§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1203200913231900
DOI 10.6846/TKU.2009.00324
論文名稱(中文) 直接土壓力模式應用於側潰影響之樁基波動方程分析
論文名稱(英文) Study on Lateral Spread Affected Piles Using Direct Earth Pressure Model and Wave Equation Analysis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 1
出版年 98
研究生(中文) 劉凱方
研究生(英文) Kai-Feng Liu
學號 694311076
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-01-07
論文頁數 136頁
口試委員 指導教授 - 張德文
委員 - 李維峰
委員 - 邱俊翔
關鍵字(中) 液化、土壓力、側潰、樁基礎、波動方程
關鍵字(英) liquefaction, earth pressure, lateral spreading, pile foundation, wave equation
第三語言關鍵字
學科別分類
中文摘要
本研究係以日本道路協會(JRA)之方法,模擬樁基礎於液化地盤內受側潰流動之動態反應。吾人使用Fortran程式語言開發程式為分析工具,藉Excel試算表程式表示Tokimatsu and Yoshimi 液化潛能評估準則進行地盤液化分析。研究採直接土壓力模式進行波動方程分析,利用有限差分法求解,並使用簡易Bouc-Wen 模式進行樁身剛度值迭代分析,而了解樁基礎於地盤側潰時之變形行為與破壞機制。研究結論如下:(1)針對未液化底層土壤之處理模式,本研究建議以Ishihara土壓力模式將底層土壤之柔度納入分析,進行模擬其土壤非線性行為,以取代傳統完全束制之模擬方式。(2)進行液化潛能評估吾人可得知液化潛能指數與推算液化土層之厚度。液化潛能指數乃JRA法參數之一,對液化土層頂部上方之土層土壓力影響甚大;本研究結果證實液化土層厚度對於樁體反應之影響相當密切。(3)本研究樁頂採固接端,所得結果最大位移量發生於樁頂;於樁頂與液化層底部附近,將發生較大之彎矩值,以上模擬結果可針對地盤受震後土壤發生液化使土層發生流動,對樁基礎頂部變位量與彎矩破壞之影響,亦可考量液化層底部附近將產生彎矩破壞之情形。
英文摘要
This study following the methodology suggested by JRA, is to study the single pile dynamic behavior under lateral spreading of soil. It applies the programming language of Fortran to exploit the analysis. Liquefaction potential analysis in this study is Tokimatsu and Yoshimi method, which applies by Microsoft Excel. The research result is essentially founded on the model of wave equation analysis, and the difference equations are used to solve the problem. The stiffness of piles are started iterative analysis by using simplified Bouc-Wen model. This study aims to examine the deformation and destruction of the pile foundation. Three research results are derived in this conclusion: First, this study suggests adopting Ishihara’s theory of lateral earth pressure, in replace of the traditional fixed head, into consideration in order to the flexibility of non-liquefiable and base layer. Second, the data of the liquefaction potential index and the depth of liquefiable layer by calculating can be gathered by Liquefaction potential analysis. The liquefaction potential index is one of the JRA method parameters, and it can influence the earth pressure of the layer which is upon the liquefiable layer very much. The result of this study proves that the depth of liquefiable layer influences the behavior of pile foundation a lot. Third, the head of pile in this study is fixed head. The max displacement of pile occurs on the head of pile foundation. The larger value of the bending moment of pile occurs on the head of pile foundation or near the base of the liquefiable layer. According to the result of this study, the layer liquefies and make the soil flow when the earthquake is happened. The result of this study make us know well that the displacement and the deformation of pile foundation, and can consider that the destruction owing to the bending moment of pile foundation which is near the base of the liquefiable layer.
