淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1206200720570100
中文論文名稱 摻硼鑽石電極對鉈(I)的偵測
英文論文名稱 Novel boron-doped diamond based electrode with determination of thallium (I)
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 95
學期 2
出版年 96
研究生中文姓名 林雅婷
研究生英文姓名 Ya-Ting Lin
學號 694170027
學位類別 碩士
語文別 中文
口試日期 2007-05-22
論文頁數 81頁
口試委員 指導教授-林孟山
委員-傅明仁
委員-陳壽椿
委員-許道平
中文關鍵字 摻硼鑽石電極  鉈(I)  微差脈衝剝除伏安法 
英文關鍵字 Boron-doped diamond  differential pulse stripping voltammetry  Thallium 
學科別分類 學科別自然科學化學
中文摘要 本研究的主要目的分為二部分。第一部分是利用微波電漿氣相化學沉積法之技術製作摻硼鑽石薄膜電極,探討製程參數對電化學行為的影響;第二部分是將摻硼鑽石電極結合微差脈衝剝除法偵測環境毒物-鉈(I)。
摻硼鑽石薄膜電極製備在微波功率1500W、氣體總壓55torr、氫氣流速300sccm、甲烷流速12sccm、B(OCH3)3流速0.8sccm下,並施加-135V直流偏壓成核15分鐘、成長300分鐘即完成電極製備,此摻硼鑽石薄膜電極對1mM K3Fe(CN)6在循環伏安法的可逆性標準偏差值為4.73% (n=10),鑽石純度平均為94% (n=10)。
第二部分將自製的摻硼鑽石電極作為工作電極,並使用微差脈衝剝除伏安法(Differential Pulse Stripping Voltammetry)進行偵測環境毒物-鉈(I),在沉積電位-1200mV下,沉積時間150秒,緩衝溶液條件為0.05M、pH4磷酸緩衝溶液,脈衝振幅50mV,脈衝時間25ms,取樣時間17ms,其線性範圍為50nM-10μΜ (R=0.998),靈敏度4.65μA/μM,偵測極限(S/N=3)為6.72nM,在連續偵測1μM鉈(I)20次的相對標準偏差為3.95%,而利用此系統量測池塘水
及淡水河水的回收率(1μΜ Tl+)分別為97.3%及99.7%。
英文摘要 The boron-doped diamond (BDD) electrode has attractive intensive attention recently. There are two parts in this study. The first one, we used the microwave plasma enhanced chemical vapor deposition (MPECVD) prepared the boron-doped diamond electrode, and study the various factors influence of the diamond quality and electrochemical behavior, including C/H ratio、B/C ratio and growth time.
Subsequently the boron-doped electrode was used to measure thallium. Thallium was measure by difference pulse stripping voltammetry(DPSV) at the optimum condition of buffer solution:0.05、pH4 phosphate buffer.
The measure peak current at 810mV (vs. /AgCl) for deposition potential at -1200mV、deposition time 150 sec. The differential pulse optimal condition, including the pulse amplitude 50mV、pulse width 25ms、sampling time 17ms.According the optimum conditions, the linear range of thallium is between 0.05μM to 10μM(R=0.998), and sensitivity is 4.65μA/μM. The estimated detection limit(S/N=3) is 6.72nM.The relative standard deviation of twenty repetitive detection is 3.95%.Typical recovery rates are 97.3 and 99.7 from the spikes of 1μM Thallium samples from pond water and Tamsui River,respectively.

