淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1112200900092100
中文論文名稱 以化學法與電化學法氧化分解有機反應性染料之探討
英文論文名稱 Chemical and Electrochemcial Oxidation for Organic Dye Decomposition
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系博士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 98
學期 1
出版年 99
研究生中文姓名 何志軒
研究生英文姓名 Chih-Hsuan Ho
學號 892330019
學位類別 博士
語文別 中文
口試日期 2009-12-10
論文頁數 145頁
口試委員 指導教授-陳俊成
委員-陳俊成
委員-李奇旺
委員-李伯青
委員-章裕民
委員-章日行
中文關鍵字 化學氧化  電化學氧化  有機反應性染料  氧化分解  反應動力 
英文關鍵字 Chemical Oxidation  Electrochemical Oxidation  Reactive Blue 19  Decomposition  Reaction kinetics 
學科別分類
中文摘要 本研究針對有機反應性染料進行氧化裂解特性分析,主要針對三個部份進行研究。第一部分:化學氧化裂解反應:以強氧化劑氧化裂解有機反應性染料,並求出化學反應動力常數與反應級數,進而探討氧化過程中活化能與碰撞頻率。並利用LC-MS分析氧化裂解途徑與有機碎片。第二部份:利用電化學氧化方式,分別以間接法與直接法二種方式進行探討。間接電化學法目的在判斷電化學過程中產生之氧化劑含量與氧化裂解有機反應性染料特性,並與第一部份之化學法比較,同時研判直接電化學法未來應用在實際工場氧化裂解之可行性。第三部份:於反應槽中間加入4~5.5μm的硼矽酸玻璃材質之隔膜濾材,使電化學反應槽內區分為陽極部份與陰極部分,並分析項目與第二部份的電化學法相同。其中間接法分析,係取具有強氧化劑的陽極部分之電解液進行分析,並探討氧化有機反應性染料之特性。直接法部分即於反應槽陽極部分加入有機反應性染料,探討氧化效應,並與第二部分直接法進行比較。
由化學法氧化研究結果顯示,商業用次氯酸鈉實際濃度僅為2.38±0.18 %,而混合OCl-與有機染料之化學氧化裂解反應動力,有機染料部分之反應級數為0.5級反應,OCl-部份之反應級數為1級反應,碰撞頻率為1.3884×1010與活化能Ea為76.604 kJ/mole。在低濃度OCl-裂解有機染料RB-19的色度去除率達80 %時,COD僅去除約8% ,藉由LC-MS鑑定確認其最初裂解途徑為C14H9N2O5S與C8H10NNaO6S2及C20H13NO2等三類主要有機染料片段。
由電化學法研究結果顯示,利用間接電化學法程序確實能產生具有氧化能力之OCl-,可氧化裂解有機反應性染料。當操作條件在通電電壓越大與通電時間越久,其化學氧化裂解反應結果越好。當反應槽內添加2g/L NaCl電解質時,間接電化學法最大約產生6.5 mM OCl-與化學氧化程序中同濃度氧化劑比較,間接電化學法的反應動力速率比化學法反應速率快約2.8倍。電解質的添加含量為電化學產生氧化劑含量多寡的主要條件,間接電化學法在適當條件(電壓15伏特以上,通電時間20分鐘以上),Color與COD去除效率皆能達到100%。直接電化學法程序則能有效且快速氧化裂解有機反應性染料,當高電解質(2g/L NaCl)添加以及適當電壓(15伏特以上)與通電處理時間(5分鐘以上),Color去除率達100%以及COD去除率達83%以上,有效去除有機染料之Color與COD。
以硼矽酸玻璃隔膜提昇電化學氧化裂解結果顯示,將硼矽酸玻璃隔膜置入電化學反應槽內,以間接電化學法或直接電化學法,皆能於陽極電解液部分產生具有氧化能力之氧化劑,所產生氧化劑主要為Cl2與HOCl。當電壓越大與通電時間越長,陽極電解液pH值呈現強酸,產生之氧化劑(Cl2、HOCl)含量越多,相對於氧化裂解有機染料強度越強。硼矽酸玻璃隔膜提昇間接電化學法的實驗結果顯示,雖產生具有氧化強度較大之氧化劑,其處理效果與沒有隔膜之電化學處理效果差異不大,但其操作過程因電流密度明顯降低,因此以操作成本面考量,該隔膜確實有助於提升電化學處理之效益。在直接電化學法實驗結果中,則能更有效且快速氧化裂解有機反應性染料,當有機反應性染料內添加電解質(2g/L NaCl),並提供通電電壓(20伏特)與處理時間(3分鐘),能有效去除染料之Color去除率達95%以上與COD去除率達70%以上。
英文摘要 The goal of this study is to understand the decomposition of Reactive Blue C.I. 19 (RB 19) in oxidation processes, to acquire a kinetic model for reactor and process design, and to develop the process as a viable alternative to advanced oxidation processes (AOPs) for industrial waste effluent decolorization.. The study was divided into chemical oxidation, electrochemical oxidation and membrane enhanced electrochemical processes.