第三語言摘要
論文目次
中文摘要	一
英文摘要	二
本文目錄	I
表目錄	III
圖目錄	III
第一章	緒論	1
1-1	研究動機與目的	1
1-2	研究方法與內容	2
第二章	文獻回顧	4
2-1	前言	4
2-2	土壤液化之定義與機制	6
        2-3  土壤液化之影響因素	11
2-4  液化損壞型態	15
2-5  液化潛能評估方法之Tokimatsu 與Yoshimi 簡易經驗法	18
2-6  使用靜態土壓力法於土壤液化之簡易模擬	29
2-7  彈性基礎樑分析模式	32
2-8  樁基礎非線性行為模擬	34
2-9  地盤反力模數 	41
2-9-1  地盤反力常數 	43
2-9-2  地盤反力係數 	46
2-10 內摩擦角和SPT-N值之關聯性	47
第三章	理論推導與方法	50
3-1	前言	50
3-2	波動方程於土壓力與樁身位移公式推導	52
3-3	採用JRA法之動力分析模式	57
3-3-1	液化底層土壤之分析模式	58
3-3-2	樁體非線性處理模式	60
第四章  參數研究	67
        4-1  前言	67
4-2  假設案例之介紹與參數影響	68
        4-3  樁體於液化地盤內之反應分析	71
第五章  案例研究	86
5-1	  前言	86
5-2	  案例一  Kobe TANK TA72	87
5-3	  案例二  Kobe Pier 211	99
第六章	  結論與建議	111
6-1  結論	111
6-2  展望與建議	113
參考文獻	114
附錄	127


表  目  錄

表2-1		依地震規模之Cs建議值(摘自 吳偉特,1997)	24
表2-2		液化潛能指數分級與災害示意表(摘自 Iwasaki et al., 1982)	27
表2-3		依離水際線距離變化之修正係數cS	31
表2-4		非液化土層中流動力之修正係數cNL	31
表2-5		依基樁種類與土層種類係數整理 (摘自 房性中,1994)	42
表2-6		砂土參數與SPT-N值之關係 (摘自 Terzaghi, 1955)	43
表2-7		砂土相對密度與土壤彈簧之關係 (摘自 Group 3.0使用手冊)	44
表2-8		水位以上之砂土地盤反力常數 與SPT-N值之關係
44
表2-9		水位以下之砂土地盤反力常數 與SPT-N值之關係
(摘自 Johnson and Kavanaugh, 1968)	45
表2-10		砂之相對密度、 角與SPT-N值之關係表(摘自 房性中,1994)
49
表3-1		各樁徑與α、z參數之關係表 ( 摘自 張紹綸,2008 )	63
表4-1		參數研究對照表	69
表5-1		人工回填島之土壤參數表(TANK TA72)	88
表5-2		基樁材料性質參數(TANK TA72)	88
表5-3		土壓力法設定參數值(TANK TA72)	89
表5-4		現地土壤參數表(Pier 211)	100
表5-5		基樁材料性質參數(Pier 211)	100
表5-6		土壓力法設定參數值(Pier 211)	101

圖 目 錄

圖1-1		研究分析流程圖	3
圖2-1		飽和沙土不排水試驗液化潛能狀態示意圖
( 摘自 葉健輝,2006 )	7
圖2-2		流動液化發生機制示意圖(重繪自 Kramer, 1996)	8
圖2-3		反覆流動性發生機制示意圖(重繪自 Kramer, 1996)	10
圖2-4		邊坡滑動破壞示意圖	16
圖2-5		結構體常見的損壞型態	18
圖2-6		土壤液化評估方法分類(重繪自 翁作新等人,2004)	20
圖2-7		Tokimatsu and Yoshimi簡易經驗法(1983)分析流程	25
圖2-8		根據Tokimatsu and Yoshimi簡易經驗法編譯
Microsoft Excel試算表	28
圖2-9		水底高程差及離水際線的距離(摘自 JRA, 1996)	29
圖2-10		流動力之計算模式(摘自 JRA, 1996)	31
圖2-11		樁基礎側向荷載之溫氏基礎模式
(摘自 Prakash and Sharma, 1990)	33
圖2-12		箍筋圍束下混凝土應力與應變模式(摘自 Kent and Park, 1971)	35
圖2-13		慣性矩I II對彎矩-轉角關係的影響(摘自 楊宗勳,2000)	38
圖2-14		基樁之有效長度概念(重繪自Bhattacharya et al., 2004)	40