論文目次 第一章 緒論
1-1鑽石簡介………………………………………………………….1
1-1-1鑽石和碳之結構………………………………………..…….1
1-2鑽石合成方式及理論……………………………………….……2
1-2-1鑽石合成方式………………………………………………2
1-2-2鑽石薄膜之合成理論……………………………………...3
1-2-3影響鑽石薄膜純度之因素………………………………...6
1-3鑽石薄膜的應用……………………………………………….....8
1-3-1鑽石在光化學的應用………………………………………8
1-3-2鑽石電極在電化學上之應用……………………………..10
1-4鉈………………………………………………………………..17
1-4-1鉈的分佈與應用………………………………………….17
1-4-2鉈的毒理效應及治療…………………………………….18
1-4-3偵測鉈(I)的方法………………………………………….21
1-4-3-1電化學方法…………………………………………21
1-4-3-2光譜法………………………………………………26
1-4-3-3質譜法……………………………………………….27
1-4-3-4中子活化法………………………………………….28
1-5剝除伏安法……………………………………………………...28
1-6研究目的………………………………………………………...30
第二章 實驗部分
2-1實驗儀器………………………………………………………...31
2-1-1摻硼鑽石薄膜之鍍膜設備…………………………………31
2-1-2量測鉈(I)之電化學儀器…………………………………...31
2-2.藥品...……………………………………………………………33
2-3 鍍膜系統……………………………………………………….32
2-3-1鍍膜系統……………………………………………………32
2-3-2鍍膜步驟…………………………………………………...33
2-3-3拉曼光譜儀………………………………………………...34
2-4摻硼鑽石薄膜電極組成之探討………………………………..38
2-4-1碳氫比(C/H ratio)之探討………………………………….38
2-4-2硼碳比(B/C ratio)之探討………………………………….38
2-4-3成長時間之探討…………………………………………...38
2-5利用鑽石電極偵測鉈(I)………………………………………...39
2-5-1鑽石電極之製備……………………………………………..39
2-5-2實驗條件設計……………………………………………….39
2-5-2-1沉積電位之探討………………………………………..39
2-5-2-2溶液酸鹼值之探討……………………………………..39
2-5-2-3沉積時間之探討………………………………………...39
2-5-2-4緩衝溶液種類之探討…………………………………..39
2-5-2-5緩衝溶液濃度之探討…………………………………...40
2-5-2-6脈衝振幅大小之探討…………………………………..40
2-5-2-7脈衝時間之探討………………………………………..40
2-5-2-8取樣時間之探討……………………………………….40
2-5-2-9分析特性之探討……………………………………….40
第三章 結果與討論
3-1鑽石薄膜組成探討……………………………………………...41
3-1-1碳氫比(C/H ratio)之探討…………………………………41
3-1-2硼碳比(B/C ratio)之探討…………………………………43
3-1-3成長時間之探討………………………………………….46
3-1-4製程穏定性之探討………………………………………46
3-2偵測鉈(I)最佳化探討………………………………………….49
3-2-1偵測機制及CV之探討………………………………….49
3-2-2沉積電位之探討………………………………………….52
3-2-3沉積時間之探討………………………………………….53
3-2-4溶液酸鹼值之探討……………………………………….54
3-2-5緩衝溶液種類之探討…………………………………….55
3-2-6緩衝溶液濃度之探討…………………………………….56
3-2-7脈衝振幅大小之探討…………………………………….58
3-2-8脈衝時間之探討………………………………………….59
3-2-9取樣時間之探討………………………………………….60
3-3分析特性之探討………………………………………………..62
3-4結論……………………………………………………………..62
參考資料………………………………………………………………67

圖表目錄

圖(一)碳氫比之探討,探討碳氫比對1mM K3Fe(CN)6在pH3、0.1M
KCl之循環伏安圖………………………………………..........42
圖(二)碳氫比對電化學可逆性及鑽石薄膜純度之影響……………...43
圖(三)硼碳比之探討,探討不同的硼碳比對於鑽石顆粒、厚度及電
阻值的影響……………………………………………………..45
圖(四)硼碳比之探討,探討不同的硼碳比對於鑽石純度之影響……45
圖(五)成長時間探討,探討不同成長時間的鑽石薄膜在電子顯微鏡下放大10萬倍的形態圖(morphology)………………………………….47
圖(六)製程穏定性之探討……………………………………………..48
圖(七)循環伏安圖……………………………………………..49
圖(八)連續添加循環伏安圖………………………….50
圖(九)掃描速率的探討………………..51
圖(十)微差脈衝伏安圖…………………………………..……52
圖(十一)電位沉積之探討………………..…………..……..53
圖(十二)沉積時間之探討……………………………..……..54
圖(十三) pH值探討………….…………………..……………55
圖(十四)緩衝溶液種類探討……..……………………………………56
圖(十五)緩衝溶液濃度探討…………………………………………..57
圖(十六)微差脈衝伏安法電位變化圖………………………………..58
圖(十七)脈衝振幅大小之探討………………………………………..59
圖(十八)脈衝時間之探討……………………………………………..60
圖(十九)取樣時間探討………………………………………………..62
圖(二十)不同沉積時間的校正曲線……………………….....…...65
圖(二十一)摻硼鑽石電極對於偵測鉈(I)的校正曲線圖…....…….66
圖(二十二)操作系統穏定性之探討…………………………….…...66

表(一)摻硼鑽石電極偵測鉈(I)的操作化最佳條件………………...67
表(二)分析特性表……………………………….…………………...67
表(三)干擾物探討…………………………………………………....68
表(四)鉈(I)偵測方法比較…………………………………………….69
參考文獻 Diamond film and coatings development, properties, and applications.
