淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1201201108295700
中文論文名稱 提供折扣條件下零售商的最適訂購策略
英文論文名稱 THE RETAILER’S OPTIMAL ORDERING POLICIES IN RESPONSE TO A DISCOUNT OFFER
校院名稱 淡江大學
系所名稱(中) 管理科學研究所博士班
系所名稱(英) Graduate Institute of Management Science
學年度 99
學期 1
出版年 100
研究生中文姓名 林文豐
研究生英文姓名 Wen-Feng Lin
學號 895620010
學位類別 博士
語文別 中文
口試日期 2010-12-25
論文頁數 98頁
口試委員 指導教授-張紘炬
委員-歐陽良裕
委員-黃志文
委員-林進財
委員-顏錫銘
委員-黃建森
委員-李培齊
中文關鍵字 經濟訂購量  價格折扣  瑕疵品  退化  非立即退化 
英文關鍵字 economic order quantity  price discount  imperfect quality  deterioration  non-instantaneous deterioration 
學科別分類
中文摘要 在傳統的經濟訂購量模型中,通常假設在銷售過程中相關的存貨參數是固定不變的,如商品的每單位購買成本、需求量、訂貨成本或持有成本等;然而在現今激烈的競爭市場中,有許多理由會使得供應商會透過降價活動來刺激零售商的買氣。當供應商提供了較低優惠價格時,零售商通常會採購較平常多的訂購量,待日後賣出後賺取差額的利潤,但因大量訂貨的結果也導致訂貨成本及存貨持有成本的增加。另外,在經濟訂購量模型中通常有一假設是值得討論的:收到所訂購的商品品質皆良好無瑕疵。事實上,所訂購的商品若在生產製造、運輸過程中有不可抗拒的情況產生時,將會有部分瑕疵品在所訂購的商品中。除此之外,商品變質、揮發等現象我們稱為退化現象,有些商品具有立即退化性現象,例如牛奶、蔬菜水果與魚蝦等。而部分商品會在一段時間內保持原先的狀態,並不會立即變質,稱為非立即退化現象,例如藥品過期變質、軟片變質與電子元件效用退化等。本文主要研究目的是以上述的各種因素為考慮基礎,針對傳統經濟訂購量模型中的條件加以改良及修正,以提供零售商做最適的訂貨策略。
本論文的研究架構如下:第一章為緒論,包含研究動機與目的、相關文獻探討和本論文研究架構。第二章探討瑕疵商品在瞬間價格折扣下零售商最適的訂貨策略。第三章延續第二章的概念,探討退化性商品在有限時間限制下存貨參數變動的最適訂貨模型。第四章探討非立即退化性商品在貨幣現值因素下的最適訂貨模型。第五章為結論,包含主要研究結果及未來研究方向。
英文摘要 The traditional EOQ inventory model assumes that the inventory parameters (for example: per unit cost, demand rate, ordering cost or holding cost) are constant during the sale period. In real life, there are many reasons for a supplier to offer temporary reduction in selling price to buyers. The buyer generally responds to the price discount by placing a special order for a large lot. But it may increase the holding cost and ordering cost. Further, the assumption of all items are perfect in each ordered lot is not pertinent. Because of defective production or other factors, there may be a percentage of imperfect quantity in received items. Besides, deterioration is defined as decay, change, spoilage or obsolescence that results in decreasing usefulness from its original purpose. But some items are not deteriorated as soon as they received by the retailer. In the fresh product time, the product has no deterioration and keeps their original quality. This phenomenon is named as non-instantaneous deterioration. According to the above reasons, we extend traditional EOQ inventory models and propose improved models that can provide optimal decision-making to retailers.
The thesis is consisted of five chapters. In chapter 1, it covers the motivation and objectives of this research. We also survey the related literature and provide a research framework. In Chapter 2, we explore the optimal ordering policy for economic order quantity with imperfective items under a temporary price discount. In Chapter 3, we propose a finite time horizon inventory model for deteriorating items with cost changes. In Chapter 4, we present a partial backlogging inventory model for non-Instantaneous deteriorating items with stock-dependent consumption rate. In this dissertation, we develop some theorems to find the optimal ordering policies and provide numerical examples to illustrate the theorems we proposed. Finally, Chapter 5 provides the conclusions of this research and topics for further research.