圖2-15		樁體破壞試驗結果(摘自Knappett and Madabhushi, 2005)	40
圖2-16		地盤反力係數 與不排水剪力強度之關係圖
(摘自 Group 3.0使用手冊)	46
圖2-17		使用標準貫入試驗所得之相對密度、 角與SPT-N值之關係圖形(摘自 房性中,1994)	48
圖2-18		砂之內摩擦角 與SPT-N值之對應關係圖(摘自 房性中,1994)
49
圖3-1		液化流動地盤中樁-土互制行為模擬模型(摘自 鐘明劍,2006)	50
圖3-2		分析流程圖	51
圖3-3		樁頂邊界條件(固接)	52
圖3-4		基樁之節點與虛擬點 (摘自 葉健輝,2006)	55
圖3-5		JRA法-底層地盤採Ishihara and Cubrinovski(2004)建議之分析模式示意圖	57
圖3-6		樁體彎曲特性雙線型模式(重繪自 JRA, 2002)	61
圖3-7		樁體彎曲特性三線型模式(重繪自 JRA, 2002)	61
圖3-8		樁身剛度折減示意圖 (摘自 張紹綸,2008)	63
圖3-9		彎矩回歸分析結果 (摘自 張紹綸,2008)	64
圖3-10		曲率回歸分析結果 (摘自 張紹綸,2008)	65
圖4-1		基樁與地盤之假設情境模式	68
圖4-2		設計標準案例之土層側向力與樁身變位、彎矩與剪力結果	75
圖4-3		最大地表加速度PGA設為0.3g	76
圖4-4		流動化範圍土層之SPT-N值設為18	77
圖4-5		地下水位深度設於地表	78
圖4-6		地下水位深度設於地表下4m	79
圖4-7		地震規模設為6.5	80
圖4-8		地震規模設為7.5	81
圖4-9		設距水際線距離之修正係數 
82
圖4-10		土層細料含量 (%)
83
圖4-11		土壤彈簧修正係數 
84
圖4-12		土壤彈簧修正係數 
85
圖5-1		Mikagehama Island地理位置圖(摘自 Ishihara, 2003)	90
圖5-2		人工島上儲油槽Tank TA 72位置示意圖	90
圖5-3		儲油槽結構剖面與土層分佈概況
(摘自 Ishihara and Cubrinovski, 2004)	91
圖5-4		液化地盤之簡化分析模式(TANK TA72)	92
圖5-5		高強度預鑄混凝土樁之彎矩-曲率圖
(摘自 Ishihara and Cubrinovski, 2004)	92
圖5-6		No.2(a)與No.9(b)基樁之側向位移及樁身損害示意圖	93
圖5-7		樁身位移分佈圖(摘自 Ishihara and Cubrinovski, 2004)	94
圖5-8		樁身彎矩分佈圖(摘自 Ishihara and Cubrinovski, 2004)	94
圖5-9		神戶地震(1995)加速度歷時曲線圖	95
圖5-10		樁身所受之側向土壓力與樁身位移、彎矩、剪力圖(TANK TA72)	97
圖5-11		位移與彎矩分佈比較圖(TANK TA72)	98
圖5-12		Osaka與Kobe之高速公路系統圖(摘自 Ishihara, 2003)	102
圖5-13		地層高低輪廓示意圖(摘自 Ishihara, 2003)	102
圖5-14		Hanshin公路破壞示意圖	103
圖5-15		地表永久變位圖(摘自 Ishihara, 2003)	103
圖5-16		碼頭結構與樁基系統示意圖(摘自 Ishihara, 2003)	104
圖5-17		Pier 211之樁基彎矩與曲率關係圖(摘自 Ishihara, 2003)	105
圖5-18		樁基損害示意圖(摘自 Ishihara, 2003)	105
圖5-19		樁身位移與彎矩分佈曲線(摘自 Ishihara, 2003)	106
圖5-20		液化地盤之簡化分析模式(Pier 211)	107
圖5-21		樁身所受之側向土壓力與樁身位移、彎矩、剪力圖(Pier 211)	109
圖5-22		位移與彎矩分佈比較圖(Pier 211)	110
參考文獻
1.	Abdoun, T. and Dobry, R. (2002), “Evaluation of Pile Foundation Response to Lateral Spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.1051-1058.
