§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1109201915514100
DOI 10.6846/TKU.2019.00268
論文名稱(中文) 二氧化碳吸收於中空纖維模組之效率提升研究
論文名稱(英文) Investigation on the Performance of Carbon Dioxide Absorption in Hollow Fiber Gas-Liquid Membrane Contactor
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 陳昱翰
研究生(英文) Yu-Han Chen
學號 606400488
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-12
論文頁數 113頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
委員 - 陳俊成(luke@mail.tku.edu.tw)
關鍵字(中) CO2吸收
胺溶液
吸收通量和吸收率改善
中空纖維膜組件
關鍵字(英) CO2 absorption
Amine solution
Absorption flux and absorption rate improvement
Hollow fiber Membrane module
第三語言關鍵字
學科別分類
中文摘要
本研究透過實驗和理論以探討胺溶液吸收CO2於中空纖維膜接觸器之順流和逆流操作,並利用四階Runge-Kutta方法求得一維數學模型之聯立方程式的數值解於不同操作條件下之CO2吸收速率,包括流過殼側的胺溶液之吸收劑流速、CO2進料流速和進氣CO2濃度。同時,也獲得平均謝塢數的回歸經驗式,可計算中空纖維膜接觸器中CO2吸收的傳質係數。CO2吸收量之增益率預測值與實驗結果的比較,皆在相當精確度範圍。本研究的目的是(1)研發不同纖維管數的傳質係數相關性;(2)建立一維數學模型,提出一種預測中空纖維膜組件CO2吸收效率的回歸經驗式;(3)探討各種操作參數對CO2吸收通量和吸收率改善的影響。
英文摘要
The CO2 absorption with the use amine solution flowing through the shell side of the hollow fiber membrane contactor under both concurrent-flow and countercurrent-flow operations was investigated experimentally and theoretically in this research. The one-dimensional mathematical modeling equation for predicting the absorption rate under various absorbent flow rate, CO2 feed flow rate and inlet CO2 concentration in the gas feed was solved numerically using the fourth Runge–Kutta method with the shooting strategy.  The correlated equation of average Sherwood number to predict the mass transfer coefficient of the CO2 absorption in hollow fiber membrane contactor was obtained and the theoretical predictions showed that the considerable CO2 absorption rate improvement was represented graphically and validated by experimental results within acceptable accuracy.  The purposes of this study are (1) to develop the mass-transfer coefficient correlation equation with various number of fibers; (2) to develop a one-dimensional mathematical model and find the numerical solution for predicting the CO2 absorption efficiency in hollow fiber membrane modules; (3) to study the effects of various operation parameters on the CO2 absorption flux and absorption rate.