Robert F. Davis
Raiko, V. Spitzl, R. Engemann, J. Borisenko, V. Bondarenko, V. MPCVD diamond deposition on porous silicon pretreated with the bias method. Diamond Relat.Mater., 1996, 5, 1063-1069
Shin, S.D. Hwang, N. M. Kim, D. Y., High rate of diamond deposition through graphite etching in a hot filament CVD reactor. Diamond Relat.Mater., 2002, 11, 1337-1343
Pai, M.P. Musale, D.V. Kshirsagar, S.T. Mitra, A. Sainkar, S.R., Effect of coupling of radio-frequency plasma on the growth of diamond films in a hot filament reactor. Thin Solid Films, 1998, 322, 167-176
Sun,C. Zhang, W.J. Lee, C.S. Bello, I. Lee, S.T., Nucleation of diamond films by ECR-enhanced microwave plasma chemical vapor deposition. Diamond Relat. Mater., 1999, 8, 1410-1413
Paul, W. M., Diamond thin films: a 21st-century material, Phil Trans. R. Soc. Lond. A, 2000, 358, 473-495
Tsuda, M. Nakajima, M. Oikawa, S. Epitaxial growth mechanism of diamond crystal in methane-hydrogen plasma. J.Am.Chem.Soc, 1986, 108, 5780-5783.
Gouzman, I. Fisgeer, B. Avigal, Y. Kalish, R. Hoffman, A. The chemical nature of the carbon precursor in bias-enhanced nucleation of CVD diamond. Diamond Relat. Mater., 1997, 6, 526-531
Synthetic Diamond:Emerging CVD Science and Technology, K. E.
Spear, J. P. Dismukes, P265-P268
Synthetic Diamond:Emerging CVD Science and Technology, K. E.
Spear, J. P. Dismukes, P248,P283
Green, J. E. Barnett, S. A. Sundgren, J. E. Rockett, A. Plasma-Surface Interactions and Processing of Materials, 1990, 281-311
A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapor-deposited layers. Philips Res. Rep. 1967, 22, 288-241
Synthetic Diamond:Emerging CVD Science and Technology, K. E. Spear, J. P. Dismukes, P246
Synthetic Diamond:Emerging CVD Science and Technology, K. E.
Spear, J. P. Dismukes, P173
Martin, H. B. Morrison, P. W. Jr, Application of a Diamond Thin Film as a Transparent Electrode for In Situ Infrared Spectroelectrochemistry. Electrochemical and Solid-State Letters, 2001, 4, E17-E20
Zak, J. K. Butler, J. E. Swain, G. M. Diamond Optically Transparent
Electrodes: Demonstration of Concept with Ferri/Ferrocyanide and Methyl Viologen. Anal. Chem., 2001, 73, 908-914
Jason, S. Jerzy, Z. Zack, B. Yoshiuki, S. Greg, M. S. Optical and Electrochemical Properties of Optically Transparent, Boron-Doped Diamond Thin Films Deposited on Quartz. Anal. Chem., 2002, 74, 5924-5930
Stotter J., Show Y., Wang S., Swain G. M., Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes. Chem. Mater., 2005, 17
4880-4888
Swain, G. M.; Xu, J., The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem. 1993, 65, 345-351.