For chemical oxidation process, the reaction kinetics of RB 19 and sodium hypochlorite (NaOCl) was investigated. The decline of RB 19 was monitored continuously by an ultraviolet-visible range (UV-Vis) spectrophotometer to avoid sampling errors. The objective of this study is to develop a kinetic model for reactor and process design.
For electrochemical oxidation, direct and indirect electrochemical oxidation methods were explored for their effectiveness on color removal and COD reduction. In the indirect electrochemical process oxidizing agent was produced and mixed with RB19-containing solutions to determine its efficiency on color removal and dye decomposition. For direct method, dye-containing solutions were treated in the electrochemical reactor. A thorough comparison was done among direct and indirect electrochemical processes, and chemical method.
For membrane enhanced electrochemical oxidation, a borosilicate glass membrane (4.0 ~ 5.5 μm) was inserted into the electrochemical reactor, and divided the reactor into anode and cathode chambers. The reactor was test in both direct and indirect modes. For indirect operation, anolyte was used to treat RB19 in the synthetic dye bath. As for direct method, the synthetic dyebath was injected into the anode chamber for treatment. The results were compared with the previous study.
The chemical oxidation results were in agreement with 0.5-order reaction kinetics with respect to the RB 19 concentration. The lumped rate constant of the pseudo-0.5-order reaction is proportional to the NaOCl concentration. The Arrhenius activation energy obtained from the slope of the best-fit line is 76.6 kJ/mol, with a corresponding preexponential factor of 1.3884 × 1010. The reaction rate is strongly affected by the pH of the solution. During the oxidation decomposition process, color was rapidly removed by the NaOCl but chemical oxygen demand (COD) resisted the treatment. A molar ratio of more than 44 is essential for OCl- to completely decompose the dye molecules thus remove COD from the solution. A system of liquid chromatography mass spectrometry (LC/MS) was used to determine the intermediates in the initial steps of the decomposition process.
The results from electrochemical oxidation indicated that indirect method generates oxidation agent (OCl-) efficiently, and the OCl- effectively decomposes RB-19 in the solution. The key parameters of the process are applied voltage and operating time. A maximum concentration (6.5 mM OCl-) of oxidation agent was generated when 2 g/L NaCl solution was treated in the reactor at 20 volts DC for 30 minutes. It indicates that the amount of electrolyte determines the amount of oxidation agent that can be produced in the reactor. Color and COD reduction were 100% when the synthetic dyebath was treated with anolyte that was produced at 15 volts for 20 minutes. When directly treated in the anode chamber, color was completely removed in 5 minutes at 15 volts. Under the condition the decolorization efficiency was 100% while COD reduction was only 83%.
The test result from the membrane enhanced electrochemical oxidation indicates that insert borosilicate glass membrane in the reactor significantly increased the oxidation potential of the anolyte. The oxidizing agent produced is believe to be the mixture of Cl2 and HOCl. The pH of anode solution was strongly acid (pH = 2) when operated under higher voltage for a long time. Decolorization efficiency of the membrane enhanced electrochemical oxidation was similar to that of the electrochemical oxidation. When treated the dyebath directly in the anode chamber color was completely remove in three minutes. However, under the same condition only 70% of the COD was removed.
