§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1109201813301000
DOI 10.6846/TKU.2018.00317
論文名稱(中文) 新型態聚乙二醇複合電解液之製備與性質研究
論文名稱(英文) Preparation and characterization of poly(ethylene glycol)-based electrolytes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 劉力琾
研究生(英文) Li-Jie Liu
學號 604400639
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-07-18
論文頁數 166頁
口試委員 指導教授 - 賴偉淇(wclai@mail.tku.edu.tw)
委員 - 陳信龍(hslchen@mx.nthu.edu.tw)
委員 - 童世煌(shtung@ntu.edu.tw)
關鍵字(中) 聚乙二醇
聚乳酸
二苯亞甲基山梨醇
固態複合電解液
關鍵字(英) PEG
PLLA
DBS
Polymer electroylte
第三語言關鍵字
學科別分類
中文摘要
本研究以低分子量聚乙二醇(Poly(ethylene glycol),PEG)與聚乳酸(Poly(L-lactic acid),PLLA)不同重量比例以溶劑鑄膜法進行摻合形成一複合材料,再摻入不同含量1,3;2,4-二苯亞甲基山梨醇(1,3;2,4-Dibenzylidene sorbitol, DBS)以觀察摻合後結構與性質變化,之後再藉由過氯酸鋰(Lithium perchlorate, LiClO4)使摻合後可得新型態高分子複合電解液。
本研究第一部份以PEG分子量400g/mole(呈液態)作為基材與PLLA摻合後,在研究結果顯示當PEG/PLLA摻合比例,PLLA含量大於30 wt%時,可形成固態複合材料,而PEG/PLLA複合材料中,兩高分子進行摻合具有部分相容性。觀察結晶行為結果可知,在PEG/PLLA系統中,PEG與PLLA摻合後其PLLA結晶性質隨之增加,且發現在PLLA重量比例大於30 wt%時,其PLLA結晶結構會從球晶結構轉變成環狀結構(banded structure)。在PEG/PLLA複合材料機械性質分析中,可知PEG在加入PLLA後,PLLA會使其固態複合材料保有一定機械性質。而在PEG/PLLA複合材料中加入不同比例之DBS進行性質測試,可由SEM與TEM分析,可知在DBS摻入其系統時,DBS會自主裝而形成纖維結構,隨濃度增加纖維分布密度會隨之增加,而在PEG/PLLA重量比90/10之複合材料相態則由液態形成有機膠結構,在分子間作用力分析中,DBS添入後,其PEG/PLLA不同複合材料在OH特徵峰位置,由分子內氫鍵形式較趨於往分子間加寬,推測其由PEG中其末端OH官能基在摻合後會與其DBS五號碳位置之羥基有分子間作用力之影響所致,而在PEG/PLLA 重量比90/10添加DBS其形成複合有機膠流變分析,則隨DBS添加量增加膠體穩定性隨之增加。在PEG/PLLA固態複合材料中添加DBS後可發現重量比70/30之複合材料在添加不同濃度DBS後,其儲存模數由0.26 GPa提升至0.34~0.56 GPa之間且隨添加濃度提升,顯示DBS添加後纖維結構使結構穩定,而在重量比50/50複合材料中,添加DBS只有微幅影響,當添加量達5wt %時,則機械性質增加幅度下降推測為其DBS達飽和量。
本研究第二部份對PEG/PLLA/DBS複合電解液進行分析,在導電度分析結果得到在LiClO4添加量為15/1時為最佳比例,在PEG/PLLA摻合重量比為70/30、50/50時,可形成複合固態電解液,相較PEO固態電解液導電度是提高約5倍,而在PEG/PLLA複合電解液摻合3wt % DBS中,則PEG/PLLA重量比90/10會由液態轉為膠態電解液,導電度由6×10-5S cm-1下降至2×10-5 Scm-1,推測為受DBS纖維影響使高分子鏈運動下降,進而降低其導電度值,而在固態電解液中其結構受PLLA結晶限制而DBS纖維對其高分子鏈運動影響較小所以並未有下降。導電性質隨溫度變化分析結果中,PEG/PLLA複合固態電解液導電度並未因相變化隨著溫度有大幅變動,由此可知其固態複合電解液工作溫度範圍與導電穩定性是相對優秀。電化學穩定度的部份在PEG摻合PLLA系統中,反應範圍穩定性相對純PEG電解液穩定,在DBS添入後亦增加化學穩定性,使電解液反應範圍較寬廣。而PEG/PLLA/DBS複合電解液,循環伏安測試後,反應性下降幅度相對未添加低,可推測DBS纖維使結構相對穩定,使高分子鏈在多次電荷轉移下不破壞維持其反應性。在充放電循環性測試中,電解液進行多次充放電循環後,可發現在PEG/PLLA複合電解液中,較純PEG電解液電容量與循環性為下降,但在PEG/PLLA/DBS複合電解液中,發現DBS添加後初始電量皆會下降,但其循環後電容量下降幅度則在DBS添入後降幅變小,在此推測DBS添入後極化現象較於趨緩,而得知加入DBS後循環穩定性上升。而在形成膠態與固態電解液後,其封裝安全性、機械性質與穩定性對其在電池組裝相關應用有更加良好之應用性。
英文摘要
In this research,we preparation the polymer composite electrolyte of polyethylene glycol (PEG) and polylactic acid (PLLA) were blened by solvent casting film method, and then blended into different content 1,3:2,4-dibenzylidene sorbitol (DBS) to change the structures and properties.