論文目次 目錄 I
表目錄 III
圖目錄 IV
通用符號一覽表 V

第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關文獻探討 2
1.3 本文研究架構 8
第二章 瑕疵商品在瞬間價格折扣下零售商最適的訂貨策略 10
2.1 符號及假設 10
2.2 模型之建立 12
2.3 模型之求解 26
2.4 數值範例 38
2.5 小結 42
第三章 退化性商品在有限時間限制下存貨參數變動的最適訂貨模型 43
3.1 符號及假設 43
3.2 模型之建立 45
3.3 模型之求解 51
3.4 數值範例 53
3.5 小結 56
第四章 非立即退化性商品在貨幣現值因素下的最適訂貨模型 57
4.1 符號及假設 57
4.2 模型之建立 59
4.3 模型之求解 63
4.4 數值範例 64
4.5 小結 69
第五章 結論 70
5.1 主要研究結果 70
5.2 未來研究方向 72

參考文獻 74

附錄一 87
附錄二 88
附錄三 90
附錄四 93
附錄五 94
附錄六 95
附錄七 97

表目錄
表2-1 情況1的最大節省總成本及最適訂購量 39
表2-2 情況2的最大節省總成本及最適訂購量 41
表2-3 情況3的最大節省總成本及最適訂購量 41
表3-1 情況1及情況2中不同有限時間範圍的訂貨策略 55
表3-2 Lev and Weiss (1990) 情況1中的修正 55
表4-1 例題4.1中不同訂購情況下的最小總成本現值 65
表4-2 例題4.1中影響存貨系統的一些特殊情況 66
表4-3 例題4.1中影響存貨系統參數的敏感度分析 67
表4-4 例題4.2中不同訂購情況下的最小總成本現值 68

圖目錄
圖2-1 Salameh and Jaber (2000) 具瑕疵品的存貨模型 12
圖2-2 類型 1.1 的模型 14
圖2-3 類型 1.2 的模型 14
圖2-4 類型 2.1 的模型 18
圖2-5 類型 2.2 的模型 18
圖2-6 類型 3.1 的模型 23
圖2-7 類型 3.2 的模型 23
圖2-8 例題 2.1 之節省成本 40
圖2-9 例題 2.1 之節省成本 40
圖3-1 固定需求下具固定退化性商品的存貨水準 45
圖3-2 情況1:存貨於t=T 銷售完畢 48
圖3-3 情況2:存貨於t=T 仍未銷售完畢 48
圖3-4 針對情形1及情形2所提出的模型 49
圖3-5 當 H=1.5 時的總存貨成本 TCS(Te) 圖 54
圖3-6 當 H=1.5 時的總存貨成本 TM(m) 圖 54
圖4-1 非立即退化性商品在缺貨情況下允許部分回補的存貨模型 59
圖4-2 滿足定理4-1(a)之 TC(m,k) 與 m 關係 65
圖4-3 滿足定理4-1(b)之 TC(m,k) 與 m 關係 69
參考文獻 [1] Abad, P.L. (2003a). Optimal price and lot size when the supplier offers a temporary price reduction over an interval. Computers & Operations Research, 30(1), 63-74.
[2] Abad, P.L. (2003b). Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale. European Journal of Operational Research, 144, 677–685.
[3] Ardalan, A. (1991). Combined optimal price and optimal inventory replenishment policies when a sale results in increase in demand. Computers & Operations Research, 18(8), 721–730.
[4] Ardalan, A. (1994). Optimal prices and order quantities when temporary price discounts result in increase in demand. European Journal of Operational Research, 72(1), 52–61.
[5] Aucamp, D.C. and Kuzdrall, P.J. (1986). Lot sizes for one-time-only sales. Journal of Operational Research Society, 37(1), 79–86.
[6] Buzacott, J.A. (1975). Economic order quantity with inflation. Operational Research Quarterly, 26 (3), 553–558.
[7] Cárdenas-Barrón, L.E. (2000). Observation on: “Economic production quantity model for items with imperfect quality”. International Journal of Production Economics, 67(2), 201.
[8] Cárdenas-Barrón, L.E. (2009a). Optimal ordering policies in response to a discount offer: Extensions. International Journal of Production Economics, 122(2), 774-782.
[9] Cárdenas-Barrón, L.E. (2009b). Optimal ordering policies in response to a discount offer: Corrections. International Journal of Production Economics, 122(2), 783-789.
[10] Cárdenas-Barrón, L.E., Smith, N.R. and Goyal, S.K. (2010). Optimal order size to take advantage of a one-time discount offer with allowed backorders. Applied Mathematical Modelling, 34(6), 1642-1652.
