§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1201200913250200
DOI 10.6846/TKU.2009.00309
論文名稱(中文) 微晶片電泳結合電化學安培法在抗壞血酸存在下同時偵測乙醯氨酚、異黃嘌呤與尿酸
論文名稱(英文) Simultaneous determination of acetaminophen, oxypurinol and uric acid in the presence of ascorbic acid with microchip
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 1
出版年 98
研究生(中文) 邱怡華
研究生(英文) Yi-Hua Chiu
學號 695160282
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-01-05
論文頁數 101頁
口試委員 指導教授 - 林孟山
委員 - 蔡東湖
委員 - 傅明仁
委員 - 何佳安
關鍵字(中) 微晶片電泳
電化學
關鍵字(英) microchip
PDMS
electrochemical detection
第三語言關鍵字
學科別分類
中文摘要
本研究將PDMS (polydimethylsiloxane)微晶片電泳與電化學偵測系統結合。於微流道晶片所使用的材質中,PDMS是目前被廣為應用的高分子聚合物之一,其具有低成本、透光性佳且有良好的機械性與可塑性等特性,然而運用於微晶片電泳中,其電滲透流不穩定以及親水性不佳等缺點,是過去文獻中不斷研究改善的部分;相較於常見的PDMS表面改質方式,如共價鍵修飾、電漿處理、動態塗佈與化學氣相沉積等,本研究以摻雜PU (Polyurethane) 的修飾方式,來達到較為簡易、快速且穩定的改質的目的。 
透過偵測乙醯氨酚、異黃嘌呤與尿酸的實驗結果證實,經過PU改質後的PDMS微流道晶片,改善了PDMS電滲透流不穩定與親水性不佳的缺點,提升了樣品的分離效率。在系統最佳化條件下,樣品分離的解析度由未修飾的0.87提升到修飾有0.0075% PU的2.2,達到完全分離,而三種樣品的線性範圍分別為乙醯氨酚5 μM ~ 1 mM (R=0.999),靈敏度0.130 nA / μM;異黃嘌呤10 μM ~ 1 mM (R=0.999) ,靈敏度0.054 nA / μM與尿酸20 μM ~ 1 mM(R=0.999),靈敏度0.043 nA / μM;實驗重複20次操作對100μM之乙醯氨酚、異黃嘌呤與尿酸的偵測,所得之相對標準偏差分別為2.1%、3.5%以及3.3%。而干擾物抗壞血酸亦成功的以抗壞血酸氧化酶去除。
英文摘要
The low cost, elasticity, plasticity and high transparency of PDMS (polydimethylsiloxane) has been used extensively. However, the instable EOF (electroosmotic flow) and hydrophobic nature of PDMS limits the applications in microchip electrophoresis. A number of methods had been published in order to improve these shortcomings of PDMS, such as covalent modification, air plasma treatment, dynamic coating, and chemical vapor deposition. In this research, we make use of intermixing PU (Polyurethane) and PDMS to attain to simple, quick, and stable modification methods.
We demonstrate that a feasibility scheme to enhance the EOF and hydrophilicity by means of PU modified PDMS. Acetaminophen, oxypurinol and uric acid were measured by using amperometry with microchip electrophoresis. In the process of experiment, sample resolution rises from 0.87 of native PDMS to 2.2 of the optimum 0.0075% PU modified PDMS. According to optimum operation conditions, the linear ranges of acetaminophen, oxypurinol and uric acid are obtained between 5 μM ~ 1 mM (R=0.999), 10 μM ~ 1 mM (R=0.999) and 20 μM ~ 1 mM(R=0.999), respectively. The sensitivities of three samples are 0.131 nA / μM for acetaminophen, 0.054 nA / μM for oxypurinol and 0.043 nA / μM of uric acid. The relative standard deviation of twenty repetitive detections is 2.1% for acetaminophen, 3.5% for oxypurinol and 3.3% for uric acid. The interference ascorbic acid is eliminated from ascorbate oxisase.
