammonia, Biosens. Bioelectron. 12 (1997) 1227-1231.
63 I. Lähdesmäki, W. W. Kubiak, A. Lewenstam, A. Ivaska, Interferences
in a polyppyrrole-based amperometric ammonia sensor, Talanta 52
(2000) 269-275.
64 曾國輝,“大學生物化學(上)",藝軒圖書出版社 , p444-454.
65 P. S. Francis, S. W. Lewis, K. F. Lim, Analytical methodology for the
determination of urea: current practice and future trends , trends in
anal. chem. 21 (2002) 389-400.
66 台北榮民總醫院“生化檢查篇",血中尿素氮,Blood Urea
Nitrogen (BUN)
67 R.N. BEALE, D.CROFT, A sensitive method for the colorimetric
determination of urea , J. clin. Path. 14 (1961) 418-433.
68 K. Wellner, W. Wohlrab, Quantitative evaluation of urea in stratum
corneum of human skin, Arch Dermatol Res 285 (1993) 239-240.
69 M. Knorst, R. Neubert, W. Wohlrab, Analytical methods for measuring
urea in pharmaceutical formulations , J. Pharm. Biomed. Anal. 15
(1997) 1627-1632.
82
70 M. Mascini, Enzyme-based optical-fiber biosensors, Sens. Actuators,
B 29 (1995) 121-125.
71 H.C. Tsai, R. Doong, Simultaneous determination of pH, urea,
acetylcholine and heavymetals using array-based enzymatic optical
biosensor, Biosens. Bioelectron. 20 (2005) 1796–1804.
72 S. B. Adeloju, S. J. Shaw, G.. G.. Wallace, Polypyrrole-based
amperometric flow injection biosensor for urea, Anal. Chim. Acta 323
(1996) 107-113.
73 S. B. Adeloju, S. J. Shaw, G.. G.. Wallace, Pulsed-amperometric
detection of urea in blood samples on a conducting polypyrrole-urease
biosensor, Anal. Chim. Acta 341 (1996) 155-160.
74 P. Bertocchi, D. Compagnone, Amperometric ammonium ion and urea
determination with enzymebased probes, Biosens. Bioelectron. 11
(1996) 1-10.
75 W. J. Cho, H. J. Huang, An Amperometric Urea Biosensor Based on a
Polyaniline-Perfluorosulfonated Ionomer Composite Electrode
, Anal. Chem. 70 (1998) 3946-3951.
76 A. P. Deng, J. T. Cheng, H. J. Huang, Application of a polyaniline
based ammonium sensor for the amperometric immunoassay of a
urease conjugated Tal 1 protein, Anal. Chim. Acta 461 (2002) 49–55.
77 G. G. Guilbault, J. G. Montalvo, An Enzyme Electrode for the
Substrate Urea, J. Am. Chem. Soc. 92 (1970) 2533-2538.
78 I. Wakcerz, R. Koncki, E. Leszczyiiska, S. Glab, Enzyme biosensors
for urea determination based on an ionophore free pH membrane
electrode, Anal. Chim. Acta. 315 (1995) 289-296.
83
79 C. Eggenstein, M. Borchardt, C. Dumschat, B. Griindig, K. Cammann,
F. Spener, M. Knoll, Potentiometric biosensor in double matrix
membrane technology, Biosens. Bioelectron. 10 (1995) 595-600.
80 S. Komaba, M. Seyama, T. Momma, T. Osaka, Potentiometric
biosensor for urea based on electropolymerized electroinactive
polypyrrole, Electrochim. Acta 42 (1997) 383-388.
81 R. Koncki, I. Walcerz, E. Leszczyn´ska, Enzymatically modified
ion-selective electrodes for flow injection analysis, J. Pharm. Biomed.
Anal. 19 (1999) 633–638.
82 R. Koncki, E. Leszczynska, A. Cybulska, S. Glab, Penicillin enzyme
biosensors based on pH membrane electrode , Anal. Chim. Acta 321
(1996) 27-34.
83 R. Koncki, A. Chudzik, I. Walcerz, Urea determination using
pH–enzyme electrode, J. Pharm. Biomed. Anal. 21 (1999) 51–57.
84 B. Liu, R. Hu, J. Deng, Studies on potentiometric urea biosensor based
on an ammonia electrode and urease, immonbilized on a γ-aluminum
oxide matrix, Anal. Chim. Acta 341 (1997) 161-169.
85 F. Mizutani, S. Yabuki, Y. Sato, Voltammetric enzyme sensor for urea
using mercaptohydroquinone-modified gold electrode as the base
transducer, Biosens. Bioelectron 12 (1997) 321-328.
86 B. Bjarnason, P. Johansson, G. Johansson, A novel thermal biosensor
evaluation for determination of urea in serum, Anal. Chim. Acta 372
(1998) 341-348.
87 J.-M. Zen, H.-H. Chung, A. S. Kumar, Flow injection analysis pf
hydrogen peroxide on copper-plated screen-printed carbon electrodes,
84
Analyst 125 (2000) 1633-1637.
88 J. V. Arenas, I. Lazaro, R. Cruz, Electrochemical study of binary and
ternary copper complexes in ammoniachloride medium, Electrochim.
Acta , S0013-4686(07)00451-3 ,DOI: oi:10.1016/j.electacta. 2007.
03.062
89 N. M. Sammes, B. C. H. Steele, The catalytic oxidation of ammonia in
a ceramic electrochemical reactor, using metal oxide electrodes, J.
Catal. 145 (1994) 187-193.
90 M. Kobayashi, R. Kuma, S. Masaki, N. Sugishima, TiO2-SiO2 and
V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and
catalytic behavior in selective catalytic reduction of NO by NH3, Appl.
Catal. B-Environ. 60 (2005) 173–179.
91 M. M. Barsan, J. Klinˇcar, M. Batiˇc, C.M.A. Bret, Design and
application of a flow cell for carbon-film based electrochemical
enzyme biosensors, Talanta 71 (2007) 1893–1900.
92 C. Mateo, J.M. Palomo, L.M. van Langen, F.V. Rantwijik, R.A.
Sheldon, A new, mild cross-linking methodology to prepare
cross-linked enzyme aggregates, Biotechnol. Bioeng. 86 (2004)
273–276.
93 S. Shah, A. Sharma, M. N. Gupta, Preparation of cross-linked enzyme
aggregates by using bovine serum albumin as a proteic feeder,
Analytical Biochemistry 351 (2006) 207–213.
94 ENZYMES Diagnostic Reagent Grade , Urease , TOYOBO
ENZYME , P269
95 Jaromir Ruzicka, Flow Injection Analysis, P. J. Elving, Ed. ;JOHN
85
WILEY & SONS, New York, 1981
96 W. R. Butler , J. Calaman, S. Bean., Plasma and milk urea nitrogen in
relation to pregnancy rate in lactating dairy cattle. J. Anim. Sci. 74
(1996) 858-865.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文延後至2017-06-12公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2017-06-12公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信