[11] Chan, W.M., Ibrahim, R.N. and Lochert, P.B. (2003). A new EPQ model: integrating lower pricing rework and reject situations. Production Planning & Control, 14, 588–595.
[12] Chang, C.T. and Lo, T.Y. (2009). On the inventory model with continuous and discrete lead time, backorders and lost sales. Applied Mathematical Modelling, 33(5), 2196-2206.
[13] Chang, C.T., Teng, J.T. and Goyal, S.K. (2010). Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 123(1), 62-68.
[14] Chang, H.C. (2004). An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers & Operations Research, 31(12), 2079–2092.
[15] Chang, H.J. and Dye, C.Y. (1999). An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of the Operational Research Society, 50 (11), 1176-1182.
[16] Chang, H.J. and Dye, C.Y. (2000). An EOQ model with deteriorating items in response to a temporary sale price. Production Planning & Control, 11(5), 464-473.
[17] Chang, H.C. and Ho, C.H. (2010). Exact closed-form solutions for optimal inventory model for items with imperfect quality and shortage backordering. Omega, 38(3), 233–237.
[18] Chang, H.J., Teng, J.T., Ouyang, L.Y. and Dye, C.Y. (2006). Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging. European Journal of Operational Research, 168(1), 51-64.
[19] Chern, M.S., Yang, H.L., Teng, J.T. and Papachristos, S. (2008). Partial backlogging inventory lot-size models for deteriorating items with fluctuating demand under inflation. European Journal of Operational Research, 191(1), 127-141.
[20] Chu, P. and Chung, K.J. (2004). The sensitivity of the inventory model with partial backorders, European Journal of Operational Research, 152(1), 289–295.
[21] Chung, K.J. (20009). A complete proof on the solution procedure for non-instantaneous deteriorating items with permissible delay in payment. Computers & Industrial Engineering, 56(1), 267-273.
[22] Chung, K.J. (2010). The viewpoint on “Optimal inventory policy with non-instantaneous receipt under trade credit by Ouyang, Teng, Chuang and Chuang”. International Journal of Production Economics, 124(1), 293-298.
[23] Chung, K.J., Her, C.C. and Lin, S.D. (2009). A two-warehouse inventory model with imperfect quality production process. Computers & Industrial Engineering, 56(1), 193–197.
[24] Chung, K.J. and Huang, Y.F. (2006). Retailer’s optimal cycle times in the EOQ model with imperfect quality and permissible credit period. Quality & Quantity, 40(1), 59-77.
[25] Chung, K.J. and Lin, C.N. (2001). Optimal inventory replenishment models for deteriorating items taking account of time discounting. Computers & Operations Research, 28(1), 67–83.
[26] Covert, R.B. and Philip, G.S. (1973). An EOQ model with Weibull distribution deterioration. AIIE Transactions, 5, 323–326.
[27] Dave, U. and Patel, L.K. (1981). (T, Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 32(2), 137–142.
[28] Dye, C.Y., Chang, H.J. and Teng, J.T. (2006). A deteriorating inventory model with time-varying demand and shortage-dependent partial backlogging. European Journal of Operational Research, 172(2), 417-429.
[29] Dye, C.Y., Hsieh, T.P. and Ouyang, L.Y. (2007). Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging. European Journal of Operational Research, 181(2), 668–678.
[30] Eroglu, A. and Ozdemir, G. (2007). An economic order quantity model with defective items and shortages. International Journal of Production Economics, 106(2), 544–549.
[31] García-Laguna, J., San-José, L.A., Cárdenas-Barrón L.E. and Sicilia, J. (2010). The integrality of the lot size in the basic EOQ and EPQ models: Applications to other production-inventory models. Applied Mathematics and Computation, 216(5), 1660-1672.
[32] Gascon, A. (1995). On the finite horizon EOQ model with cost changes. Operations Research, 43(4), 716-717.
[33] Geetha, K.V. and Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of Computational and Applied Mathematics, 233(10), 2492-2505.
[34] Ghare, P.M. and Schrader, G.F. (1963). A model for exponential decaying inventory. Journal of Industrial Engineering, 14, 238–243.
[35] Goswami, A., Bose, S. and Chaudhuri, K.S. (1995). An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. Journal of the Operational Research Society, 46(6), 771-782.
[36] Goyal, S.K., Srinivasan, G. and Arcelus, F.J. (1991). One time only incentives and inventory policies. European Journal of Operational Research, 54(1), 1–6.