Jolley, S.; Koppang, M.; Jackson, T.; Swain, G. M. Flow Injection Analysis with Diamond Thin-Film Detectors. Anal. Chem. 1997, 69, 4099-4107.
Xu, J.; Swain G. M.; Oxidation of Azide Anion at Boron-Doped Diamond Thin-Film Electrodes. Anal. Chem. 1998, 70, 1502-1510.
Sarada, B. V.; Rao, T. N.; Tryk, D. A.; Fujishima, A. Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Anal. Chem. 2000, 72, 1632-1638.
Witek, M. A.; Swain, G. M. Aliphatic polyamine oxidation response variability and stability at boron-doped diamond thin-film electrodes as studied by flow-injection analysis. Anal. Chim. Acta 2001, 440, 119-129.
Zhang, Y.; Asahina, S.; Suzuki, M.; Yoshihara, S.; Shirakashi, T., Electrochemical behavior of 3,6-dihydroxyphenanthrene on boron-doped diamonds. Surf. Coat. Tech. 2003, 169, 303-306.
Siangproh, W.; Wangfuengkanagul, N.; Chailapakul, O. Electrochemical oxidation of tiopronin at diamond film electrodes and its determination by amperometric flow injection analysis Anal. Chim. Acta 2003, 499, 183-189.
Siangproh, W.; Ngamukot, P.; Chailapakul, O. Electrochemical determination of captopril at boron-doped diamond thin film electrode applied to a flow injection system. Sens. Actuator B-Chem 2003, 91, 60-66.
Rao, T. N.; Sarada, B.V.; Tryk, D.A.; Fujishima, A. Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection J. Electroanal. Chem. 2000, 491, 175-181.
Ivandini, T.A.; Sarada, B.V.; Terashima, C.; Rao, T.N.; Tryk, D.A.; Ishiguro, H.; Kubota, Y.; Fujishima, A. Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes J. Electroanal. Chem. 2002, 521, 117-126.
Terashima, C.; Rao, T. N.; Sarada, B. V.; Tryk, D. A.; Fujishima, A. Electrochemical Oxidation of Chlorophenols at a Boron-Doped Diamond Electrode and Their Determination by High-Performance Liquid Chromatography with Amperometric Detection Anal. Chem. 2002, 74, 895-902.
Rao, T. N.; Loo, B. H.; Sarada, B. V.; Terashima, C.; Fujishima, A. Electrochemical Detection of Carbamate Pesticides at Conductive Diamond Electrodes. Anal. Chem. 2002, 74, 1578-1583.
Terashima, C.; Rao, T. N.; Sarada, B. V.; Kubota, Y.; Fujishima, A. Direct Electrochemical Oxidation of Disulfides at Anodically Pretreated Boron-Doped Diamond Electrodes. Anal. Chem. 2003, 75, 1564-1572.
Wang, J.; Chen, G.; Madhu, P. C.; Fujishima, A.; Donald, A. T.; Dongchan, S. Microchip Capillary Electrophoresis Coupled with a Boron-Doped Diamond Electrode-Based Electrochemical Detector Anal. Chem. 2003, 75, 935-939.
Dongchan, S.; Sarada, B. V.; Tryk, D. A.; Fujishima, A.; Wang, J. Application of Diamond Microelectrodes for End-Column Electrochemical Detection in Capillary Electrophoresis. Anal. Chem. 2003, 75, 530-534.
Josef, C. k.; Veronika, Q.; Park, J. W.; Yoshiyuki, S.; Alexander, M.; Greg, M. S. Boron-Doped Diamond Microelectrodes for Use in Capillary Electrophoresis with Electrochemical Detection. Anal. Chem. 2003, 75, 2678-2687.
Dongchan, S.; Tryk, D. A.; Fujishima1, A.; Alexander, M.; Chen, G.; Wang, J. Microchip capillary electrophoresis with a boron-doped diamond electrochemical detector for analysis of aromatic amines Electrophoresis, 2004, 25, 3017-3023.
Wang, J.; Chen, J.; Alexander, M.; Dongchan, S.; Fujishima, A. Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines J. Chromatogr. A 2004, 1022, 207-212.