2.	ACI Committee 318 (1995), “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95),” American Concrete Institute.
3.	API (1993), “Recommended Practice for Planning, Design, and Constructing Fixed Offshore Platforms,” API RP 2A-WSD, 20th ed., American Petroleum Institute.
4.	Arulanadan, K., Li, X.S. and Sivathasan, K. (2000), “Numerical Simulation of Liquefaction-induced Deformations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp. 657-666.
5.	Berrill, J.B., Christensen, S.A., Keenan, R.P., Okada, W., and Pettinga, J.R. (2001), “Case Study of Lateral Spreading Forces on a Piled Foundation,” Geotechnique, Vol. 51, No. 6, pp.501-517.
6.	Bhattacharya, S., Madabhushi, S. and Bolton, M.D. (2004), “An Alternative Mechanism of Pile Failure in Liquefiable Deposits During Earthquakes,” Geotechnique, Vol. 54, No. 3, pp.203-213.
7.	Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesionless Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 3, pp.123-156.
8.	Borms, B.B. (1964), “Lateral Resistance of Piles in Cohesive Soils,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. 2, pp.27-63.
9.	Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics, BSCE, 1940, pp.257-276.
10.	Castro, G. (1969), “Liquefaction of Sands,” PhD. Thesis, Harvard University; reprinted as Harvard Soil Mechanics Series, No.81, 112 pp.
11.	Castro, G. and Poulos, S.J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.501-516.
12.	Chang, D. W. and Yeh, S. H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping,” Soils and foundations, JGS. , Vol. 39, No. 2, pp.31-44.
13.	Chang, D. W., Roesset, J .M. and Wen, C. H. (2000), “A Time-Domain Viscous Damping Model Based on Frequency-Depend Damping Ratios,” Soil Dynamic and Earthquake Engineering, Vol. 19, pp.551-558.
14.	Chang, Y.L. (1937), “Discussion on Lateral Pile-Loading Tests,” by Feagin, Trans. ASCE, Paper No. 1959, pp. 272-278.
15.	Chung, K.Y.C. and Wong, I.H. (1982), “Liquefaction Potential of Soils with Plastic Fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, pp.887-897.
16.	Dobry, R. and Gazetas, G. (1988), “Simple Method for Dynamic Stiffness and Damping of Floating Pile Groups,” Geotechnique, Vol. 38, No. 4, pp.557-574.
17.	Dobry, R., Abdount, T., O’Rourke, T.D. and Goh, S.H. (2003), “Single Piles in Lateral Spreads Field Bending Moment Evaluation,” Journal of the Geotechnical Engineering, ASCE, Vol. 129, No. 10, pp.879-889.
18.	Finn, W.D.L. (1982), “Soil Liquefaction Studies in the People’s Republic of China,” Soil Mechanics-Transient and Cyclic Loads, Ch. 22, pp.609-626, John Wiley & Sons, Ltd.
19.	Guo, T. and Prakash, S. (2000), “Liquefaction Silt-Clay Mixtures,” Proc. 11th World Conf. On Earthquake Engg Auckland NZ, CD Rom.