第三語言摘要
論文目次
目錄
中文摘要		I
英文摘要		II
目錄		III
圖目錄		VI
表目錄		X
第一章 緒論	1
1-1前言	1
1-2薄膜分離原理	3
1-2-1氣體吸收原理與種類	5
1-2-2氣體分離吸收方法	7
1-2-3二氧化碳吸收於醇胺水溶液性質	8
1-3薄膜吸收系統簡介	10
1-4 研究動機、目的與方向	11
第二章 文獻回顧	13
2-1 文獻回顧	13
第三章 理論分析	17
3-1 中空纖維型薄膜氣體吸收系統模組之質量傳送機制	17
3-1-1薄膜吸收系統模組質傳機制之理論分析	20
3-1-2中空纖維型薄膜吸收系統之理論分析	27
3-1-3濃度極化現象與濃度極化係數	28
3-2中空纖維型吸收系統之根數增益與謝塢數經驗式建立	30
3-3中空纖維型薄膜吸收系統模組之一維理論模型之建立	33
3-3-1中空纖維型薄膜吸收系統模組一維理論模型	33
3-3-2理論數據取得與計算分析流程-朗吉庫塔數值解析	38
3-3-3實驗數據之取得與分析計算流程	41
3-4水力損耗	47
3-5數學模擬參數之設定	49
第四章 實驗分析	51
4-1 中空纖維型薄膜吸收系統	51
4-2中空纖維型薄膜吸收模組	57
4-3實驗步驟	60
4-3-1順流型式氣體吸收實驗	60
4-3-2逆流型式氣體吸收實驗	60
4-3-3薄膜逆洗程序	61
4-3-4中空纖維薄膜改質程序	61
第五章 結果與討論	62
5-1新型中空纖維薄膜根數增益之謝塢數經驗公式與迴歸分析	62
5-2單根中空纖維型薄膜吸收系統模組系統	65
5-2-1系統操作變因對莫耳吸收通量與吸收速率之影響	65
5-2-2濃度分佈與濃度極化現象	65
5-3多根中空纖維型薄膜吸收系統模組系統	73
5-3-1中空纖維根數增益因子對莫耳吸收通量與吸收速率之影響	73
5-3-2濃度分佈與濃度極化現象	74
5-4模組設計參數於吸收速率與水力損耗之影響	92
5-4-1莫耳吸收通量增益程度與水力損耗提升程度	92
5-4-2吸收速率與水力損耗提升程度之比較	94
第六章 結論	100
6-1 新型增益因子之謝塢數經驗公式	101
6-2單根中空纖維型薄膜吸收系統	101
6-3多根中空纖維型薄膜吸收系統	101
6-4模組設計參數於吸收速率與水力損耗之影響	102
符號說明		103
參考文獻		106

圖目錄
圖1-4-1中空纖維型二氧化碳吸收薄膜模組之研究架構圖	12
圖3-1-1 中空纖維薄膜堆疊排列方式	18
圖3-1-2 薄膜氣體吸收系統質量傳送機制示意圖	20
圖3-1-3 薄膜內部之質量傳送阻力模式示意圖	24
圖3-1-4質量傳送阻力示意圖	26
圖3-1-5 質量傳送阻力串連模式	27
圖3-1-6 濃度極化示意圖	29
圖3-3-1中空纖維型薄膜吸收系統示意圖(順流型式)	35
圖3-3-2 工作流體流經模組示意圖	36
圖3-3-3 吸收劑流經單一根中空纖維薄膜示意圖	36
圖3-3-4中空纖維型薄膜吸收系統示意圖(逆流型式)	37
圖3-3-5朗吉庫塔法求解聯立方程組之計算示意圖(a)順流(b)逆流	41
圖3-3-6質傳系數運算流程圖	44
圖3-3-7中空纖維型薄膜吸收系統運算流程圖(順流操作)	45
圖3-3-8中空纖維型薄膜吸收系統運算流程圖(逆流操作)	46
圖4-1-1中空纖維型薄膜吸收二氧化碳模組系統簡圖(順流型式)	52
圖4-1-2中空纖維型薄膜吸收二氧化碳模組系統簡圖(逆流型式)	52
圖4-1-3中空纖維型模組於乙醇胺水溶液吸收二氧化碳設備圖	53
圖4-1-4氣體質量控制器	54
圖4-1-5氣相層析儀	55
圖4-2-1中空纖維型薄膜吸收模組示意圖(a)陶瓷無機薄膜	57
圖4-2-2 中空纖維薄膜實際圖	58
圖4-2-3 3D列印之封頭(a)填充7根纖維;(b)填充19根纖維	58
圖4-2-4 中空纖維型薄膜吸收模組實際圖(a)7根;(b)19根	59
圖5-2-1 1根纖維模組於不同參數下對莫耳通量之影響(順流操作)	68
圖5-2-2 1根纖維模組於不同參數下對莫耳通量之影響(逆流操作)	68
圖5-2-3 1根纖維模組於不同參數下對吸收速率之影響(順流操作)	69
圖5-2-4 1根纖維模組於不同參數下對吸收速率之影響(逆流操作)	69
圖5-3-1 7根纖維模組於不同參數下對莫耳通量之影響(順流操作)	75
圖5-3-2 7根纖維模組於不同參數下對莫耳通量之影響(逆流操作)	75
圖5-3-3 7根纖維模組於不同參數下對吸收速率之影響(順流操作)	76
圖5-3-4 7根纖維模組於不同參數下對吸收速率之影響(逆流操作)	76
圖5-3-5 19根纖維模組於不同參數下對莫耳通量之影響(順流操作)	77
圖5-3-6 19根纖維模組於不同參數下對莫耳通量之影響(逆流操作)	77
圖5-3-7 19根纖維模組於不同參數下對吸收速率之影響(順流操作)	78
圖5-3-8 19根纖維模組於不同參數下對吸收速率之影響(逆流操作)	78