Salimi, A.; Alizadeh, V.; Hallaj, R. Amperometric detection of ultra trace amounts of Hg(I) at the surface boron doped diamond electrode modified with iridium oxide. Talanta 2006, 68, 1610-1616.
Terashima, C.; Rao, T. N.; Sarada, B. V.; Spataru, N.; Fujishima, A., Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications J. Electroanal. Chem. 2003, 544, 65-74.
Wu, J.; Wang, H.; Fu, L.; Chen, Z.; Jiang, J.; Shen, G.; Yu, R. Detection of catechin based on its electrochemical autoxidation. Talanta 2005, 65, 511-517.
Uchikado R., Rao T N., Tryk D. A. , Fujishima A, Metal-Modified Diamond Electrode as an Electrochemical Detector for GlucoseChem. Lett. 2001, 5, 144-145.
Ohnishi K, Einaga Y., Notsu H., Terashima C, Rao T. N., Park Soo-Gil, Fujishima A, Electrochemical Glucose Detection Using Nickel-Implanted Boron-Doped Diamond Electrodes. Electrochemical and Solid-State Letters, 2002, 5, D1-D3
Buchberger, W. J. Electroanalytical Detection of Glucose Using a Cyanometalate-Modified Electrode: Requirements for the Oxidation of Buried Redox Sites in Glucose Oxidase Anal. Chem. 1996, 68, 796-806.
Su, L.; Qiu, X.; Guo, L.; Zhang, F.; Chenhe, T. Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method. Sens. Actuators B. 2004, 99, 499-504.
Olivia, H.; Sarada, B.V.; Fujishima, H. Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes Electrochim. Acta. 2004, 49, 2069-2076.
Ponnuswamy, T.; Chen, J. J.; Xu, F.; Chyan, O. Monitoring metal ion contamination onset in hydrofluoric acid using silicon–diamond and dual silicon sensing electrode assembly. Analyst, 2001, 126, 877-880.
Ramesham, R. Cyclic voltammetric response of boron-doped homoepitaxially grown single crystal and polycrystalline CVD diamond Sens. Actuator B-Chem. 1998, 50, 131-139.
Fujishima, A.; Rao, T. N.; Popa, E.; Sarada, B. V.; Yagi, I. Electroanalysis of dopamine and NADH at conductive diamond electrodes. J. Electroanal. Chem. 1999, 473, 179-185.
Granger, M. C.; Witek, M.; Xu, J.; Wang, J.; Hupert, M.; Hanks, A.; Koppang, M. D.; Butler, J. E.; Lucazeau, G.; Mermoux, M.; Strojek, J. W.; Swain, G. M. Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes. Anal. Chem. 2000, 72, 3793-3804.
Tatsuma, T.; Mori, H.; Fujishima, A. Electron Transfer from Diamond Electrodes to Heme Peptide and Peroxidase. Anal. Chem. 2000, 72, 2919-2924.
Chailapakul, O.; Popa, E.; Tai, H.; Sarada, B. V.; Tryk, D. A.; Fujishima, A. The electrooxidation of organic acids at boron-doped diamond electrodes. Electrochem. Commun. 2000, 2, 422-426.
Fujishima, A.; Rao, T. N. Recent advances in electrochemistry of diamond. Diamond. Relat. Mater. 2000, 9, 384-389.
Wang. J.; Swain, G. M.; Tachibana, T.; Kobashi, K. Fabrication and Evaluation of Platinum/Diamond Composite Electrodes for Electrocatalysis. J. Electrochem. Soc. 2003, 150, E24-E32
Battisti, A. D.; Ferro, S. Electrocatalysis and Chlorine Evolution Reaction at Ruthenium Dioxide Deposited on Conductive Diamond. J. Phys. Chem. B 2002, 106, 2249-2254.
Yagi, I.; Tsunozaki, K.; Fujishima, A.; Ohtani, B.; Uosaki, K. The Effects of Nitrogen and Plasma Power on Electrochemical Properties of Boron-Doped Diamond Electrodes Grown by MPCVD J. Electrochem. Soc. 2001, 149, E1-E5.