論文目次 目 錄
致謝 ........................Ⅰ
中文摘要 ........................Ⅱ
英文摘要........................Ⅴ
目錄 .........................Ⅷ
圖目錄.....................…...ⅩⅡ
表目錄 ........................ⅩⅦ
第一章 前言 .......................1
1-1 研究源起 .....................1
1-2 研究目的......................2
1-3 研究內容......................4
第二章 文獻回顧.....................6
2-1 有機染料......................6
2-1-1有機染料的分類 ...............6
2-1-2 染料發色原理 ................11
2-1-3有機反應性染料的結構............13
2-2 染料廢水的處理 ..................17
2-2-1 物理處理法 .................18
2-2-2 化學處理法 .................19
2-2-3 生物處理法 .................21
2-2-4 電化學處理法 ................22
2-2-5 高級氧化處理法 ...............27
2-3 氧化分解反應與特性 ................30
2-3-1 化學反應級數與反應常數判定 .........30
2-3-2 化學反應活化能與碰撞頻率 ..........33
第三章 實驗研究方法 ..................34
3-1 實驗藥品與實驗材料、設備.............34
3-1-1 實驗藥品 ..................34
3-1-2 實驗材料與設備 ...............35
3-2 實驗方法 .....................40
3-2-1 化學氧化分解實驗方法............40
3-2-2 電化學氧化分解實驗方法 ...........45
3-3-3 利用隔膜提升電化學氧化分解實驗方法 .....51
第四章 化學氧化分解有機染料之反應特性..........55
4-1 前言.......................55
4-2 市售氧化劑次氯酸根(OCl-)濃度確認.........55
4-3 次氯酸根(OCl-)濃度與UV/Vis吸收值關係 ......58
4-4 有機染料與吸收值關係 ...............59
4-5 有機染料化學氧化分解動力 .............61
4-6 反應速率常數與酸鹼值關係 .............68
4-7 化學氧化之COD變化與Color變化 ..........69
4-8 有機染料的化學氧化分解途徑 ............70
4-9 小結.......................77
第五章 電化學氧化分解有機染料反應特性 .........78
5-1 前言 .......................78
5-2 間接電化學法氧化分解有機染料 ...........78
5-2-1 電化學法產生氧化劑含量 ...........78
5-2-2 通電時間與電流密度、導電度變化.......80
5-2-3 通電時間與pH、氧化還原電位值變化 .....83
5-2-4 電化學氧化有機染料之反應動力特性 ......84
5-2-5 化學需氧量(COD)與色度(Color)去除 ......89
5-3 直接電化學法氧化分解有機染料 ...........92
5-3-1 通電時間與電流密度、導電度變化 .......93
5-3-2 通電時間與pH、ORP變化 ...........95
5-2-3 化學需氧量(COD)與色度(Color)去除 ......98
5-4 小結.......................102
第六章以硼矽酸玻璃隔膜提升電化學氧化分解有機反應性染料特性........................104
6-1 前言 .......................104
6-2 電化學反應槽離子分離阻隔特性...........105
6-2-1 電解液之pH變化與氧化還原電位強度特性....106
6-2-2 氧化劑與pH值變化特性 ...........109
6-3 間接電化學法氧化分解有機染料 ...........112
6-3-1 通電時間與電流密度、導電度變化 .......112
6-3-2 通電時間與pH、氧化還原電位值變化 .....115
6-3-3 化學需氧量(COD)與色度(Color)去除 ......117
6-4 直接電化學法氧化分解有機染料 ...........120
6-4-1 通電時間與電流密度、導電度變化 .......121
6-4-2 通電時間與pH、氧化還原電位值變化 .....123
6-4-3 化學需氧量(COD)與色度(Color)去除 ......125
6-5 小結 ......................128
第七章 結論與建議....................130
7-1 結論 .......................130
7-2 建議 .......................132
參考文獻........................134

圖目錄
圖1-1 研究架構關係圖 ..................5
圖2-1 共軛雙鍵在染料發色團中的作用 ..........16
圖2-2 有機反應性染料 RB-19 化學結構式 .........17
圖2-3 不同pH值Cl2/HOCl/OCl-存在百分比變化 ......26
圖3-1 電化學反應槽 ..................36
圖3-2 HACH DR-4000 分光光度計.............38
圖3-3 恆溫水浴機....................40
圖3-4 化學氧化分解有機染料實驗簡易圖示.........41