第三語言摘要
論文目次
中文論文提要…………………………………………………………….i
Abstract…………………………………………………………………..ii
目錄……………………………………………………………………...iii
圖目錄…………………………………………………………………..vii
表目錄…………………………………………………………………...xi
第一章	緒論…………………………………………………..................1
1-1	研究背景…………………………………………………………….1
1-2	毛細管電泳(Capillary electrophoresis, CE)及其基本原理…….......2
1-2-1	電泳……………………………………………………………..3
1-2-2	電滲透流(electroosmotic flow, EOF)…………………………...4
1-3	微晶片電泳之發展………………………………………………….8
1-3-1	微流道分離系統………………………………………………..8
1-3-1-1	微流道材質種類………………………………………………..9
1-3-1-2	聚合物基材微流道製作方式………………………………....13
1-4	樣品注入方式……………………………………………………...19
1-4-1	閘閥注入法(gated injection)......................................................19
1-4-2	漂浮注入法(floated injection)…………………………………20
1-4-3	夾擠注入法(pinched injection)………………………………..22
1-5	微流道晶片之偵測方式…………………………………………...23
1-5-1	螢光…………………………………………………………....24
1-5-2	UV / Visible…………………………………………………....25
1-5-3	電化學………………………………………………………....26
1-6	PU ( Polyurethane )簡介…………………………………………...31
1-6-1	水性PU的基本材料…………………………………………..31
1-6-1-1	非離子型水性PU分散液……………………………………..32
1-6-1-2	陽離子型水性PU分散液……………………………………..33
1-6-1-3	陰離子型水性PU分散液……………………………………..34
1-7	異黃嘌呤(oxypurinol)與尿酸(uric acid)之檢測重要性……….......36
1-8	本研究目的………………………………………………………...42
第二章  實驗部分……………………………………………………..44
2-1	儀器與設備………………………………………………………...44
2-2	藥品………………………………………………………………...45
2-3	網印電極的製備…………………………………………………...47
2-4	微流道的製備……………………………………………………...47
2-4-1	光罩之製作……………………………………………………...47
2-4-2	負光阻陽模之製作……………………………………………...48
2-4-3	造模法(casting)製造PDMS微流道…………………………….49
2-4-4	系統裝置………………………………………………………...50
2-5	樣品的製備………………………………………………………...51
2-6	電滲透流與接觸角量測…………………………………………...51
2-7	實驗條件設計……………………………………………………...53
2-7-1	緩衝溶液之酸鹼值探討………………………………………...53
2-7-2	緩衝溶液之濃度探討…………………………………………...53
2-7-3	PU摻雜於PDMS之修飾比例探討……………………………..53
2-7-4	偵測電位探討…………………………………………………...53
2-7-5	毛細管電泳參數最佳化………………………………………...54
2-7-6	干擾物去除探討………………………………………...............54
2-8	分析特性…………………………………………………………...54
第三章	結果與討論……………………………………………………55
3-1	偵測機制……………………………………………………….......55
3-2	偵測條件最佳化探討……………………………………………...57
3-2-1	緩衝溶液之酸鹼值探討………………………………………58
3-2-2	PU摻雜於PDMS之修飾比例探討…………………………...61
3-2-3	緩衝溶液之酸鹼值探討………………………………………66
3-2-4	緩衝溶液之濃度探討…………………………………………69
3-2-5	偵測電位探討…………………………………………………72
3-2-6	進樣時間探討…………………………………………………74
3-2-7	分離電壓探討…………………………………………………77
3-2-8	干擾物探討……………………………………………………80
3-3	分析特性…………………………………………………………...88
第四章	結論……………………………………………………………92
參考資料………………………………………………………………..95

圖目錄
圖1-1 電雙層與zeta potential關係示意圖。
……………………………………………………………………………5
圖1-2 ( a )平面流及( b )層流液體流動剖面圖;( c )平面流及層流樣品分散示意圖。
……………………………………………………………………………7
圖1-3 陰、陽離子與電滲透流方向示意圖。
....................................................................................................................7
圖1-4 陰、陽離子在電滲透留存在下之實際遷移速度。
……………………………………………………………………………8
圖1-5 十字型微流道示意圖。
……………………………………………………………………………9
圖1-6 玻璃基材微流道裝置圖。
…………………………………………………………………………..11
圖1-7 熱壓法製程與其形成之微流道。
…………………………………………………………………………..14
圖1-8 閘閥注入法:( a )樣品注入前;( b )樣品注入模式;( c )樣品分離模式。
…………………………………………………………………………..20
圖1-9 漂浮注入法:( a )樣品注入模式;( b )樣品分離模式。
…………………………………………………………………………..21
圖1-10 夾擠注入法:( a )樣品注入模式;( b )樣品分離模式。
…………………………………………………………………………..23
圖1-11 電化學電流法之偵測模式:A. End-channel (on-chip);B. End-channel (off-chip);C. In-channel;D. Off-channel。
…………………………………………………………………………..27
圖1-12 非離子型水性PU分散液。
…………………………………………………………………………..33
圖1-13 陽離子型水性PU分散液。