Zhang, Y.; Asahina, S.; Yoshihara, S.; Shirakashi, T. Fabrication and Characterization of Diamond Quartz Crystal Microbalance Electrode. J. Electrochem. Soc. 2002, 149, H179-H182.
McKenzie, K. J.; Marken, F. Electrochemical Characterization of Hydrous Ruthenium Oxide Nanoparticle Decorated Boron-Doped Diamond Electrodes. Electrochem. Solid State Lett. 2002, 5, E47-E50.
Levy-Clement, C.; Ndao, N. A.; Katty, A.; Bernard, M.; Deneuville, A.; Comninellis, C. Boron doped diamond electrodes for nitrate elimination in concentrated wastewater. Diamond. Relat. Mater. 2003, 12, 606-612.
Spatru, N.; Tokuhiro, K.; Terashima, C.; Rao, T. N.; Fujishima, A.Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. J. Appl. Electrochem. 2003, 33, 1205-1210.
Gu, H.; Su, X.; Loh, K. P. Conductive polymer-medified boron-doped
diamond for DNA hybridization analysis. Chem. Phys. Lett. 2004, 388, 483-487.
Mitadera, M.; Spataru, N.; Fujishima, A. Electrochemical oxidation of aniline at boron-doped diamond electrodes. J. Appl. Electrochem. 2004, 34, 249-254.
Dong, Z. C.; Trifonov, A. S.; Suetin, N. V.; Minakov, P. V. Electroluminescence of diamond films induced by a scanning tunneling microscope. Surf. Sci. 2004, 549, 203-210.
Mulkey, J. P. Oehme, F. W..A review of thallium toxicity. Vet Human Toxicol. 1993, 35, 445-453
Robert S, H.Thallium Toxicity and the Role of Prussian Blue in
Therapy. Toxicol. Rev., 2003, 22, 29-40
Cavanagh, JB.; What have we learnt from Graham Frederick Young?:reflection on the mechanism of thallium neurotoxicity. Neuro. Appl. Neuro., 1991, 17, 3-9
Rios, C.;Monroy-Noyola, A. D-penicillamine and prussian blue as antidotes against thallium intoxication in rats Toxicology 1992, 74, 69-76
Kravzov, J. Rios, C. Altagracia, M. Relationship between physicochemical properties of Prussian Blue and its efficacy as antidote against thallium poisoning. J. Appl. Toxicol., 1993, 13, 213-216
Coetzee, C.;Basson, A. J. Cesium- and thallium(I)-sensitive liquid membrane electrodes based on cesium- and thallium tetrakis(m-trifluoromethylphenyl)borates. Anal. Chim. Acta, 1977, 92, 399-403
Tamura, H. Kimura, K. Shono, T. Thallium(I)-selective PVC membrane electrodes based on bis(crown ether)s J. Electroanal.Chem. 1980, 115, 115-121
Hung, D. Zhu, C. Zhang, J. Lei, H. Wang, D. Hu, H. Fu, T. Ou, H.
Shen, Z. Yu, Z.Preparation of bis(crown ether) PVC membrance thallium(I) ion-selective electrode. Chem. Abs., 1984, 100, 202566h
Ouchi, M. Shibutani, Y. Yakabe, K. Shono, T. Shintani, H. Yoneda, A. Hakushi, T. Weber, E. Bioorg.and Medicinal Chem. 1999, 7, 1123-1126
Masuda, Y. Yakabe, K. Shibutani, Y. Shono, T.Thallium(I) ion-selective electrode based on polythiamacrocycles. Anal. Sci. 1994, 10, 491-495
Ashok, K.S. Puja, S. A highly selective thallium(I) electrode based on a thia substituted macrocyclic ionophore. Talanta, 2005, 66, 993-998
Kimura,K. Tatsumi,K. Yokoyama, M. Ouchi, M. Mocerino M., Remarkable thallium(I) selectivity for ion sensors based on π-coordination of calix[4] arene neutral carriers. Anal.Commun., 1999, 36, 229-230
Katsu,T. Ido, K. Takaishi, K. Yokosu, H., Thallium(I)-selective membrane electrodes based on calix[6]arene or calix[5]arene derivatives. Sens. Actuators B, 2002, 87, 331-335
Ahmed, A. Abedel, G., New thallium(I) ion selective electrode based on indeno pyran compound. Sens. Actuators B, 2003, 96, 615-620
Thallium in the environment, Jerome, O. Nriagu, P127