圖3-5 化學氧化分解實驗方法流程圖 ...........44
圖3-6 電化學氧化分解有機染料實驗簡易圖示 .......45
圖3-7 電化學氧化分解實驗方法流程圖 ..........50
圖3-8 硼矽酸玻璃隔膜提升電化學氧化分解有機染料實驗簡易圖示........................52
圖3-9 硼矽酸玻璃隔膜提升電化學氧化分解實驗方法流程圖 .......................54
圖4-1 商業用次氯酸鈉之氧化還原滴定電位變化.......56
圖4-2 不同濃度OCl-吸收光譜 ..............58
圖4-3 吸收值與OCl-濃度迴歸關係 ............59
圖4-4 不同濃度有機染料RB-19之吸收光譜 ........60
圖4-5 吸收值與有機染料RB-19濃度迴歸關係 .......60
圖4-6 OCl-與有機染料RB-19不同時間吸收光譜變化 ....61
圖4-7 不同濃度OCl-裂解有機染料反應吸收值變化 .....62
圖4-8 模擬不同反應級數染料濃度與實測染料濃度關係 ...63
圖4-9 常溫25℃染料0.5階反應常數k’值 .........64
圖4-10 OCl-與反應常數k’變化 .............65
圖4-11 不同溫度條件下反應常數與濃度關係 ........67
圖4-12 不同溫度條件ln(k)與溫度迴歸關係 ........68
圖4-13 不同pH條件反應常數變化關係 ..........69
圖4-14 不同濃度OCl-裂解RB-19之COD與Color去除率...70
圖4-15 OCl-裂解染料之部分結構質譜 ..........75
圖4-16 不同OCl-混合有機反應性染料裂解主要有機碎片...76
圖4-17 GC-MS偵測RB-19氧化分解有機碎片途徑 .....76
圖4-18 有機反應性染料RB-19最初裂解有機碎片分子量 ...77
圖5-1 不同通電時間間接電化學法產生OCl-氧化劑含量 ...79
圖5-2 不同電壓與通電時間反應槽內電流密度變化 .....81
圖5-3 不同電壓與通電時間反應槽內導電度變化 ......82
圖5-4 不同電壓與通電時間反應槽內pH變化 ........83
圖5-5 不同電壓與通電時間反應槽內氧化還原電位變化....84
圖5-6 不同電壓條件下電化學裂解反應性染料RB-19吸收值變化.......................86
圖5-7 電化學氧化分解有機染料0.5階反應常數k’值....87
圖5-8 電化學氧化與化學氧化分解反應常數k’值比較 ....88
圖5-9 不同電壓與通電時間下反應槽內COD去除率 .....90
圖5-10 不同電壓與通電時間下反應槽內Color去除率 ...90
圖5-11 不同電壓與通電時間下反應槽內COD與Color去除率比較 .......................92
圖5-12 直接電化學法不同通電處理時間反應槽內電流密度變化 .......................94
圖5-13 直接電化學法通電處理時間導電度變化.......95
圖5-14 直接電化學法通電處理時間pH變化 ........96
圖5-15 直接電化學法通電處理時間氧化還原電位度變化 ...98
圖5-16 直接電化學法通電處理時間COD去除率 ......99
圖5-17 直接電化學法通電處理時間Color去除率 ......99
圖5-18 直接電化學法通電處理時間COD與Color去除率比較 .......................101
圖6-1 不同通電時間陽極與陰極電解液之pH變化 ......106
圖6-2 簡易電化學隔膜離子分離示意圖 ..........107
圖6-3 不同通電時間下陽極與陰極電解液之氧化還原電位值變化 .......................108
圖6-4 不同pH值40mg/L OCl-吸收光譜變化 ........110
圖6-5 電化學陽極電解液調整不同pH值吸收光譜變化 ...111
圖6-6 不同電壓與通電時間下反應槽內電流密度變化 ....114
圖6-7 不同電壓與通電時間下反應槽內陽極電解液導電度變化 .......................114
圖6-8 不同電壓與通電時間反應槽內陽極電解液pH變化 ..116
圖6-9 不同電壓與通電時間反應槽內氧化還原電位變化 ...117
圖6-10 不同電壓與通電時間陽極電解液混合染料COD去除率 .......................119
圖6-11 不同電壓與通電時間陽極電解液混合染料Color去除率 ......................120
圖6-12 直接電化學法通電處理時間反應槽內電流密度變化 ......................122
圖6-13 直接電化學法通電處理時間陽極電解液導電度變化 ......................122
圖6-14 直接電化學法通電處理時間陽極電解液pH變化 ...124
圖6-15 直接電化學法通電處理時間陽極電解液ORP變化 ...125
圖6-16 直接電化學陽極電解液不同通電處理時間COD去除率 .......................127
圖6-17 直接電化學陽極電解液不同通電處理時間Color去除率 .......................128
表目錄
表2-1 染料常見發色基團 ................11
表2-2 不同pH與溫度條件 HOCl濃度百分比 ........25
表2-3 不同pH之水溶液中Cl2/HOCl/OCl-含量百分比 .....26
表2-4 各類氧化劑標準還原電位值 ............28
表4-1 N2S2O3滴定市售漂白水中OCl-濃度..........57
表4-2 有機反應染料RB-19 初步裂解中間產物........74
參考文獻 1. A. Özcan, Ç. Ömeroğlu, Y. Erdoğan, A. S. Özcan, “Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19”, Journal of Hazardous Materials, Vol. 140, pp. 173-179, (2007).