20.	Haigh S.K. and Madabhushi S.P.G. (2005), “The Effects of Pile Flexibility on Pile-Loading in Laterally Spreading Slops,” Proc. Int. Workshop Simulation and Seismic Performance of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, 14 p.
21.	Hamada M. (1992), “Large Ground Deformations and Their Effects on Lifelines:1964 Niigata Earthquake,” in Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, NCCER, Buffalo, NY, USA. 3.1-3.123.
22.	Hetenyi, (1991), “Beams on Elastic Foundation,” University of Michigan Press.
23.	Ishibashi, I.M., Sherlif, M.A. and Cheng, W.L. (1982), “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp.37-48.
24.	Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol. 43, No. 3, pp.351-415.
25.	Ishihara, K. (2003), “Liquefaction-Induced Lateral Flow and Its Effects on Foundation Piles,” 5th National Conference on Earthquake, Istanbul, Turkey, 28 p.
26.	Ishihara, K. and Cubrinovski M. (2004), “Case Studies of Pile Foundations Undergoing Lateral Spreading in Liquefied Deposits,” Proc. 5th International Confernce on Case Histories in Geotechnical Engineering, New York, Paper SOAP5.
27.	Iwasaki, T., Arakawa, T., and Tokida, K. (1982), “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soils Dynamics and Earthquake Engineering Conference, Southamption, pp.925-939.
28.	J. Brian Anderson and F. C. Townsend (2001), “SPT and CPT testing for evaluating Lateral of deep foundations,”Journal of Geotechnical and Geoenvironmental Engineering, November 2001, pp. 920-925
29.	Kramer, S.L. (1996), “Geotechnical Earthquake Engineering,” Prentice Hall, Inc., Upper Saddle River, New Jersey, pp.348-368.
30.	Kent, D.C, and Park, R. (1971), “Flexural Member with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
31.	Lee, K.L., and Fitton, J.A. (1969), “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils the Foundations, ASTM STP450, pp.71-96.
32.	Li, X.S., Wang Z.L. and Shen, C.K. (1992), “SUMDES, a Nonlinear Procedure for Response Analysis of Horizontal-Layer Sites Subjected to Multi-Directional Earthquake Loading”, Report to the Department of Civil Engineering University of California, Davis.
33.	Liang, R.W., Bai, X. H., and Wang J. C. (2000), “Effect of Clay Particle Content on Liquefaction of Soil,” Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
34.	MacGregor, J.G. (1988), “Reinforced Concrete: Mechanics and Design,” Prentice Hall, New Jersey, U.S.A.
35.	Madabhushi, S.P.G. and Zeng, X. (1998), “Seismic Response of Gravity Quay Walls Ⅱ: Numerical Modeling”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp. 418-427.
36.	Matlock, H. (1970), “Correlations for Design of Laterally Loaded in Soft Clay,” Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp.577-594.
37.	Matlock, H. and Reese, L.C. (1960), “Generalized Solution for Laterally Loaded Piles,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SM5, pp.1220-1246.
38.	Moriwaki, Y., Tan, P., and Choi, Y. (2005), “Nonlinear Analyses for Design of Piles in Liquefying Soils at Port Facilities”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
39.	Mulilis, J.P. (1975), “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
40.	Novak, M. (1974), “Dynamic Stiffness and Damping of Piles,” Journal of Canadian Geotechnical Engineering, Vol. 11, pp.574-598.
41.	Novak, M. (1977), “Vertical Vibration of Floating Piles,” Journal of Engineering Mecanics Division, ASCE, Vol. 103(EM-1), pp.153-168.
42.	Novak, M. and Beredugo, Y.O. (1972), “Vertical Vibration of Embedded Footings,” Journal of Soil Mechanics and Foundation Division., ASCE, Vol. 98, pp.1291-1310.
43.	Novak, M. and EI Sharnouby, B. (1983), “Stiffness and Damping Constants of Single piles,” Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp.153-168.