…………………………………………………………………………..34
圖1-14 羰酸鹽與磺酸鹽型乳化劑。
…………………………………………………………………………..35
圖1-15 陰離子型水性PU分散液。
…………………………………………………………………………..35
圖1-16 Allopurinol與oxypurinol對於尿酸形成之抑制效應。
…………………………………………………………………………..39
圖2-1 Aqueous-based polyurethane之分子結構。
………………………………………………………..…………………47
圖2-2 負光阻陽模製程圖。
…………………………………………………………………………..48
圖2-3 造模法製程圖。
…………………………………………………………………………..49
圖2-4 微流道示意圖及其尺寸。
…………………………………………………………………………..50
圖2-5 系統裝置圖。(A)樣品槽,(B)樣品廢液槽,(C)緩衝溶液儲存槽,(D)PDMS微流道,(E)塑膠玻璃(Plexiglas),(F)相對電極,(G)螺絲,(H)偵測電極試片,(I)接地,(J)工作電極,(K)參考電極,(L)膠帶(spacer)。
…………………………………………………………………………..50
圖2-6 接觸角之量測示意圖。
…………………………………………………………………………..52
圖3-1 Acetaminophen之電化學氧化機制。
…………………………………………………………………………..55
圖3-2 Oxypurinol之電化學氧化機制。
…………………………………………………………………………..56
圖3-3 Uric acid之電化學氧化機制。
…………………………………………………………………………..56
圖3-4 以網印厚膜印刷電極所得之典型循環伏安圖。樣品分別為blank (a),1 mM acetaminophen (b),1 mM oxypurinol (c)以及1 mM uric acid (d)溶液;溶液環境為6 mM phosphate buffer solution (PBS) pH7.4 (1 mM NaCl),以50 mV /s掃描速率進行掃描。
…………………………………………………………………………..57
圖3-5 緩衝溶液酸鹼值探討。系統操作電位950 mV ( vs. Ag / AgCl )下對5 mM PBS (1 mM NaCl) pH值分別為6.0、6.5、7.0、7.4、7.5與8.0進行最佳化探討。樣品溶液acetaminophen、oxypurinol以及uric acid濃度皆為100 μM、400μM以及200μM,其餘條件為pure PDMS微流道晶片,分離電壓0.8 kV,注射電壓0.6 kV,注射時間3 s,於分離時樣品槽及樣品廢液槽同時施加0.6 kV(N=3)。
…………………………………………………………………………..59
圖3-6 緩衝溶液酸鹼值探討。根據酸鹼值的不同所得之實際電流響應訊號;圖中峰訊號分別為(1) acetaminophen,(2) oxypurinol,(3) uric acid。實驗條件如圖3-5。
…………………………………………………………………………..60
圖3-7 PU摻雜於PDMS之修飾比例探討。實驗分別對0、0.0025、0.005、0.0075、0.01%之不同PU修飾比例進行最佳化探討,溶液環境為5 mM PBS pH 7.4。其於分析條件同圖3-5。
…………………………………………………………………………..62
圖3-8 PU摻雜於PDMS之修飾比例探討所得之電滲透流遷移率。實驗分別以0、0.0025、0.005、0.0075、0.01%之不同PU修飾比例之微流道進行100μM之catechol量測,溶液環境為6 mM PBS pH 7.4。其餘條件為,分離電壓0.9 kV,注射電壓0.6 kV,注射時間3 s,於分離時樣品槽及樣品廢液槽同時施加0.6 kV。
…………………………………………………………………………..63
圖3-9 PU摻雜於PDMS之修飾比例探討。根據不同修飾比例所得之實際訊號響應,峰訊號分別為(1) acetaminophen,(2) oxypurinol,(3) uric acid。實驗條件如圖3-7。
…………………………………………………………………………..64
圖3-10 緩衝溶液酸鹼值探討。系統操作電位950 mV ( vs. Ag / AgCl )下對5 mM PBS (1 mM NaCl) pH值分別為6.0、6.5、7.0、7.4、7.5與8.0進行最佳化探討。樣品溶液acetaminophen、oxypurinol以及uric acid濃度分別為100 μM、400 μM以及200 μM,其餘條件為含有0.0075%PU之 PDMS微流道晶片,分離電壓0.8 kV,注射電壓0.6 kV,注射時間3 s,於分離時樣品槽及樣品廢液槽同時施加0.6 kV (虛線為單獨量測所得之訊號)。
…………………………………………………………………………..67
圖3-11 緩衝溶液酸鹼值探討。根據酸鹼值的不同所得之實際電泳圖;圖中峰訊號分別為(1) acetaminophen,(2) oxypurinol,(3) uric acid。實驗條件如圖3-9。
…………………………………………………………………………..68
圖3-12 緩衝溶液濃度之探討。實驗分別對濃度為5、6、7、8、10 mM pH7.4之PBS(1 mM NaCl)進行最佳化探討,微流道為修飾0.0075%PU之PDMS。圖3-5為其餘條件。
…………………………………………………………………………..70
圖3-11 緩衝溶液濃度之探討。不同濃度之PBS所得之實際響應訊號,峰訊號分別為(1) acetaminophen,(2) oxypurinol,(3) uric acid。實驗條件如圖3-10。
…………………………………………………………………………..71
圖3-14 偵測電位之探討。實驗分別對施加電位為900、950、1000、1050及1100 mV ( vs. Ag / AgCl )進行最佳化探討,溶液環境為6 mM PBS pH 7.4,微流道晶片為含有0.0075% PU之PDMS。其餘分析條件詳見圖3-5。
…………………………………………………………………………..73
圖3-15 樣品注射時間之探討。實驗分別以1、2、3、4、5 s的注射時間進行最佳化探討,溶液環境為6 mM PBS pH 7.4,微流道晶片為含有0.0075% PU之PDMS,操作電位為950 mV ( vs. Ag / AgCl )。其餘分析條件詳見圖3-5。
…………………………………………………………………………..75
圖3-16 樣品注入時間之探討。由不同注射時間得到之實際響應訊號,峰訊號分別為(1) acetaminophen,(2) oxypurinol,(3) uric acid。實驗條件如圖3-13。
…………………………………………………………………………..76
圖3-17 分離電壓之探討。實驗分別對施加0.7、0.8、0.9、1.0、1.1 kV的分離電壓進行最佳化探討,溶液環境為6 mM PBS pH 7.4,微流道晶片為含有0.0075% PU之PDMS,操作電位為950 mV ( vs. Ag / AgCl ),注入樣品濃度為100μM acetaminophen,oxypurinol 400μM 以及uric acid 200μM,樣品注射時間為3 s,樣品注射電壓為0.6 kV,分離電壓施加時,樣品槽及樣品廢液槽同時施加0.6 kV的電壓。
