§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1109201813594600
DOI 10.6846/TKU.2018.00318
論文名稱(中文) 目標物防禦線覆蓋問題於具有靜態及動態感測器之環境
論文名稱(英文) The target-barrier coverage problem in wireless sensor networks with static and mobile sensor
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 陳柏銘
研究生(英文) Po-Ming Chen
學號 605410645
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-06-28
論文頁數 58頁
口試委員 指導教授 - 鄭建富
委員 - 潘孟鉉
委員 - 陳彥安
關鍵字(中) 無線感測網路
目標物防禦線覆蓋
關鍵字(英) Wireless sensor network
Target-barrier coverage
第三語言關鍵字
學科別分類
中文摘要
在本文中,我們探討目標物防禦線覆蓋問題(The target-barrier coverage)於具有靜態及動態感測器之無線感測網路。目標物防禦線是針對目標物在其限制的範圍內形成一條環繞防禦線,藉此偵測是否有物體入侵此目標物。在本文中我們針對目標物防禦線設定了2種外圍距離限制,分別為boundlow以及boundup。boundlow指的是目標物中心點距離其所建構出來的防禦線成員,必須有boundlow以上之距離,boundup指的是目標物中心點距離其建構出來的防禦線成員,不得超過boundup距離。擁有此距離限制的目標物防禦線覆蓋適合應用在許多場景,例如:戰場環境之監控,可以在重要的軍事據點偵測外圍是否有入侵者,或是在生態保護區進行監控…等。由於目標物防禦線具有boundlow的距離限制因此當防禦線偵測到入侵者時,目標物可以有足夠的時間做出反應。在本文中,我們探討了如何使用較少的動態感測器搭配靜態感測器來建構出目標物防禦線。經由實驗模擬,我們可以驗證我們所提出的方法具有較佳之網路存活時間。
英文摘要
In this paper, we explore the target-barrier coverage in a wireless sensing network with static and mobile sensors. The target defense line is to form a surrounding defense line within the limits of the target, thereby detecting whether an object invades the target. In this paper, we set two kinds of peripheral distance limits for the target defense line, namely boundlow and boundup. Boundlow refers to the member of the defensive line constructed by the center point of the target. It must have a distance above the boundlow. The boundup refers to the member of the defensive line constructed by the center point of the target, and must not exceed the boundup distance. The defensive line coverage of the target with this distance limit is suitable for many scenarios, such as monitoring of the battlefield environment, detecting whether there are intruders in the periphery, or monitoring in the ecological protection zone at important military positions. Since the target defense line has a boundlow distance limit, when the defense line detects an intruder, the target can have enough time to react. In this article, we explored how to use a less mobile sensor with a static sensor to construct a target defense line. Through experimental simulation, we can verify that our proposed method has better network survival time.
第三語言摘要
論文目次
目錄:
中文摘要	I
英文摘要	II
目錄 III
圖目錄 IV
表目錄 V
第一章 介紹 1
第二章 相關研究 5
第三章 問題定義以及環境假設 8
第四章 方法概述 10
4-1 挑選滿足目標物外圍距離限制的靜態感測器	11
4-2 對滿足距離範圍限制內靜態感測器進行分群	12
4-3 記錄所有感測器群組對0 ~ 360度的貢獻 13
4-4 找出所有感測器群組與其他感測器群組的最短連接線 15
4-5 利用Dijkstra’s algorithm求出靜態感測器群組間較短連接線 16
4-6 關閉目標物防禦線上的冗餘靜態感測器 22
4-7 利用Hungarian 配對演算法選出動態感測器 25
第五章 實驗模擬 30
第六章 結論 40
參考文獻	41
附錄-英文論文 44

圖目錄:
圖 1. 目標物防禦線覆蓋中的2種dbound 距離限制(boundup & boundlow) 3
圖 2. 利用動態感測器建構出目標物防禦線 9
圖 3. 挑選目標物範圍內成員 11
圖 4. 對目標物內的成員進行分群 12
圖 5. 感測器群組貢獻度轉換 14
圖 6. 感測器群組間之最短連接線段 15
圖 7. 感測器群組角度排序 16
圖 8. 最短路徑的目標物防禦線 21
圖 9. 從感測器群組中挑選有貢獻之感測器 23
圖 10. 利用剩餘的動態感測器進行補洞 29
圖 11. 不同數量的動態感測器對目標物防禦線存活時間的影響 33
圖 12. 不同數量動態感測器的總移動距離 33
圖 13. 不同數量動態感測器建構目標物防禦線的成功率 34
圖 14. 感測半徑的變化對目標物防禦線存活時間的影響 35
圖 15. 不同大小感測半徑的總移動距離 35
圖 16. 不同大小感測半徑建構目標物防禦線的成功率 36
圖 17 . 目標物之boundlow的改變對目標物防禦線存活時間的影響	38
圖 18. 不同大小boundlow的總移動距離 38
圖 19. 不同大小boundlow建構目標物防禦線的成功率 39