2. Z. He, L. Lin, S. Song, M. Xia, L. Xu, H. Ying, J. Chen, “Mineralization of C.I. Reactive Blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism,” Separation and Purification Technology, Vol. 62, pp. 376-381, (2008).
3. V. K. C. Lee, J. F. Porter, G. McKay, “Fixed-bed modeling for acid dye adsorption onto activated carbon.”, Journal of Chemical Technology Biotechnology, Vol. 78, pp. 1281-1289, (2003).
4. F. Al-Momani, E. Touraud, J.R. Degorce-Dumas, J. Roussy, O. Thomas, “Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis, Journal of Photochemistry and Photobiology,” Chemistry, Vol. 153, pp. 191–197, (2002).
5. M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir, “Operating cost analysis of electrocoagulation of textile dye wastewater,” Separation and Purification Technology, Vol. 37, pp. 117–125, (2004).
6. S Kım, C. Park, T. Kım, J. Lee, S. Kım, “COD reduction and decolorization of textile effluent using a combined process, ” Journal of Bioscience and Bioengineering, Vol. 95, No 1, pp. 102–105, (2003).
7. X. Xu, H. Li a, W. Wang, J. Gu, “Degradation of dyes in aqueous solutions by the Fenton process,” Chemosphere, Vol. 57, pp. 595-600, (2004).
8. P.A. Carneiro, R.F.P. Nogueira, M.V.B. Zanoni, “Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation,” Dyes and Pigments, Vol. 74, pp. 127–132, (2007).
9. S. Song, H.P. Ying, Z.Q. He, J.M. Chen, “Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis,” Chemosphere, Vol. 66, pp.1782–1788, (2007).
10. T. Kurbus, Y.M. Slokar, A.M. Le Marechal, “The study of the effects of the variables on H2O2/UV decoloration of vinylsulphone dye: part II,” Dyes and Pigments, Vol. 54, pp. 67–78, (2002).
11. 林哲民,「利用UV/H2O2、O3及UV/O3光化學氧化法處理反應性染料廢水之研究」,逢甲大學環境工程與科學研究所,碩士論文,(1991)。
12. J. Lee, S. Choi, R. Thiruvenkatachari, W. Shim, Hee Moon, “Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes”, Dyes and Pigments, Vol. 69, pp. 196-203, (2006).
13. T.N.D.C. Dantas, L.T.C. Beltrame, A. A. D. Neto, C. P. D. A. Moura, “Use of microemulsions for removal of color and dye from textile wastewater.” Journal of Chemical Technology Biotechnology, Vol. 79, pp. 645 – 650, (2004).
14. F. Gahr, F. Hermanutz,W. Oppermann, “Ozonation – an important technique to comply with new German laws for textile wastewater treatment,” Water Science and Technology, Vol. 30, pp. 255–263, (1994).
15. S.E. Law, J. Wu, M. Eiteman, “Ozone decolorization of cotton dyehouse wastewater,” in Proceedings of the ASAE Annual International Meeting, Phoenix, Arizona, July 14–18, (1996).
16. P.C. Vandevivere, R. Biznchi, W. Verstraete, “Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies,” Journal of Chemical Technology and Biotechnology, Vol. 72, pp. 289–302, (1998).
17. J. Wu, M. Eiteman, S.E. Law, “Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater,” Journal of Environmental Engineering, Vol. 124, pp. 272–277, (1998).