In the first part of this research, the results show that when the PEG/PLLA ratio, PLLA content greater than the 30 wt%, can turn PEG/PLLA composites into solid-state. The crystallization behavior results show that the PLLA crystallization behavior will be changed in different wt% PEG.The PLLA crystallization behavior is changed from the spherical crystal structure to the banded structure.By SEM and TEM results can be observed DBS will be self-contained and form a fiber structure, when the DBS incorporated into PEG/PLLA composite system, DBS will be self-contained and form a fiber structure.After adding DBS to the PEG/PLLA solid-state composites, the composite material with a weight ratio of 70/30 was added to the different concentrations of DBS, and its storage modulus was increased from 0.26 GPa to 0.34~0.56 GPa and increased with the added concentration, showing that after the addition of DBS, the fiber structure was stabilized, the increase of mechanical properties is presumed to be its DBS saturation.
In the second part of this research of PEG/PLLA/DBS complex electrolyte analysis, the conductivity analysis results obtained in the LiClO4 added amount of 15/1 is the best proportion.Compared to PEO solid-state electrolyte conductivity is raised about 5 times times, and in PEG/PLLA electrolyte blended into 3wt DBS, then the PEG/PLLA weight ratio of 90/10 system will be from liquid to solid electrolyte. The conductivity of the PEG//PLLA composite solid electrolytes have’t changed with the temperature, and the temperature range of the solid-state composite electrolyte and the conductive stability are relatively excellent. The stability of the electrochemical stability in the PEG/PLLA system is stable relative to pure PEO electrolyte, and the chemical stability is increased after DBS addition, which makes the reaction range of the electrolyte wider. In the charge-discharge cycle test, the electrolyte can be found in the PEG/PLLA electrolyte, the capacitance and circulation of the pure PEG electrolyte is decreased, but in the PEG/PLLA/DBS compound electrolyte, the initial power will be decreased but more stability after the addition of the DBS. After the formation of solid electrolyte, its packaging safety, mechanical properties and stability of its application in the battery assembly-related applications have a better applicability.