44.	O’Neill, M.W. and Murchison, J.M. (1983), “An Evaluation of P-Y in Sands,” Research Report No.GT-DF02-83, Department of Civil Engineering, University of Houston, Houston, Texas.
45.	Park, S. and Byme, P.M. (2005), “Multi-plane Model for Soil Liquefaction”, Geo-Frontiers 2005, ASCE, pp. 2577-2592.
46.	Poulos, H.G. (1989), “Cyclic Axial Loading Analysis of Piles in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp.836-852.
47.	Reese, L.C. (1983), “Executive Summary, Behavior of Piles and Pile Groups Under Lateral Load,” U.S. Department of Transportation Federal Highway Administration Office of Research Washington, D. C. 444 pp.
48.	Reese, L.C. and Welch, R.C. (1975), “Lateral Loading of Deep Foundations in Stiff Clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp.633-649.
49.	Reese, L.C., and Van Impe, W.F. (2001), “Single Piles and Pile Groups under Lateral Loading,” A.A. Balkema.
50.	Reese, L.C., Cox, W.R., and Koop, F.D. (1975), “Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay,” Proceedings of the 7th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2312, pp.672-690.
51.	Santos, J.A.D., and Correia, A.G. (1995), “Analysis of Lateral Loading Piles Behavior Using Small Computers,” Proceeding Practice and Promotion of Computational Methods in Engineering Using Small Computers, Macao, pp.1353-1358.
52.	Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972), “SHAKE: a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites”, Report No. EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley.
53.	Seed, H.B. and Idriss, I.M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1249-1274.
54.	Seed, H.B. and Idriss, I.M. (1976), “Analysis of Soil Liquefaction: Niigata Earthquake,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, Proc. Paper 4233.
55.	Seed, H.B. and Idriss, I.M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes,” Earthquake Engineering Research Institute, Berkeley, AC, USA.
56.	Seed, H.B. and Peacock, W.H. (1971), “Test Procedure for Measuring Soil Liquifaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1099-1119.
57.	Seed, H.B., (1979) “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquake,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp.201-255.
58.	Seed, H.B., Martin, P.P., and Lysmer, J. (1975), “The Generation and Dissipation of Pore Water Pressure During Soil Liquefaction,” Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California.
59.	Seed, H.B., Mori, K., and Chan, C.K. (1975), “Influence of Seismic History on the Liquefaction Characteristics of Sands, ” Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.
60.	Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985), ”Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 111, No. 12, pp.1425-1445.
61.	Shen, C.K., Vrymoed J.L. and Uyeno C.K. (1977), “The Effects of Fines on Liquefaction of Sands,” Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp.381-385.
62.	Smith, E.A.L. (1960), “Pile Driving Analysis by The Wave Equation,” Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 86, No. SM4, pp.35-61.
63.	Stevens, J.B. and Audibert, J.M.E. (1979), “Re-Examination of P-Y Curve Formulations,” Proceedings of 11th Annual Offshore Technology Conference, Houston, Texas, No. OTC 3402, pp.397-403.
64.	Stoke, K.H., Roesset, J.M., Bierschwale, J.G. and Aouad, M. (1988), “Liquefaction Potential of Sand from Shear Wave Velocity”, Proceedings, 9th World Conference on Earthquake Engineering, Tokyo, Vol. 3, pp. 213-218.
65.	Terzaghi, K. (1955), “Evaluation of Coefficients of Subgrade Reaction,” Geotechnique, Vol. 5, pp.297-326.
66.	Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes,” Proceedings of the 12th ARC on Soil Mechanics and Geotechnical Engineering, Vol II, pp. 1065-1096.
67.	Tokimatsu, K. and Asaka, Y. (1998), “Effects of Liquefaction Induced Ground Displacement on Pile Performance in the 1995 Hyogoken–Nambu Earthquake,” Special Issue of Soils and Foundations, No. 2, pp.163-178.