[37] Goyal, S.K. and Cárdenas-Barrón, L.E. (2002). Note on: Economic production quantity model for items with imperfect quality - a practical approach. International Journal of Production Economics, 77(1), 85–87.
[38] Hou, K.L. (2006). An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting. European Journal of Operational Research, 168(2), 463–474.
[39] Hsieh, T.P. and Dye, C.Y. (2010). Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation. Expert Systems with Applications, 37(10), 7234-7242.
[40] Hsieh, T.P., Dye, C.Y. and Ouyang, L.Y. (2010). Optimal lot size for an item with partial backlogging rate when demand is stimulated by inventory above a certain stock level. Mathematical & Computer Modellng, 51, 13–32.
[41] Hsu, W.K. and Yu, H.F. (2009). EOQ model for imperfective items under a one-time-only discount. Omega, 37(5), 1018-1026.
[42] Jaber, M.Y., Goyal, S.K. and Imran, M. (2008). Economic production quantity model for items with imperfect quality subject to learning effects. International Journal of Production Economics, 115(1), 143–150.
[43] Khan, M., Jaber, M.Y. and Wahab, M.I.M. (2010). Economic order quantity model for items with imperfect quality with learning in inspection. International Journal of Production Economics, 124(1), 87–96.
[44] Khouja, M. and Park, S. (2003). Optimal lot sizing under continuous price decrease. Omega, 31(6), 539–545.
[45] Kovalev and Ng, C.T. (2008). A discrete EOQ problem is solvable in O.log n/ time. European Journal of Operational Research, 189(3), 914-919.
[46] Lev, B. and Weiss, H. J. (1990). Inventory models with cost changes. Operations Research, 38(1), 53-63.
[47] Li, C.L. (2009). A new solution method for the finite-horizon discrete-time EOQ problem. European Journal of Operational Research, 197(1), 412–414.
[48] Lin, T.Y. (2010). An economic order quantity with imperfect quality and quantity discounts. Applied Mathematical Modelling, 34(10), 3158-3165.
[49] Luo, J. and Huang, P. (2003). A note on "inventory models with cost changes. Operations Research, 51(3), 503-506.
[50] Maddah, B. and Jaber, M.Y. (2008). Economic order quantity model for items with imperfect quality: revisited. International Journal of Production Economics, 112(2), 808–815.
[51] Maddah, B., Moussawi, L. and Jaber, M.Y. (2010). Lot sizing with a Markov production process and imperfect items scrapped. International Journal of Production Economics, 124(2), 340–347.
[52] Maddah, B., Salameh, M.K. and Karame, G.M. (2009). Lot sizing with random yield and different qualities. Applied Mathematical Modelling, 33(4), 1997–2009.
[53] Martin, G.E. (1994). Note on an EOQ model with a temporary sale price. International Journal of Production Economics, 37(2), 241-243.
[54] Mehra, S., Agrawal, P. and Rajagopalan, M. (1991). Some comments on the validity of EOQ formula under inflationary conditions. Decision Sciences, 22(1), 206-212.
[55] Montgomery, D.C. (1982). Economic design of an control chart. Journal of Quality Technology, 14, 40–43.
[56] Naddor, E. (1966). Inventory Systems. Wiley, New York, 96-102.
[57] Ouyang, L.Y., Teng, J.T., Chuang, K.W. and Chuang, B.R. (2005). Optimal inventory policy with non-instantaneous receipt under trade credit. International Journal of Production Economics, 98(3), 290–300.
[58] Ouyang, L.Y., Wu, K.S. and Ho, C.H. (2006). Analysis of optimal vendor-buyer integrated inventory policy involving defective items. International Journal of Advanced Manufacturing Technology, 29, 1232-1245.
[59] Ouyang, L.Y., Wu, K.S. and Yang, C.T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers & Industrial Engineering, 51(4), 637–651.
[60] Ouyang, L.Y., Yen, N.C. and Wu, K.S. (1996). Mixture inventory model with backorders and lost sales for variable lead time. Journal of the Operational Research Society, 47(6), 829-832.
[61] Papachristos, S. and Konstantaras, I. (2006). Economic ordering quantity models for items with imperfect quality. International Journal of Production Economics, 100(1), 148–154.
[62] Papachristos, S. and Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging. Operations Research Letters, 27(4), 175-184.
[63] Park, K.S. (1982). Inventory model with partial backorders. International Journal of Systems Science, 13, 1313–1317.