…………………………………………………………………………..78
圖3-18 分離電壓探討。實際響應訊號根據不同分離電壓得到,峰訊號分別來自(1) acetaminophen,(2) oxypurinol,(3) uric acid。實驗條件如圖3-15。…………………………………………………………………………..79
圖3-19 干擾物探討。根據不同pH值得到之電泳圖,峰訊號分別來自acetaminophen、oxypurinol、uric acid與ascorbid acid。實驗條件如圖3-15。
…………………………………………………………………………..81
圖3-20 PDMS以PU修飾前後,所測得之acetaminophen、oxypuirnol、uric acid與ascorbic acid之電泳圖。系統操作電位950 mV ( vs. Ag / AgCl )下於5 mM PBS (1 mM NaCl) pH值為7.0的實驗環境進行。樣品溶液acetaminophen、oxypurinol以及uric acid濃度分別為100 μM、400 μM以及200 μM,其餘條件為分別為含有0.0075%PU與未修飾之 PDMS微流道晶片,分離電壓0.8 kV,注射電壓0.6 kV,注射時間3 s,於分離時樣品槽及樣品廢液槽同時施加0.6 kV。
…………………………………………………………………………..82
圖3-21 以網印厚膜印刷電極所得之典型循環伏安圖。樣品分別為blank與1 mM ascorbic acid溶液;溶液環境為6 mM phosphate buffer solution (PBS) pH 7.4 (1 mM NaCl),以50 mV /s掃描速率進行掃描。
…………………………………………………………………………..84
圖3-22 以網印厚膜印刷電極所得之典型循環伏安圖。樣品分別為blank、1 mM ascorbic acid溶液以及經由5 U的ascorbateoxidase處理後之1 mM ascorbic acid溶液;溶液環境為6 mM phosphate buffer solution (PBS) pH 7.4 (1 mM NaCl),以50 mV /s掃描速率進行掃描。
…………………………………………………………………………..85
圖3-23 以網印厚膜印刷電極所得之典型循環伏安圖。樣品分別為blank、1 mM ascorbic acid溶液以及經由10 U的ascorbate oxidase處理後之1 mM ascorbic acid溶液;溶液環境為6 mM phosphate buffer solution (PBS) pH 7.4 (1 mM NaCl),以50 mV /s掃描速率進行掃描。
…………………………………………………………………………..86
圖3-24 經由asocrbate oxidase處理後所測得acetaminophen、oxypuirnol、uric acid與ascorbic acid之電泳圖。系統操作電位950 mV ( vs. Ag / AgCl )下於6 mM PBS (1 mM NaCl) pH值為7.4的實驗環境進行。樣品溶液acetaminophen、oxypurinol以及uric acid濃度分別為100 μM、400 μM以及200 μM,其餘條件為分別為含有0.0075%PU與未修飾之 PDMS微流道晶片,分離電壓0.9kV,注射電壓0.6 kV,注射時間3 s,於分離時樣品槽及樣品廢液槽同時施加0.6 kV。
…………………………………………………………………………..87
圖3-25 系統於最佳化條件下對acetaminophem、oxypurinol與uric acid進行偵測所得之校正曲線與實際響應訊號。
…………………………………………………………………………..89
圖3-26 系統於最佳化條件下對100 μM之acetaminophem、oxypurinol與uric acid連續偵測20次以檢視系統之穩定性。
…………………………………………………………………………..90
表目錄
表(一) 緩衝溶液酸鹼值探討之響應訊號值、滯留時間與半峰寬。
…………………………………………………………………………..61
表(二) PU摻雜於PDMS之修飾比例其響應訊號值、滯留時間與半峰寬。
…………………………………………………………………………..65
表(三) PU摻雜於PDMS之不同修飾比例所量測之接觸角以及電滲透流遷移率。
…………………………………………………………………………..65
表(四) 緩衝溶液酸鹼值探討之響應訊號值、滯留時間與半峰寬(#為無法量測)。
…………………………………………………………………………..69
表(五) 不同濃度之緩衝溶液所得之響應訊號、滯留時間與半峰寬。
…………………………………………………………………………..71
表(六) 根據樣品注射時間的改變所得之響應訊號、滯留時間與半峰寬。
…………………………………………………………………………..77
表(七) 根據分離電壓的改變所得之響應訊號、滯留時間與半峰寬。
…………………………………………………………………………..79
表(八) 實驗最佳化條件及分析特性。
…………………………………………………………………………..91
附錄
附錄1:符號表…………………………………………………………..93
附錄2:樣品解離常數圖………………………………………………..94
參考文獻
A. Manz, N. Graber, H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sens Actuators B Chem 1 (1990) 244-248.
  J. Wang, J. Zima, N. S. Lawrence, M. P. Chatrathi, Microchip capillary electrophoresis with electrochemical detection of thiol-containing degradation products of v-type nerve agents, Anal. Chem. 76 (2004) 4721-4726.
  J. Wang, B. Tian, E. Sahlin, Micromachined electrophoresis chips with thick-film electrochemical detectors, Anal. Chem. 71 (1999) 5436-5440.
  S. R. Wallenborg, C. G. Bailey, Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence, Anal. Chem. 72 (2000) 1872-1878.
  G. H. W. Sanders, A. Manz, Chip-based Microsystems for genomic and proteomic analysis, Trends Analyt Chem 19 (2000) 364-378.
  M. Hashimoto, M. L. Hupert, M. C. Murphy, S. A. Soper, Y. –W. Cheng, F. Barany, Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations, Anal. Chem. 77 (2005) 3243-3255.