68.	Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content,” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp.56-74.
69.	Tokimatsu, K., Suzuki, H. and Sato, M. (2005), “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp.753-762.
70.	Xia H. and Hu T. (1991), “Effects of Saturation and Back Pressure on Sand Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 117.
71.	日本國鐵基礎構造物及抗土壓構造物設計標準研究委員會 (1986),“國鐵建造物設計標準同解說-基礎構造物及抗土壓構造物”。
72.	日本道路協會 (1990),「道路橋示方書‧同解說,V耐震設計編」。
73.	日本道路協會 (1996),「道路橋示方書‧同解說,V耐震設計編」。
74.	日本道路協會 (2002),「道路橋示方書‧同解說,V耐震設計編」。
75.	吳宗達 (2003),“樁基波動方程分析之視窗化研究與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
76.	吳偉特,(1979) “台灣地區砂性土壤液化潛能評估之初步分析”,中國土木水利季刊,第六卷,第二期,第39-70頁。
77.	李佳翰 (2001),“沈箱式碼頭受震引致土壤液化之數值模擬”,碩士論文,中央大學應用地質研究所,台灣,中壢。
78.	林三賢、曾玉如、江承家、李維峰(2005),“液化土層產生側潰對基樁之影響分析”,地工技術,第103期,第43-52頁。
79.	林光宗 (1998),“群樁互制效應對基樁反應之影響”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
80.	林成川 (2002),“921集集大地震霧峰地區土壤側潰”,碩士論文,中興大學土木工程研究所,台灣,台中。
81.	房性中 (1994),「標準貫入試驗N值應用的比較與探討」。
82.	林冠吾 (2003),“層狀土壤中之樁基承載力及變形行為”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
83.	邱俊翔 (2001),“基樁側向荷載行為之研究”,博士論文,國立台灣大學土木工程研究所,台灣,台北。
84.	邱建銘 (2000),“以剪力波速評估員林地區液化及其地層動態反應研究”,碩士論文,台灣大學土木工程研究所,台灣,台北。
85.	翁作新、陳正興、黃俊鴻 (2004),“國內土壤受震液化問題之檢討” 地工技術,第100期,第63-78頁。
86.	翁贊鈞 (2003),“員林地區傾斜地盤二維有效應力分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
87.	馬志睿 (2001),“沈箱式碼頭受震反應之數值模擬”,碩士論文,中央大學土木工程研究所,台灣,中壢。
88.	張一郎 (2000),“波動方程式分析於群樁側向反應之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
89.	陳正興 (2000),“側向荷重樁之非線性反應分析”,國立台灣大學土木工程系研究報告。
90.	黃俊鴻 (2000),“液化地盤中樁基礎之耐震設計”,地工技術,第82期,第65-78頁。
91.	黃筱卿 (2002),“員林地區土壤液化之地盤反應分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
92.	楊宗勳 (2000),“地震力對混凝土樁之影響分析” ,碩士論文,國立海洋大學河海工程研究所,台灣,基隆。
93.	溫展華 (2000),“垂直群樁反應數值解比較研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
94.	賈志揚 (2004),“樁基波動方程分析網際網路化視窗程式之開發”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
95.	劉祉祥 (1999),“垂直載重群樁之波動方程式時域解”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
96.	鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
97.	蘇順帆 (2001),“群樁基礎互制行為研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
98.	徐守亨 (2009),“間接土壓力模式應用於側潰影響之樁基波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
99.	李漢珽 (2008),“土質參數折減係數應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。

100 .張紹綸 (2008),“孔隙水壓模式應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
100.	林伯勳 (2002),“群樁受垂直向及側向載重之非線性變形研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
101.	林伯勳 (2006),“樁基礎受液化和地盤側向流動之結構行為分析”,博士論文,淡江大學土木工程研究所,台灣,淡水。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信