18. S. Karcher, A. Kornmüller, and M. Jekel, “Removal of Reactive Dyes by Sorption/Complexation with Cucurbituril,” Water Science and Technology, Vol. 40, pp. 425-433, (1999).
19. P. Baskaralingam, M. Pulikesi, D. Rlango, V. Ramamurthi, S. Sivaanesan, “Adsorption of acid dye onto organobentonite.” Journal of Hazardous Materials, Vol. 128, pp. 244-252, (2006).
20. 曾馮宏,「電化學與化學程序去除染整廢水色度之比較研究」,淡江大學水資源及環境工程研究所,碩士論文,(2006)。
21. D. Rajkumar, B. J. Song, J. G. Kim, “Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds.”, Dye and Pigments, Vol. 72, p. 1-7, (2007).
22. J-S Do, M-L Chen, “Decolorization of Dye-containing solution by electrocoagulation”, Journal of Applied Electrochemistry, Vol. 24, pp.785-790, (1994).
23. C-L Yang, J. McGarrahan, “Electrochemical coagulation for textile effluent decolorization”, Journal of Hazardous Materials, Vol. 127, pp. 40-47, (2005).
24. N. Daneshvar, H. Ashassi Sorkhabi, m. b. Kasiri, “Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connection”, Journal of Hazardous Materials, Vol. 112, pp. 55-62, (2004).
25. A. Alinsafi, M. Khemis, M.N. Pons, J.P. Leclerc, A. Yaacoubi, A. Benhammou, A. Nejmeddine, “Electro-coagulation of reactive textile dyes and textile wastewater”, Chemical Engineering and Processing, Vol. 44, pp. 461-470, (2005).
26. D. Parac-Psterman, V. Durašević, A. Sutlović, “Comparison of chemical and physical-chemical wastewater discoloring methods”, Kemija Industriji, Vol. 56(1), pp. 543-549, (2007).
27. W. Chu, C-W Ma, “Quantitative prediction of direct and indirect dye ozonation kinetics”, Water Research, Vol. 34, pp. 3153-3160, (2000).
28. M. F. Esteves, J. D. Silva, “Electrochemical degradation of Reactive Blue-19 dye in textile wastewater”, World Textile Conference- 4th AUXEX Conference, (2004).
29. J. P. Lorimer, T. J. Mason, M. Plattes, S. S. Phull, D. J. Walton, “Degradation of dye effluent”, Pure and Applied Chemistry, Vol. 73, pp. 1957-1968, (2001).
30. P. A. Carneiro, C. S. Fugivara, R. F. P. Raquael, F. P. Nogueira, N. Boralle, M. V. B. Zanoni, “A comparative study on chemical and electrochemical degradation of Reactive Blue 4 dye ”, Portugaliae Electrochemica ACTA 21, pp. 49-67, (2003).
31. M. A. Sanroman, M. Pazos, M. T. Ricart, C. Cameselle, “ Electro- chemical decolorization of structurally different dye”, Chemosphere, Vol. 57, pp. 233-239, (2004).
32. 何瑾馨,「染料化學」,中國紡織出版社,北京,(2004)。
33. 經濟部工業局,「染整業廢水污染防治技術」,經濟部工業局,台北,(1996)。
34. 柯清水,「新世紀化工化學大辭典」,正文書局,台北,(2000)。
35. S. Karcher, A. Kornmüller, and M. Jekel, “”Removal of Reactive Dyes by Sorption/Complexation with Cucurbituril”, Water Science and Technology, Vol. 40, pp. 425-433, (1999).
36. 林家寧,「利用奈米級氧化美破壞性吸附染料廢水之反應機制」,國立中山大學環境工程研究所,碩士論文,(2007)。
37. 劉全得,「偶氮染料之二氧化鈦光催化脫色反應特性研究」,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,(2005)。
38. 張博荀,「H2O/Fe2+化學氧化法處理反應性染料-Black B之研究」,國立成功大學化學工程研究所,碩士論文,(2004)。
39. 小西謙三、黑木宣彥,「工業合成染料化學」,復漢出版社,(1994)。
40. 林憶芳,「利用UV/H2O2光化學氧化法處理含酸性染料廢水之研究」,國立台灣大學環境工程研究所,碩士論文,(1995)。
41. 趙維繩、陳彬、汪維鳳,「還原染料」,化學工業,(1994)。
42. 姜鳳玲,「試論染色廢水的生物處理技術」,蒙自師范高等專科學校學報,Vol. 5(4), p.28-31,(2003)。
43. W. Chu, “Dye Removal from Textile Dye Wastewater Using Recycled Alum Sludge”, Water Research, Vol. 35(13), pp. 3147-3152, (2001).