Wilgocki, M. Cyfert, M.Polarographic determination of lead(II) in the presence of thallium(I) and cadmium using complexation with Ethanediamine and hydroxyl ion. Anal. Chim. Acta, 1989, 226, 351-358
Pizeta, Y. Jeren, B. Aleksic-Maslac, K. Straight lines, windows and background current synthesis in deconvolution procedure J. Eelectroanal. Chem., 1994, 375, 169-174
Wang J. Lu J. Adsorptive stripping voltammetry of trace thallium. Anal. Chim. Acta, 1993, 282, 329-333
Zenon, L. Wlodzimierz, Z. Anna, P., Direct determination of ultratraces of thallium in water by flow-injection-differential-pulse anodic stripping voltammetry Anal. Chim. Acta, 1996, 318, 159-165
T.H. Lu, H. Y. Yang, I. W. Sun. Square-wave anodic stripping voltammetric determination of thallium (I) at a Nafion/mercury film modified electrode. Talanta, 1999, 49, 59-68
Paulo, C. do N., Bohrer, D. Leandro, M. de C. Caon, C. E. Pilau, E. Baratto, V. Z. Stefanello, R., Determination of cadmium, lead and thallium in highly saline hemodialysis solutions by potentiometric stripping analysis (PSA). Talanta, 2005, 65, 954-959
Huimin, D. Zheng, H. Lin, L. Baoxian Y. Determination of thallium and cadmium on a chemically modified electrode with Langmuir–Blodgett film of p-allylcalix[4]arene Sens. Actuators B 2006, 115, 303-308
De duck, A. Vandecasteele, C. Determination of thallium on natural waters by electrothermal atomic absorption spectrometry.Mikrochim. Acta., 1988, 2, 187-193
Stafilov, T, Cundeva, K., Determination of total thallium in fresh water by electrothermal atomic absorption spectrometry after colloid precipitate flotation. Talanta, 1998, 46, 1321-1328
Cheam, V. Lechner, J. Desrosiers, R. Sekerka, I., Int. Direct Determination of Dissolved and Total Thallium in Lake Waters by Laser-Excited Atomic Fluorescence Spectrometry J. Environ. Anal. Chem., 1996, 63, 153-165
David, E. Thomas, P. M. Routine clinical determination of lead, arsenic, cadmium, and thallium in urine and whole blood by inductively coupled plasma mass spectrometry. Spectrohimica Acta Part B, 1996, 51, 13-25
David, E. N. Kenneth, R. N. Steven, J. E. John, A. B. Mary, F. B., Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine. Spectrochimica Acta Part B, 2004, 59, 1377- 1387
Lu´cia, F. D. Gilson, R. M, Tatiana D. S. Sandra M. M. Vera L.A. F. Adilson, J. C., Method development for the determination of cadmium, copper, lead, selenium and thallium in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution calibration. Spectrochimica Acta Part B, 2005, 60, 117- 124
Bagat, R. D. Turel, Z. R. Separation and quantitative determination of Tl and Ba from environmental samples by thermal neutron activation analysis. J. Radioanal., Nucl. Chem., 1997, 226, 275-277
N. G.. Ferreira, E. Abramof, E. J. Corat, C. J. Trava-Airoldi, Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon, 2003, 41, 1301-1308
A. F. Azevedo, R. C. Mendes de Barros,S. H. P. Serrano, N. G. Ferreira, SEM and Raman analysis of boron-doped diamond coating on spherical textured substrates. Surface and Coatings Technology, 2006, 200, 5973-5977
J. Cifre, J. Puigdollers, M.C. Polo, J. Esteve, On the electrical properties of polycrystalline diamond films on silicon. Diamond Relat. Mater. 1994, 3, 628-631
J. O. Nriagu, Thallium in the environment, Chapter 3.
E. P. Parry, R. A. Osteryoung, Evaluation of Analytical Pulse Polarography. Anal.Chem.,1965, 37, 1634-1637
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信