圖5-3-9 不同根數薄膜於操作參數下對莫耳通量之影響-CO2=30% (順流操作)	79
圖5-3-10 不同根數薄膜於操作參數下對莫耳通量之影響-CO2=30% (逆流操作)	79
圖5-3-11 不同根數薄膜於操作參數下對莫耳通量之影響-CO2=35% (順流操作)	80
圖5-3-12 不同根數薄膜於操作參數下對莫耳通量之影響-CO2=35% (逆流操作)	80
圖5-3-13 不同根數薄膜於操作參數下對莫耳通量之影響-CO2=40% (順流操作)	81
圖5-3-14 不同根數薄膜於操作參數下對莫耳通量之影響-CO2=40% (逆流操作)	81
圖5-3-15 不同根數薄膜於操作參數下對吸收速率之影響-CO2=30% (順流操作)	82
圖5-3-16 不同根數薄膜於操作參數下對吸收速率之影響-CO2=30% (逆流操作)	82
圖5-3-17 不同根數薄膜於操作參數下對吸收速率之影響-CO2=35% (順流操作)	83
圖5-3-18 不同根數薄膜於操作參數下對吸收速率之影響-CO2=35% (逆流操作)	83
圖5-3-19 不同根數薄膜於操作參數下對吸收速率之影響-CO2=40% (順流操作)	84
圖5-3-20 不同根數薄膜於操作參數下對吸收速率之影響-CO2=40% (逆流操作)	84
圖5-3-21 單根纖維系統與多根中空纖維薄膜吸收模組於主流區域與薄膜表面濃度分佈之影響 (順流操作)	89
圖5-3-22 單根纖維系統與多根中空纖維薄膜吸收模組於主流區域與薄膜表面濃度分佈之影響 (逆流操作)	89
圖5-4-1 順流形式操作下,不同模組設計參數之吸收速率增益程度與水力損耗提升程度比較圖	99
圖5-4-2 逆流形式操作下,不同模組設計參數之吸收速率增益程度與水力損耗提升程度比較圖	99

表目錄
表1-2-1 常見輸送現象方程式	4
表1-2-2 常用醇胺類種類	9
表3-2-1 謝塢數經驗式參數	31
表3-5-1 薄膜吸收模組系統相關參數	49
表3-5-2 疏水陶瓷無機薄膜相關參數	49
表3-5-3 流體相關參數	50
表4-1疏水性陶瓷無機薄膜基本性質規格	53
表5-1-1 謝塢數經驗公式所需實驗數據之操作變因表	63
表5-2-1 順、逆流操作下單根中空纖維型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	70
表5-2-2順、逆流操作下單根中空纖維型薄膜吸收模組系統吸收速率實驗值與理論值之相對誤差表	71
表5-2-3 不同操作參數於單根中空纖維薄膜吸收系統之平均濃度極化係數影響比較表	72
表5-3-1 順、逆流操作下7根中空纖維型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	85
表5-3-2 順、逆流操作下19根中空纖維型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	86
表5-3-3 順、逆流操作下7根中空纖維型薄膜吸收模組系統吸收速率實驗值與理論值之相對誤差表	87
表5-3-4 順、逆流操作下19根中空纖維型薄膜吸收模組系統吸收速率實驗值與理論值之相對誤差表	88
表5-3-5 不同操作參數於7根中空纖維薄膜吸收系統之平均濃度極化係數影響比較表	90
表5-3-6 不同操作參數於19根中空纖維薄膜吸收系統之平均濃度極化係數影響比較表	91
表5-4-1 順流操作下單根纖維型與多根中空纖維型薄膜吸收系統模組系統,不同根數薄膜之理論吸收速率增益比例表	95
表5-4-2 逆流操作下單根纖維型與多根中空纖維型薄膜吸收系統模組系統,不同根數薄膜之理論吸收速率增益比例表	96
表5-4-3添加不同根數之水力損耗提升程度比較表	97
表5-4-4 順、逆流操作下,不同模組設計參數之理論吸收速率增益程度與水力損耗提升程度比值表	98
參考文獻
1.	International Energy Agency, (2017). Key World Energy Statistics 2017, Paris: IEA Publication.
2.	徐恆文(2007)。科學發展,台北市,財團法人國家實驗研究院科技政策研究與資訊中心,413期, p.24-27。
3.	W. K. Wang, 2001, Membrane Separations in Biotechnology, New York: M. Dekker.
4.	A. E. Fouda, 1989, Membrane Separations in Chemical Engineering, New York : American Institute of Chemical Engineers.
5.	P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg, 2002, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57, 1639.