  D. D. Cunningham, Fluidics and sample handling in clinical chemical analysis, Anal. Chim. Acta 429 (2001) 1-18.
  Q. Xue, F. Foret, Y. M. Dunayevskiy, P. M. Zavracky, N. E. McGruer, B. L. Karger, Multichannel microchip electrospray mass spectrometry, Anal. Chem. 69 (1997) 426-430.
  H. Nakanishi, T. Nishimoto, A. Arai, H. Abe, M. Kanai, Y. Fujiyama, T. Yoshida, Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems, Electrophoresis 22 (2001) 230-234.
  Y. Du, J. Yan, W. Zhou, X. Yang, E. Wang, Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips, Electrophoresis 25 (2004) 3853-3859.
  J. H. Kim, C. J. Kang, D. Jeon, Y. S. Kim, A disposable capillary electrophoresis microchip with an indium tin oxide decoupler/amperometric detector, Microelectron. Eng. 78-79 (2005) 563-570.
  D. N. Heiger, High performance capillary electrophoresis – an introduction, 2th ed.; Hewlett-Packard Company (1992).
  A. Srinivasan, X. Wu, M. Y. Lee, J. S. Dordick, Microfluidic peroxidase biochip for polyphenol synthesis, Biotechnol. Bioeng. 81 ( 2003 ) 563-569.
  H.L. Lee, S. C. Chen, Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum, Talanta 64 ( 2004 ) 750-757.
  V. Dolnik, S. Liu, S. Jovanovich, Capillary electrophoresis on microchip, Electrophoresis 21 ( 2000 ) 41-54.
  C. L. do Lago, C. A. Neves, D. P. de Jesus, H. D. T. da Silva, J. G. A. Brito-Neto, J. A. F. da Silva, Microfluidic devices obtained by thermal toner transferring on glass substrate, Electrophoresis, 25 ( 2004 ) 3825-3831.
  B. Ma, X. Zhou, G. Wang, H. Huang, Z. Dai, J. Qin, B. Lin, Integrated isotachophoretic preconcentration with zone electrophoresis separation on a quartz microchip for UV detection of flavonoids, Electrophoresis 27 (2006 ) 4904-4909.
  D. Shin, B. V. Sarada, D. A. Tryk, A. Fujishima, J. Wang, Application of diamond microelectrodes for end-column electrochemical detection in capillary electrophoresis, Anal. Chem. 75 ( 2003 ) 530-534.
  S. L. R. Barker, M. J. Tarlov, H. Canavan, J. J. Hickman, L. E. Locascio, Plastic microfluidic devices modified with polyelectrolyte multilayers, Anal. Chem. 72 ( 2000 ) 4899-4903.
  A. P. Dahlin, S. K. Bergstrom, P. E. Andren, K. E. Markides, J. Bergquist, Poly(dimethylsiloxane)-based microchip for two-dimensional solid-phaase extraction-capillary electrophoresis with an intergrated electrospray emitter tip, Anal. Chem. 77 ( 2005 ) 5356-5363.
  H. Becker, L. E. Locascio, Polymermicrofluidic devices, Talanta 56 ( 2002 ) 267-287.
  D. J. Harrison, A. Manz, Z. Fan, H. Lüdi, H. M. Widmer, Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem. 64 ( 1992 ) 1926-1932.
  M. Johirul, A. Shiddiky, R. Kim, Y. Shim, Microchip capillary electrophoresis with a cellulose-DNA-modified screen-printed electrode for the analysis of neurotransmitters, Electrophoresis, 26 ( 2005 ) 3043-3052.
  R. Mazurczyka, J. Vieillarda, A. Bouchardb, B. Hannesa, S. Krawczyka, A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice, Sens Actuators B Chem 118 ( 2006 ) 11-19.
  S. C. Jacobson, A. W. Moore, J. M. Ramsey, Fused Quartz Substrates for Microchip Electrophoresis, Anal. Chem, 67 ( 1995 ) 2059-2063.
  B. A. Peeni, D. B. Conkey, J. P. Barber, R. T. Kelly, M. L. Lee, A. T. Woolley, A. R. Hawkins, Planar thin film device for capillary electrophoresis, Lab Chip, 5 ( 2005 ) 501-505.
  F. Kitakawa, S. Aizawa, K. Otsuka, Rapid enantioseparation of 1-aminoindan by microchip electrophoresis with linear-imaging UV detection , Anal. Sci. 21 ( 2005 ) 61-65.
  H. Shadpour, S. A. Soper, Two-dimensional electrophoretic separation of proteins using poly(methyl methacrylate) microchips, Anal. Chem. 78 ( 2006 ) 3519-3527.
  R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. G. Benvegnu, H. H. Hooper, Microchannel electrophoretic separations of DNA in injection-molded plastic substrates, Anal. Chem. 69 ( 1997 ) 2626-2630.
  C. H. Chiou, G. B. Lee, H. T. Hsu, P. W. Chen, P. C. Liao, Micro devices integrated with microchannels and electrospray nozzles using PDMS casting techniques, Sens Actuators B Chem 86 ( 2002 ) 280-286.
  M. A. Roberts, J. S. Rossier, P. Bercier, H. Girault, UV laser machined polymer substrates for the development of microdiagnostic systems, Anal. Chem. 69 ( 1997 ) 2035-2042.
  L. Martynoua, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A. MacCrehan, Fabrication of plastic microfluid channels by imprinting methods, Anal. Chem. 69 ( 1997 ) 4783-4789.