[64] Rosenbalatt, M.J. and Lee, H.L. (1986). Economic production cycles with imperfect production process. IIE Transactions, 18(1), 48–55.
[65] Salameh, M.K.and Jaber, M.Y. (2000). Economic production quantity model for items with imperfect quality. International Journal of Production Economics, 64(1), 59–64.
[66] San José, L.A., Sicilia, J. and García-Laguna, J. (2006). Analysis of an inventory system with exponential partial backordering. International Journal of Production Economics, 100(1), 76–86.
[67] Sana, S.S., Goyal, S.K. and Chaudhuri, K. (2007). An imperfect production process in a volume flexible inventory model. International Journal of Production Economics, 105(2), 548–559.
[68] Sana, S.S. (2010). Optimal selling price and lot-size with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
[69] Sarker, B.R. and Kindi, M.A. (2006). Optimal ordering policies in response to a discount offer. International Journal of Production Economics, 100(2), 195–211.
[70] Schwarz, L.B. (1972). Economic order quantities for products with finite demand horizon. AIIE Transactions, 4, 234-236.
[71] Schwaller, R. L. (1988). EOQ under inspection costs. Production and Inventory Management Journal, 29(3), 22–24.
[72] Shih, W. (1980). Optimal inventory policies when stockouts result from defective products. International Journal of Production Research, 18(6), 677–686.
[73] Teng, J.T., Chang, H.J., Dye, C.Y. and Hung, C.H. (2002). An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging. Operations Research Letters, 30(6), 387-393.
[74] Teng, J.T., Ouyang, L.Y. and Chen, L.H. (2007). A comparison between two pricing and lot-sizing models with partial backlogging and deteriorated items. International Journal of Production Economics, 105(1), 190-203.
[75] Teng, J.T., Yang, H.L. and Ouyang, L.Y. (2003). On an EOQ model for deteriorating items with time-varying demand and partial backlogging. Journal of the Operational Research Society, 54(4), 432-436.
[76] Teng, J.T. and Yang, H.L. (2004). Deterministic economic order quantity models with partial backlogging when demand and cost are fluctuating with time. Journal of the Operational Research Society, 55(5), 495-503.
[77] Tersine, R.J. and Barman, S. (1991). Lot size optimization with quantity and freight rate discounts. Logistics and Transportation Review, 27(4), 319-332.
[78] Tersine, R.J. (1994). Principles of Inventory and Materials Management, 4th ed. Prentice-Hall, Englewood Cliffs, NJ.
[79] Tsao, Y.C. and Sheen, G.J. (2008). Dynamic pricing, promotion and replenishment policies for a deteriotating item under permissible delay in payments. Computers & Operations Research, 35(11), 3562-3580.
[80] Wahab, M.I.M. and Jaber, M.Y. (2010). Economic order quantity model for items with imperfect quality, different holding costs, and learning effects: A note. Computers & Industrial Engineering, 58(1), 186–190.
[81] Wee, H.M., Chung, S.L. and Yang, P.C. (2003). Technical Note - A modified EOQ model with temporary sale price derived without derivatives. The Engineering Economist, 48(2), 190-195.
[82] Wee, H.M. and Yu, J. (1997). A deteriorating inventory model with a temporary price discount. International Journal of Production Economics, 53(1), 81-90.
[83] Wee, H.M., Yu, J. and Chen, M.C. (2007). Optimal inventory model for items with imperfect quality and shortage backordering. Omega, 35(1), 7–11.
[84] Wee, H.M., Yu, J. and Wang, K.J. (2006). An integrated production-inventory model for deteriorating items with imperfect quality and shortage backordering considerations. Lecture Notes in Computer Science, 3982(3), 885–897.
[85] Wu, K.S., Ouyang, L.Y. and Yang, C.T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369–384.
[86] Yanasse, H.H. (1990). EOQ systems: The case of an increase in purchase cost. Journal of the Operational Research Society, 41(7), 633-637.
[89] Yang, G.K. (2007). Note on sensitivity analysis of inventory model with partial backorders. European Journal of Operational Research, 177(2), 865-871.
[87] Yang, H.L. (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research, 157(2), 344–356.
[88] Yang, H.L. (2005). A comparison among various partial backlogging inventory lot-size models for deteriorating items on the basis of maximum profit. International Journal of Production Economics, 96(1), 119–128.
[90] Yang, H.L., Teng, J.T. and Chern, M.S. (2010). An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. International Journal of Production Economics, 123(1), 8-19.




論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-02-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-02-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信