第三語言摘要
論文目次
目錄
誌謝		I
中文摘要	II
英文摘要	IV
目錄		VI
圖目錄		X
表目錄		XIX
第一章	緒論	1
1-1 前言	1
1-2 研究目的	2
第二章	文獻回顧與理論背景	3
2-1 鋰離子電池	3
2-2 電解液	5
2-2-1 液態電解液	5
2-2-2 膠態電解液	6
2-2-3 固態電解液	7
2-3 聚乙二醇(Poly(ethylene glycol))高分子電解液	8
2-4 高分子的結構與性質	10
2-4-1 高分子結構與理論	10
2-4-2 高分子結晶性質	12
2-5 生物可分解高分子	12
2-6 聚乳酸(Poly(lactic acid))簡介	14
2-6-1 聚乳酸(Poly(lactic acid), PLA)	14
2-7 二苯亞甲基山梨醇(1,3:2,4-Dibenzylidene sorbitol)簡介	16
2-8 高分子材料性質分析	17
2-8-1 流變學分析	17
2-8-2 熱性質分析	17
2-9 電性分析測試	18
2-9-1 交流阻抗分析(Electrochemistry Impedance Spectroscopy , EIS)	18
2-9-2 伏安法(Voltammetry)	18
2-9-3 充放電循環分析	20
2-9-4 導電度對溫度變化分析	20
第三章	實驗	21
3-1 實驗藥品	21
3-2 實驗設備	23
1. 電子數位天平(Eectrical Balance)	23
2. 磁石加熱攪拌機(Magnetic heating stirrer)	23
3. 真空烘箱(Vacuum Dry Oven)	23
4. 真空幫浦(Vacuum Pump)	23
5. 粉碎機	23
6. 偏光顯微鏡(Polarized Oprical Microscopy, POM)	24
7. 控溫加熱載台(hot-stage)	24
8. 流變儀(Rheometer)	25
9. 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared)	25
10. 熱重損失分析儀(Thermogravimetric Analysis, TGA)	25
11. 動態熱機械分析儀(Dynamic Mechanical Analysis, DMA)	26
12. 示差掃描熱卡計(Differential scanning calorimetry, DSC)	26
13. 場發射掃描式電子顯微鏡 (Field emission scanning electron microscopy, FESEM)	26
14. 穿透式電子顯微鏡(Transmission electron microscopy;TEM)	27
15. 恆電位/恆電流/頻率響應分析儀 (Galvanostat/Potentiostat/Frequency response analyzer)	27
3-3 實驗流程	28
3-3-1 PEG/PLLA複合材料製備	28
3-3-2 PEG/PLLA/LiClO4複合電解液製備	28
3-3-3 PEG/PLLA/LiClO4複合電解液電性測試元件製備	29
3-3-4 PEG/PLLA/DBS複合材料製備	30
3-3-5 PEG/PLLA/DBS/LiClO4複合電解液製備	30
3-3-6 PEG/PLLA/DBS/LiClO4複合電解液電性測試元件製備	31
3-3-7 偏光顯微鏡(POM)結晶觀測	31
3-3-8 微差掃描熱卡計(DSC)熱分析	32
3-3-9 流變儀(Rheometer)流變性質測試	32
3-3-10 熱重損失測試 (TGA)	33
3-3-11 掃描式電子顯微鏡 (SEM)	33
3-3-12 穿透式電子顯微鏡 (TEM)	33
3-3-13 電性測試	34
第四章	結果分析與討論	35
4-1 PEG/PLLA複合材料	35
4-1-1 PEG/PLLA複合材料相容性與相態	35
4-1-2 PEG/PLLA複合材料熱重損失分析	37
4-1-3 PEG/PLLA複合材料分子間作用力分析	39
4-1-4 PEG/PLLA複合材料結晶行為	43
4-1-5 PEG/PLLA複合材料機械性質分析	50
4-2 PEG/PLLA/DBS複合材料	53
4-2-1 PEG/PLLA/DBS複合材料結構與相態	53
4-2-2 PEG/PLLA/DBS複合材料分子作用力分析	58
4-2-3 PEG/PLLA/DBS複合材料結晶行為	67
4-2-4 PEG/PLLA/DBS複合材料流變性質分析	122
4-2-5 PEG/PLLA/DBS複合材料機械性質分析	123
4-3 PEG/PLLA/DBS/LiClO4複合電解液	127