  A. Muck, Jr., J. Wang, M. Jacobs, G. Chen, M. P. Chatrathi, V. Jurka, Z. Vyborny, S. D. Spillman, G. Sridharan, M. J. Schoning, Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding, Anal. Chem. 76 ( 2004 ) 2290-2297.
  J. Rossier, F. Reymond, P. E. Michel, Polymer microfluidic chips for electrochemical and biochemical analyses, Electrophoresis 23 ( 2002 ) 858-867.
  M. A. Roberts, J. S. Rossier, P. Bercier, H. Girault, UV laser machined polymer substrates for the development of microdiagnostic systems, Anal. Chem. 69 ( 1997 ) 4783-4789.
  M. Maminski, M. Olejniczak, M. Chudy, A. Dybko, Z. Brzozka, Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology, Anal. Chim. Acta. 540 (2005 ) 153-157.
  T. Fujii, PDMS-based microfluidic devices for biomedical applications, Microelectron. Eng. 61-62 ( 2002 ) 907-914.
  J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T Chiu, H. Wu, O. J. A. Schueller, G. M . Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21 ( 2000 ) 27-40.
  J. M. K. Ng, I. Gitlin, A. D. Stroock, G. M. Whitesides, Components for integrated poly(dimethylsiloxane) microfluidic systems, Electrophoresis 23 ( 2002 ) 3461-3473.
  G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, D. J. Harrison, Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices, Electrophoresis 21 ( 2000 ) 107-115.
  W. Satoh, H. Hosono, H. Suzuki, On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions, Anal. Chem. 77 ( 2005 ) 6857-6863.
  X. Ren, M. Bachman, C. Sims, G. P. Li, N. Allbritton, Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane), J. Chromatogr. B 762 ( 2001 ) 117-125.
  Y. Liu, J. C. Fanguy, J. M. Bledsoe, C. S. Henry, Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips, Anal. Chem. 72 ( 2000 ) 5939-5944.
  V. Linder, E. Verpoorte, W. Thormann, N. F. de Rooij, H. Sigrist, Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreactions with on-chip fluorescence detection, Anal. Chem. 73 ( 2001 ) 4181-4189.
  A. J. Wang, J. J. Xu, Q. Zhang, H. Y. Chen, The use of poy(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis, Talanta 69 ( 2006 ) 210-215.
  J. H. Kim, C. J. Kang, Y. S. Kim, Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection, Biosens. Bioelectron. 20 ( 2005 ) 2314-2317.
  D. Bodas, C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments, Microelectron. Eng. 83 ( 2006 ) 1277-1279.
  Y. Luo, B. Huang, H. Wu, R. N. Zare, Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives, Anal. Chem. 78 ( 2006 ) 4588-4592.0
  S. C. Jacobson, R. Hergenruder, A. W. Moore, Jr., J. M. Ramsey, Precolumn reactions with electrophoretic analysis integrated on a microchip, Anal. Chem. 66 ( 1994 ) 4127-4132.
  S. V. Ermakov, S. C. Jacobson, J. M. Ramsey, Computer simulations of electrokinetic injection techniques in microfluidic devices, Anal. Chem. 72 ( 2000 ) 3512-3517.
  M. L. Kovarik, M. W. Li, R. S. Martin, Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis / electrochemistry, Electrophoresis 26 ( 2005 ) 202-210.
  R. S. Martin, K. L. Ratzlaff, B. H. Huynh, S. M. Lunte, In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat, Anal. Chem. 74 ( 2002 ) 1136-1143.
  H. Qiu, J. Yan, X. Sun, J. Liu, W. Cao, X. Yang, E. Wang, Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector, Anal. Chem. 75 ( 2003 ) 5435-5440.
  J. Wang, G. Tian, E. Sahlin, Integrated electrophoresis chips / amperometric detection with sputtered gold working electrodes, Anal. Chem. 71 ( 1999 ) 3901-3904.
  J. Wang, G. Chen, M. P. Chatrathi, A Fujishima, D. A. Tryk, D. Shin, Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector, Anal. Chem. 75 ( 2003 ) 935-939.
  L. L. S-Lockyear, C. L. Colyer, Z. H. Fan, K. I. Roy, D. J. Harrison, Effects of injector geometry and sample matrix on injection and sample loading in integrated capillary electrophoresis devices, Electrophoresis 20 ( 1999 ) 529-538.
  A. J. Gaworn, R. S. Martin, S. M. Loute, Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips, Electrophoresis 22 ( 2001 ) 242-248.
  C. D. Garcia, C. S. Henry, Direct determination of carbohydrates, amino acids, an antibiotics by microchip electrophoresis with pulsed amperometric detection, Anal. Chem. 75 ( 2003 ) 4778-4783.
  Y. Liu, J. A. Vickers, C. S. Henry, Simple and sensitive electrode design for microchip electrophoresis / electrochemistry, Anal. Chem. 76 ( 2004 ) 1513-1517.
  N. P. Beard, C. X. Zhang, A. J. de Mello, In-column field-amplified sample stacking of biogenic amines on microfabraicated electrohporesis deveices, Electrophoresis 24 ( 2003 ) 732-739.
  M. Gong, K. R. Wehmeyer, P. A. Limbach, F. Arias, W. R. Heineman, On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis, Anal. Chem. 78 ( 2006 ) 3730-3737.