6.	L. E. Applegate, 1984, Membrane Separation Processes, Chem. Eng., 91, 64.
7.	P. M. Bungay, H. K. Lonsdale , M. N. De Pinho, 1986, Synthetic Membrane: Science, Engineering and Applications, D. Redel Publishing Company, Holland.
8.	H. M. Yeh, Y. S. Shu, 1999, Analysis of Membrane Extraction Through Rectangular Mass Exchangers, Chem. Eng. Sci., 54, 897.
9.	J. J. Guo, C. D. Ho, H. M. Yeh, 2007, Mass-Transfer Efficiency of Membrane Extraction in Laminar Flow between Parallel-Plate Channels: Theoretical and Experimental Studies, Ind. Eng. Chem. Res., 46, 7788-7801.
10.	J. J. Guo, C. D. Ho, 2009, Theoretical and experimental studies of membrane extraction of Cu2+ with D2EHPA through rectangular conduits. Chem. Eng. Process., 48, 111–119.
11.	H. M. Yeh, Y. Y. Peng ,Y. K. Chen, 1999, Solvent Extraction through a Double-pass Parallel-plate Membrane Channel with Recycle, J. Membr. Sci., 163, 177.
12.	S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, 2009, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere., 75, 1410-1416.
13.	J. You, L. Tian, C. Zhang, H. Yao, W. Dou, B. Fan, S. Hu, 2016, Adsorption Behavior of Carbon Dioxide and Methane in Bituminous Coal: A Molecular Simulation Study, Chin. J. Chem. Eng., 24, 1275-1282.
14.	G. Sartori, D. W. Savage, 1983, Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. Fundam., 22, 239-249.
15.	T. Chakravarty, U. K. Phukan, R. H. Weiland, 1985, Reaction of Acid Gases with Mixtures of Amine. Chem. Eng. Prog., 81, 32-36.
16.	Arthur L Kohl , Richard Nielsen, 1997, Gas Purification, 5th edition. Gulf, Houston, TX.
17.	C. D. Ho, Y. J. Sung, Y. C. Chuang, 2013, An Analytical Study of Laminar Concurrent Flow Membrane Absorption Through a Hollow Fiber Gas–Liquid Membrane Contactor, J. Membr. Sci., 428, 232.
18.	C.D. Ho, Luke Chen, Li Chen, Jing-Wei Liou , Li-Yang Jen, 2018, Theoretical and experimental studies of CO2 absorption by the amine solvent system in parallel-plate membrane contactors, Sep. Purif. Technol., 198, 128-136.
19.	G. M. Brown, 1969, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6, 179.
20.	E. J. Davis, 1973, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51, 562
21.	H. M. Yeh, T.W. Chang , S. W. Tsai, 1986, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Sep. Sci. Technol., 21, 403.
22.	C. D. Ho, H. M. Yeh, W. S. Sheu, 1998, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer., 44, 2589.
23.	C. D. Ho, Jr-Wei Tu, 2007, "Mass Transfer Enhancement of Conjugated Graetz Problems in Multi-Pass Parallel-Plate Mass Exchangers with External Recycle," Chem. Eng. Commun., 194(1), 69-84.
24.	Qi. Zhang, E. L. Cussler, 1985, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membr. Sci., 23, 321.
25.	Qi. Zhang, E. L. Cussler, 1985, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membr. Sci., 23, 333.
26.	H. Kreulen, G. F. Versteeg, C. A. Smolders, W. P. M. van Swaaij, 1992, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, Sep. Purif. Technol., 73, 2-3.
27.	H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membr. Sci., 78, 197.
28.	H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membr. Sci., 78, 217.
29.	H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48, 2093.
30.	Y. S. Kim, S. M. Yang, 2000, Absorption of Carbon Dioxide Through Hollow Fiber Membrane Using Various Aqueous Absorbent, Sep. Purif. Technol., 21, 101-109.
31.	Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park , K. H. Lee, 2001, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membr. Sci., 194, 57-67.
32.	J. Phattaranawik, R. Jiraratananon, 2001, Direct contact membrane distillation : effect of mass transfer on heat transfer., J. Membr. Sci., 188, 137-143.
33.	J. Phattaranawik, R. Jiraratananon, A.G Fane. 2003, Effect of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206.
34.	S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, 2009, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere, 75, 1410.
35.	L. Martínez-Díez, M.I. Vázquez-González, 1998, Effects of polarization on mass transport through hydrophobic porous membranes, Ind. Eng. Chem. Res., 37, 4128-4135.