表目錄:
表 1. 問題表述中使用的符號 9
表 2. 所有感測器群組之間的距離 17
表 3. 動態感測器與空洞間距離 26
表 4. 模擬參數設定 31
參考文獻
[1]	D.W. Gage, “Command control for many-robot systems,” Proc. AUVS’92, pp.22–24, 1992.
[2]	S. Kumar, T.H. Lai, and A. Arora, “Barrier coverage with wireless sensors,”Proc. ACM MobiCom’05, pp. 284-298, 2005.
[3]	S. Kumar, T.H. Lai, M.E. Posner and P. Sinha, “Maximizing the lifetime of a barrier of wireless sensors,” IEEE Transactions on Mobile Computing (TMC), vol. 9, no. 8,2010.
[4]	A. Saipulla, B. Liu, and J. Wang, “Barrier Coverage with air-dropped wireless sensors,” in Proc. of the 28th IEEE Military Communications Conference (MILCOM),pp 1-7,2008.
[5]	H. Kim and J. A. Cobb,“Maximum lifetime reinforced barrier-coverage in wireless sensor networks,” in Proc. of the 19th IEEE International Conference on Networks .
[6]	Fan, H., Lee, V.C.S., Li, M., Zhang, X., Zhao, Y.: Barrier coverage using sensors with offsets. In: Cai, Z., Wang, C., Cheng, S., Wang, H., Gao, H. (eds.) WASA 2014. LNCS, vol. 8491, pp. 389–400.  
[7]	Fan, H., LI, M., Sun, X., Wan, P.J., Zhao, Y.: Barrier coverage by sensors with adjustable ranges. ACM Transactions on Sensor Networks 11(1), 14(1)—14(20) (2014).
[8]	C.F. Cheng and C.W. Wang, “The Barrier-Breach Problem of Barrier Coverage in Wireless Sensor Networks,” IEEE Commucications Letters, vol.21, no 10, pp.2262-2265, 2017.
[9]	C.F. Cheng and C.W. Wang, “The Target-Barrier coverage Problem in Wireless Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 17, no5, pp.1216-1232, 2018.
[10]	G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robomote: A tiny mobile robot platform for large-scale sensor networks,” in Proc. IEEE ICRA, Washington, DC, May 2002, pp. 1143–1148.
[11]	Zhiwei He and Baoxian Zhang,” An Improved Algorithm for Minimizing the Maximum Sensor Movement in Linear Barrier Coverage,” IEEE Global Communications Conference (GLOBECOM),2016.
 
[12]	Ruiqi Wang , Qianqian Yang and Shibo He ,”Towards Optimal Barrier Coverage in Wireless Sensor and Actor Networks,” IEEE Global Communications Conference (GLOBECOM),2014.
[13]	Shibo He, Jiming Chen, Xu Li, Xuemin (Sherman) Shen and Youxian Sun ,”Cost Effective Barrier Coverage by Mobile Sensor Networks,” IEEE INFOCOM,2012.
[14]	M. Angeles Sema, A. Bermudez, R. Casado, “Circle-based approximation to forest fires with distributed wireless sensor networks,” Proc. IEEE WCNC’13, pp. 4329-4334, 2013.
[15]	S. Bhattacharjee, P. Roy, S. Ghosh, S. Misra, M.S. Obaidat, “Wireless sensor network-based fire detection, alarming, monitoring and prevention system for bord-and-pillar coal mines,” J. Syst. Softw., pp. 571-851, 2012.
[16]	S. Javadi, M.H. Hajiesmaili, A. Khonsari, B. Moshiri, “Temporal-aware rate allocation in mission-oriented WSNs with sum-rate demand guarantee,” Comput. Commun., vol. 59, pp. 52-66, 2015.
[17]	J. Jiang, G. Han, H. Guo, L. Shu, J.J.P.C. Rodrigues, “Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks,” J. Netw. Comput. Appl., vol. 59, pp. 4-13, 2016.
[18]	L. Kong, M. Zhao, X.Y. Liu, J. Lu, Y. Liu, M.Y. Wu W. Shu, “Surface coverage in sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 234-243, 2014.
[19]	S. Lee, M. Younis, M. Lee, “Connectivity restoration in a partitioned wireless sensor network with assured fault tolerance,” Ad Hoc Netw., vol. 24, pp. 1-19, 2015.
[20]	H. Li, Y. He, X. Cheng, H. Zhu, L. Sun, “Security and privacy in location for underwater sensor networks,” IEEE Commun. Mag., vol. 53, no. 11, pp. 56-62, 2015.
[21]	X. Liu, J. Cao, S. Tang, P. Guo, “A generalized coverage-preserving scheduling in WSNs: a case study in structural health monitoring,” Proc. IEEE INFOCOM’14, pp. 718-726, 2014.
[22]	W.Z. Song, R. Huang, M. Xu, B.A. Shirazi, R. LaHusen, “Design and deployment of sensor network for real-time high-fidelity volcano monitoring,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 11, pp. 1658-1674, 2010.
 
[23]	I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, P. Corke, “Data collection, storage, and retrieval with an underwater sensor network,” Proc. of ACM SenSys 05, San Diego, USA, 2-4 November, pp. 154-165, 2005.
[24]	Donghyun Kim, Wei Wang, Junggab Son, Weili Wu , Wonjun Lee, Alade O. Tokuta.” Maximum Lifetime Combined Barrier-Coverage of Weak Static Sensors and Strong Mobile Sensors,” IEEE Transactions on Mobile Computing(TMC),vol.16,pp.1956-1966,2016.
[25]	Tri Gia Nguyen, Chakchai So-In, Nhu Gia Nguyen,” Maximum Barrier Coverage Deployment Algorithms in Wireless Sensor Networks,” Joint Conference on Computer Science and Software Engineering (JCSSE),2016.
[26]	Hyunbum Kim, Jalel Ben-Othman,” On Resilient Event-driven Partial Barriers in Mobile Sensor Networks,” IEEE International Conference on Communications (ICC),2016.
[27]	Xiaoyun Zhang, Mathew L. Wymore, Daji Qiao,” Cost-Efficient Barrier Coverage with a Hybrid Sensor Network under Practical Constraints,” IEEE International Conference on Communications (ICC),2017.
[28]	CHIEN-I WENG, CHIH-YUNG CHANG, CHIH-YAO HSIAO, CHAO-TSUN CHANG, HAIBAO CHEN,” On-Supporting Energy Balanced k-Barrier Coverage in Wireless Sensor Networks,”IEEE Access,vol.6,pp.13261-13274,2018.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信