44. R. Sanghi, B. Bhattacharya, “Adsorption-Coagulation for the Decolorization of Textile Dye Solutions”, Water Quality Research Journal of Canada, Vol. 38, pp. 553-562, (2003).
45. 祝万鵬,楊志華,王利,「亞鐵-過氧化氫氧化法處理染料中間体H酸生產廢液的研究」,中國環境科學,Vol. 15(5),pp. 368-372,(1995)。
46. 張文林,李春利,侯凱湖,「含油廢水處理技術研究進展」,化工進展(Chemical ),Vol. 24,pp. 1239-1243,(2005)。
47. 洪鴻斌,「使用H2O2/UV和H2O2/UV/Fe2+程序處理難分解染料製成廢水」,淡江大學水資源及環境工程學系,碩士論文,(1977)。
48. W. Rongcheng, Q. Jiuhui, “Removal of Azo Dye from Water by Magnetite Adsorption-Fenton Oxidation”, Water Environment Research, Vol. 76 (7), pp. 2637-2642, (2004).
49. 夏平,「化學混凝法處理高色度染料廢水的研究」,湖州職業技術學院學報,Vol. 4(4),p 81-84,(2003)。
50. 鄭曦,「高鐵絮凝劑的電合成及其在染料廢水處理中的應用」,福建師範大學學報,Vol.18(3), pp. 54-57,(2002)。
51. 陳剛,李丹陽,張光明,「高濃度難降解有機廢水處理技術」,工業水處理,Vol. 23(3),pp. 13-16,(2003)。
52. 樊毓新,周增炎,「染料廢水的處理方法現狀與發展前景」,, 環境保護, Vol. 9,pp.22-26,(2002)。
53. D. Georgiou, P. Melidis, A. Aivasidis, “Use of a microbial sensor: inhibition effect of azo-reactive dyes on activated sludge”, Bio process and Biosystems Engineering, Vol. 25, pp. 79-83, (2002).
54. 黃建宏,「陰離子在電化學處理含重金屬廢水程序之影響研究」,淡江大學水資源及環境工程研究所,博士論文,(2009)。
55. H. S. Award, N. A. Galwa, “Electorchemical degradation of Acid Blue and Basic Brown dyes on PB/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors”, Chemosphere, Vol. 61, pp. 1327-1335, (2005).
56. I. Arslan-Alaton, I. Kabdasli, B. Vardar, O. Tunay, “Electro- coagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes”, Journal of Hazardous Materials, Vol. 164, pp. 1586-1594, (2009).
57. G. C. White, “The Handbook of Water Chlorination”, 2nd Edition, Van Nostrand Reinhold Co., New York, NY, (1986).
58. M. Ahmed, El-hassan, Saad Al-Sulani, “Disinfection and Disinfection by-products: A nuisance in Desalination Technology”, Water Science and Technology Association Conference, Kuwait, (2005).
59. E. Kusvuran, O. Gulnaz, S. Irmak, O. M. Atanur, H. I. Yavuz, O. Erbatur, “Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution”, Journal of Hazardous Materials, Vol. 109, pp. 85-92, (2004).
60. L. Kos, J. Perkowski, S. Ledakowicz, “Application of ozone, hydrogen peroxide, and UV irradiation in textile wastewater treatment”, AATCC Rev. (Jan.), pp. 30-34, (2004).
61. A. Aleboyeh, H. Aleboyeh, Y. Moussa, “Decolorization of Acid Blue 74 by ultraviolet/H2O2”, Environmental Chemistry Letters, Vol. 1(3), pp. 161-164, (2003).
62. T.H. Kim, C. Park, Y. Yang, S. Kim, “Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation”, Journal of Hazardous Materials. Vol. 112, pp. 95-103, (2004).