36.	V.A. Bui, L.T.T. Vu, M.H. Nguyen, 2010, Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353, 85-93.
37.	S. Srisurichan, R. Jiraratananon, A.G. Fane, 2006, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J. Membr. Sci., 227, 186-194.
38.	K.W. Lawson, D.R. Lloyd, 1996, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123.
39.	Z. Ding, L. Liu, R. Ma , 2003, Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation, J. Membr. Sci., 215, 11-23.
40.	C. H. Yu, C. H. Huang, C. S. Tan, 2012, A Review of CO2 Capture by Absorption and Adsorption, Aerosol Air Qual. Res., 12, 745-769.
41.	R. Sakwattanapong, A. Aroonwilas, A. Veawab, 2005, Beahavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines, Ind. Eng. Chem. Fundls., 44, 4465.
42.	J.L. Li, B.H Chen, 2005, Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors, Sep. Purif. Technol., 41, 109-122.
43.	J. Happle, 1959, Viscous Flow Relative to Arrays of Cylinder, AIChE J., 5, 174.
44.	J. Günther, P. Schmitz, C. Albasi, C, Lafforgue, 2010, A numerical approach to study the impact of packing density on fluid flow distribution in hollow fiber module, J. Membr. Sci., 348, 277-286.
45.	C.D. Ho, L. Chen, F.C. Tsai, G.H. Lin, J.W. Lim, 2019, Distillate flux enhancement of the concentric circular direct contact membrane distillation module with spiral wired flow channel, Journal of the Taiwan Institute of Chemical Engineers, 94, 70-80.
46.	S. Bhattacharya, S.T Hwang, 1997, Concentration polarization, separation factor, and Peclet number in membrane processes, J. Membr. Sci., 32, 73-90.
47.	N. Haimour , O.C. Sandall, 1984, Absorption of Carbon Dioxide Into Aqueous Methyldiethanolamine. Chem. Eng. Sci., 39, 1791.
48.	T. C. Tsai, J. J. Ko, H. M. Wang, C. Y. Lin, M. H. Li, 2000, Solubility of Nitrous Oxide in Alkanolamine Aqueous Solutions, J. Chem. Eng. Data., 45, 341.
49.	H. Li, J. Chen, 2014, Thermodynamic modeling and process simulation for CO2 absorption into aqueous monoethanolamine solution, CIESC J., 65, 47-54.
50.	K. R. Putta, H. F. Svendsen, H. K. Knuutila, 2017, CO2 absorption into loaded aqueous MEA solutions: Impact of different model parameter correlations and thermodynamic models on the absorption rate model predictions, Chemical Engineering Journal, 327, 868-880.
51.	Q. Zheng, L. Dong, J. Chen, G. Gao, W. Fei, 2010, Absorption solubility calculation and process simulation for CO2 capture, CIESC J., 61 1740-1746.
52.	K.W Lawson., D.R. Lloyd, 1997, Membrane distillation, J. Membr. Sci., 124, 1-25.
53.	R.W. Schofield, A.G. Fane, C.J.D. Fell, 1987, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299–313.
54.	Z. Ding, R. Ma, A.G. Fane, 2003, A new model for mass transfer in direct contact membrane distillation, Desalination, 151(3), 217-227.
55.	F.A. Banat, J. Simandl, 1998, Desalination by membrane distillation : a parametric study, Sci. Techol., 33, 201-226.
56.	D. Zou, X. Chen, M. Qiu, E. Drioli, Y. Fan, 2019, Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures, Sep. Purif. Technol., 215, 143-154.
57.	E.N. Fuller, P.D. Schettler and J.C. Giddings, 1966, New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem., 58, 18-27.
58.	J. Phattaranawik, R. Jiraratananon, A.G. Fane, C. Halim, 2001, Mass flux enhancement using spacer filled channels in direct contact membrane distillation, J. Membr. Sci., 187, 193-201.
59.	T.C. Chen, C.D. Ho, H.M. Yeh, 2009, Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Mem. Sci., 330, 279-287.
60.	J.R. Welty, C.E. Wick, R.E. Wilson, 1984, Fundamentals of Momentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York.
61.	S.G. Kandlikar, D. Schmitt. , 2005, Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels, PHYSICS OF FLUIDS, 17, 100606.
62.	R.B. Bird, W.E. Stewart, Lightfoot E.N. , 2007, Transport Phenomena, second ed., John Wiley & Sons, New York.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信