  X. Bai, J. Josserand, H. Jensen, J. S. Rossier, H. H. Girault, Finite element simulation of pinched pressure-driven flow injection in microchannels, Anal. Chem. 74 (2002) 6205-6215.
  V. Poinsot, M. Lacroix, D. Maury, G. Chataigne, B. Feurer, F. Couderc, Recent advances in amino acid analysis by capillary electrophoresis, Electrophoresis 27 ( 2006 ) 176-194.
  Y. W. Lin, T. C. Chiu, H. T. Chang, Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis, J. Chromatogr. B 793 ( 2003 ) 37-48.
  M. Lacroix, V. Poinsot, C. Fournier, F. Couderc, Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis, Electrophoresis 26 ( 2005 ) 2608-2621.
  C. L. Colyer, S. D. Mangru, D. J. Harrison, Microchip-based capillary electrophoresis of human serum proteins, J. Chromatogr. A 781 ( 1997 ) 271-276.
  I. Rodriguez, Y. Zhang, H. K. Lee, S. F. Y. Li, Conventional capillary electrophoresis in comparison with short-capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G, J. Chromatogr. A 781 ( 1997 ) 287-293.
  P. Schulze, M. Ludwig, F. Kohler, D. Belder, Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis, Anal. Chem. 77 ( 2005 ) 1325-1329.
  G. Ping, B. Zhu, M. Jabasini, F. Xu, H. Oka, H. Sugihara, Y. Baba, Analysis of lipoproteins by microchip electrophoresis with high sped and high reproducibility, Anal. CHem. 77 ( 2005 ) 7282-7287.
  C. T. Culbertson, J. W. Jorgenson, Lowering the UV absorbance detection limit in capillary zone electrophoresis using a single linear photodiode array detector, Anal. Chem. 70 ( 1998 ) 2629-2638.
  R. Qurishi, M. Kaulich, C. E. Müller, Fast, efficient capillary electrophoresis method for measuring nucleotide degradation and metabolism, J. Chromatogr. A 952 ( 2002 ) 275-281.
  X. Fu, L. Huang, F. Gao, W. Li, N. Pang, M. Zhai, H. Liu, M. Wu, Carboxymethyl chitosan-coated capillary and its application in CE of proteins, Electrophoresis 28 ( 2007 ) 1958-1963.
  J. Wang, M. Pumera, Dual conductivity / amperometric detection system for microchip capillary electrophoresis, Anal. Chem. 74 ( 2002 ) 5919-5923.
  M. Pumera, J. Wang, F. Opekar, Ivan Jelínek, J. Feldman, H. Lowe, S. Hardt, Contactless conductivity detector for microchip capillary electrophoresis, Anal. Chem. 74 ( 2002 ) 1968-1971.
  C. Y. Lee, C. M. Chen, G. L. Chang, C. H. Lin, L. M. Fu, Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector-CE microchips, Electrophoresis 27 ( 2006 ) 5043-5050.
  D. C. Chen, F. L. Hsu, D. Z. Zhan, C. H. Chen, Palladium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem. 73 ( 2001 ) 758-762.
  L. C. Mecker, R. S. Martin, Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis, Electrophoresis 27 ( 2006 ) 5032-5042.
  W. R. Vandaveer IV, S. A. Pasas-Farmer, D. J. Fischer, C. N. Frandenfeld, S. M. Lunte, Recent developments in electrochemical detection for microchip capillary electrophoresis, Electrophoresis 25 ( 2004 ) 3528-3549.
  M. Galloway, W. Stryjewski, A. Henry, S. M. Ford, S. LIopis, R. L. McCarley, S. A. Soper, Contact conductivity detection in poly(methylmethacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules, Anal. Chem. 74 ( 2002 ) 2407-2415.
  J. Wang, M. Pumera, G. Colins, F. Opekar, I. Jelínek, A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components, Analyst 127 ( 2002 ) 719-723.
  I. Yi, J. Kim, C. J. Kang, Y. J. Choi, K. Lee, Y. Kim, A novel electrochemical detector using Prussian blue modified indium tin oxide electrode, Jpn. J. appl. Phys. 45 ( 2006 ) 438-441.
  A. Ishida, M. Natsume, T. Kamidate, Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsiloxane), J. Chromatogra. A 1213 (2008) 209-217.
  C. C. Wu, R. G. Wu,J. G. Huang,Y. C. Lin, H. C. Chang, Three- electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection, Anal. Chem. 75 (2003) 947-952.
  J. J. Xu, Y. Peng, N. Bao, X. H. Xia, H. Y. Chen, Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis, Anal. Chem. 76 (2004) 6902-6907.
  R. S. Martin, K. L. Ratzlaff, B. H. Huynh, S. M. Lunte, In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat, Anal. Chem. 74 (2002) 1136-1143.
  J. Wang, B. Tian, E. Sahlin, Micromachined electrophoresis chips with thick-film electrochemical detectors, Anal. CHem. 71 ( 1999 ) 5436-5440.
  Y. Zeng, H. Chen, D. W. Pang, Z. L. Wang, J. K. Cheng, Microchip capillary electrophoresis with electrochemical detection, Anal. Chem. 74 ( 2002 ) 2441-2445.
  N. Bao, J. J. Xu, Y. H. Dou, Y. Cai, H. Y. Chen, X. H. Xia, Electrochemical detector for microchip electrophoresis of poly(dimethylsiloxane) with a three-dimensional adjustor, J. Chromatogr. A 1041 ( 2004 ) 245-248.