63. N. M. Mahmoodi, M. Arami, N. Y. Limaee, N. S. Tabrizi, “Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilization TiO2 as a photocatalyst”, Chemical Engineering Journal, Vol. 112, pp. 191-196, (2005).
64. M. S. Secula, G. D. Suditu, I. Poulios, C. Cojocaru, I. Cretescu, “Response surface optimization of the photo- catalytic decolorization of a simulated dyestuff effluent”, Chemical Engineering Journal, Vol. 114, pp. 18-26, (2008).
65. A. Aleboyeh, M. E. Olya, H. H. Aleboyeh, “Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process”, Chemical Engineering Journal, Vol. 162, pp. 518-524, (2008).
66. V. P. Santos, M. F. R. Pereira, P. C. Faria, J. J. M. Orfao, “Decolourisation of dye solution bt oxidation with H2O2 in the presence of modificed actived carbons”, Journal of Hazardous Materials, Vol. 162, pp. 736-742, (2009).
67. H. Zhang, Y. Lv, F. Liu, D. Zhang, “Degradation of C.I. Acid Orange 7 by ultrasound enhance ozonation in a rectangular air-lift reactor”, Chemical Engineering Journal , Vol. 138, pp. 231-238, (2008).
68. J. Wu, H. Doan, S. Upreti, “Decolorization of aqueous textile reactive dye by ozone”, Chemical Engineering Journal, Vol. 142, pp. 156-160, (2008).
69. H. L. Liu, Y. R. Chiou, “Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology”, Chemical Engineering Journal, Vol. 112, pp. 173-179, (2005).
70. D. S. Kim, Y. S. Park, “Photocatalytic decolorization of rhodamine B by immobilized TiO2 onto silicone sealant”, Chemical Engineering Journal, Vol. 116, pp. 133-137, (2006).
71. W. Glaze, J. King, “Advanced Oxidation process: Test of a kinetics model for the oxidation organic compounds with ozone and hydrogen peroxide in a semibatch reactor”, Industrial Engineering Chemistry Research., Vol. 28, pp. 1580-1587, (1989).
72. A. Y. Sychev, V. G. Isak, “Iron Compounds and the mechanisms of the homogenous catalysis of the activation of O2 and H2O2 and the activation of organic substrates”, Russian Chemistry Rev., Vol. 64, pp. 1105-1129, (1995).
73. H. Taube, “Photochemical reactions of ozone in solution”, Trans. Faraday Soc. 53, pp. 656, (1957).
74. L. Wojna’rovits, T. Pa’lfi, E. Taka’cs, “Kinetics and mechanism of azo dye destruction in advanced oxidation processes”, Radiation Physics and Chemistry, Vol. 76, pp. 1497–1501, (2007).
75. El-Assy, N.B., El-Wakeel, E.-S.I., Fattah, A.A.A., “The degradation of triazo dye chlorantine fast green BLL in aqueous solution by gamma radiation-III,” Applied Radiation and Isotopes, Vol. 42, pp. 89–96, (1991).
76. C. Galindo, A. Kalt, “UV/H2O2 oxidation of azo dyes in aqueous media: evidence of a structure-degradability relationship,” Dyes and Pigments, Vol. 42, pp. 199–207, (1999).
77. H. Y. Shu, M. C. Chang, “Development of rate expression for predicting decolorization of C.I. Acid Black 1 in a UV/H2O2 process,” Dyes and Pigments, Vol. 70, pp. 31–37, (2006).
78. A.H. Gemeay, G. R. E.-Ghrabawy, A. B. Zaki, “Kinetics of the oxidative decolorization of Reactive Blue-19 by acidic bromate in homogeneous and heterogeneous media,,” Dyes and Pigments, Vol. 73, pp. 90-97, (2007).
79. O. Levenspiel, “Chemical Reaction Engineering”, Wiley, New York, 3rd., (1999).
80. V. L. Snoeyink, D. Jenkins, “Water Chemistry”, Wiley, New York, 1st, (1980).
81. T. V. Suslow, “Introduction to ORP as the Standard of Postharvest Water Disinfection Monitoring”, UC Davis, Vegetable Research and Information Center, Publication in Review, (2002).
82. J. Johnson, J. Winnick, “Electrochemical membrane separation of chlorine from gaseous hydrogen chloride waste”, Separation and Purification Technology, Vol. 15, pp. 223-229, (1999).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-01-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-01-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信