 賴耿陽 聚脲脂樹脂原理與實用PU,復漢出版社,(1997).
 張豐志 應用高分子手冊,五南出版社,(2003).
  R. B. Seymour, G. B. Kauffman, Polyurethanes: a class of modern versatile materials, J. Chem. Educ. 69 (1992) 909-910.
  D.Dieterich, Polyurethane Handbook, G. Oertel ,ed., Hanser Publisher, N. Y. (1985) Chap 2.
  D. Dieterich, Prog. Org. Coatings 9 (1981) 281.
  J. W. Rosthauser, K. Nachtakamp, J. Coating Fabrics 16 (1986) 39.
  D. E. Hudgin, Handbook of Polymer Synthesis, 1992
  Z.S.Petrovic, J.Ferguson, Prog. Polym. Sci 16 (1991) 695.
  J. Z. Lai, H. J. Ling, J. T. Yeh, K. N. Chen, J. Appl. Polym. Sci. 91 (2004) 1997.
  J. Z. Lai, J. T. Yeh, K. N. Chen, J. Appl. Polym. Sci. 97 (2005) 550.
 賴建志 淡江大學化學學系博士班論文, 2004
 黃清澤 淡江大學化學學系博士班論文, 2005
  K. M. Kim, G. N. Henderson, R. F. Frye, C. D. Galloway, N. J. Brown, M. S. Segal, W. Imaram, A. Angerhofer, R. J. Johnson, Simultaneous determination of uric acid metabolites allantoin, 6-aminouracil, and triuret in human urine using liquid chromatography-mass spectrometry, J. Chromator. B 877 (2009) 65-70.
  K. Chizyński, M. Rózycka, Hyperuricemia, Pol Merkur lekarski 19 (2005) 693-699.
  T. Yamamoto, Definition and classification of hyperuricemia, Nippon Rinsho. 66 (2008) 630-676.
  G. F. Falasca, MD, Metabolic diseases: gout, Clinics in Dermatology 24 ( 2006 ) 498-508.
  T. Wessel, C. Lanvers, S. Fruend, G. Hempel, Determination of purines including 2, 8-dihydroxyadenine in urine using capillary electrophoresis, J. Chrom. A 894 (2000) 157-164.
  S. Graham, R. O. Day, H. Wong, A. J. McLachlan, L. Bergendal, J. O. Miners, D. J. Birkett, Pharmacodynamics of oxypurinol after administration of allopurinol to healthy subjects, Br. J. Clin. Pharmacol. 41 (1996) 299-304.
  S. Haleve, P-D. Ghislain, M. Mockenhaupt, J-P. Fagot, J. N. B. Bavinck, A. Sidoroff, L. Naldi, A. Dunant, C. Viboud, J-C. Roujeau, EuroSCAR Study Group, Allopurinol is the most common cause of Stevens-Johnson syndrome and toxid epidermal necrolysis in Europe and Israel, J. Am. Acad. Dermatol. 58 (2008) 25-32.
  X. Sun, W. Cao, X. Bai, X. Yang, E. Wang, Determination of allopurinol and its active metabolite oxypurinol by capillary electrophoresis with end-column amperometric detection, Anal. Chim. Acta 442 (2001) 121-128.
  H-L. Lee, S-C, Chen, Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum, Talanta 64 (2004) 750-757.
  M. K. Reinders, L. C. Nijdam, E. N. van Roon, K. L. L. Movig, T. L. Th. A. Jansen, M. A. F. J. van de Laar, J. R. B. J. Brouwers, A simple method for quantification of allopurinol and oxyipurinol in human serum by higt-performance liquid chromatography with UV-detection, J. Pharm. Biomed. Anal. 45 (2007) 312-317.
  Hamanaka H, Mizutani H, Nouchi N, Shimizu Y, Shimizu M, Allopurinol hypersensitivity syndrome: hypersensitivity to oxypurinol but not allopurinol, Clin Exp Dermatol. 23 (1998) 32-4.
  Lai, J. –Z.; Chen, P. –J.; Yeh, J. –T.; Chen, K. –N. A cross self-curing system for an aqueous-based PU hybrid, J. Appl. Polym. Sci. 97 (2005) 550-558.
  R. Sandulescu, S. Mirel, R. Oprean, The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms, J. Pharm. Biomed. Anal. 23 (2000) 77-87.
  J. S. N. Dutt, M. F. Cardosi, J. Davis, Electrochemical tagging of urate: developing new redox probes, Analyst 128 (2003) 811-813.
  E. J. Eisenberg, P. Conzentino, G. G. Liversidge, K. C. Cundy, Simultaneous determination of allopurinol and oxypurinol by liquid chromatography using immobilized xanthine oxidase with electrochemical detection, J. Chromatogr., 530 (1990) 65-73.
  R. Sandulescu, S. Mirel, R. Oprean, The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms, J. Pharm. Biomed. Anal. 23 (2000) 77–87.
  T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás, R. Galera, Development of a capillary electrophoresis method for the determination of allopurinol and its active metabolite oxypurinol, J. Chromatogr. B. 798(2003)303-308.
  A. Zinellu, C. Carru, S. Sotgia, L. Deiana, Optimization of ascorbic and uric acid separation in human plasma by free zone capillary electrophoresis ultraviolet detection. Anal. Biochem. 330 (2004) 298-305.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文延後至2019-09-27公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2019-09-27公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信