4-3-1 PEG/PLLA/DBS/LiClO4複合電解液電性測試分析	127
第五章	結論	146
PEG/PLLA複合材料部分	146
PEG/PLLA/DBS複合材料部分	147
PEG/PLLA/DBS複合電解液部分	149
第六章	參考文獻	151
附錄	157

圖目錄
圖 2-1 1鋰離子電池工作原理	5
圖 2-1 2鋰離子電池結構示意圖	5
圖 2-3 1 PEG中鋰離子轉移示意圖	9
圖 2-4 1 高分子彈性模數對溫度變化曲線圖	11
圖 2-4 2 高分子比容對溫度變化曲線圖	11
圖 2-6 1 聚乳酸主要合成製備方式圖	14
圖 2-6 2 乳酸異構物之結構圖	15
圖 2-7 1 DBS結構圖	16
圖2-9 1交流阻抗分析圖	18
圖 2-9 2 CV示意圖	19
圖 2-9 3 輸入電位V.S.時間圖	19
圖 2-9 4連續充放電循環圖	20
圖 2-9 5 導電度對溫度變化趨勢圖	20
圖 3-3 1 PEG/PLLA/LiClO4複合電解液電性測試元件示意圖	29
圖 4-1 1 PEG/PLLA不同比例摻合DSC溫度掃描圖(second run heating)	36
圖 4-1 2 PEG/PLLA不同比例摻合複合材料相圖	36
圖 4-1 3 不同比例PEG/PLLA摻合熱重損失分析圖	37
圖 4-1 4 不同比例PEG/PLLA摻合最大熱重損失溫度分析圖	38
圖 4-1 5 純PEG 400與PLLA之FTIR光譜圖	41
圖 4-1 6 PEG/PLLA複合材料FTIR光譜	41
圖 4-1 7 PEG/PLLA複合材料FTIR光譜 
(a)OH & C-H stretching特性峰 (b)C=O stretching特性峰	42

圖 4-1 8 PEG/PLLA (90/10) 升降溫POM觀測圖 升溫段 (a) 30oC (b) 110.4 oC (c) 120.5 oC 降溫段(d) 180 oC (e) 46.5 oC (f) 30 oC	45
圖 4-1 9 PEG/PLLA (70/30) 升降溫POM觀測圖 升溫段 (a) 30oC (b) 156.2 oC (c) 180 oC 降溫段(d) 105.4 oC (e) 95.4 oC (f) 90.2 oC	46
圖 4-1 10 PEG/PLLA (50/50) 升降溫POM觀測圖 升溫段 (a) 30oC (b) 153.1 oC (c) 180 oC 降溫段(d) 110.2 oC (e) 105 oC (f) 100.1 oC	47
圖 4-1 11 PLLA 升降溫POM觀測圖 升溫段 (a) 30oC (b) 161.2 oC (c) 180 oC 降溫段(d) 104.2 oC (e) 92.1 oC (f) 50 oC	48
圖 4-1 12 PEG/PLLA不同比例摻合DSC溫度掃描圖(2nd run cooling)	49
圖 4-1 13 純PLLA之DMA溫度掃描圖	51
圖 4-1 14 不同比例PEG/PLLA摻合之儲存模數(G’)比較圖	52
圖 4-1 15 不同比例PEG/PLLA摻合之損耗因數( Tanδ )比較圖	52
圖 4-2 1 PEG/PLLA(90/10)不同濃度DBS摻合複合材料相圖	54
圖 4-2 2 PEG/PLLA(90/10) 摻合不同比例DBS之複合材料TEM結構圖	55
圖 4-2 3 PEG/PLLA(70/30) 摻合不同比例DBS之複合材料SEM表面圖	56
圖 4-2 4 PEG/PLLA(50/50) 摻合不同比例DBS之複合材料SEM表面圖	57
圖 4-2 5 純PEG、PLLA、DBS之FTIR光譜	59
圖 4-2 6 PEG/PLLA (90/10)之不同比例DBS摻合FTIR光譜 
(a)完整光譜(b)C=O stretching特性峰	60
圖 4-2 7 PEG/PLLA (90/10)之不同比例DBS摻合FTIR光譜 
(a) C-H stretching特性峰 (b)OH stretching特性峰	61
圖 4-2 8 PEG/PLLA (70/30)之不同比例DBS摻合FTIR光譜 
(a)完整光譜(b)C=O stretching特性峰	62
圖 4-2 9 PEG/PLLA (70/30)之不同比例DBS摻合FTIR光譜 
(a) C-H stretching特性峰 (b)OH stretching特性峰	63
圖 4-2 10 PEG/PLLA (50/50)之不同比例DBS摻合FTIR光譜 (a)完整光譜(b)C=O stretching特性峰	64
圖 4-2 11 PEG/PLLA (50/50)之不同比例DBS摻合FTIR光譜 (a) C-H stretching特性峰 (b)OH stretching特性峰	65
圖 4-2 12 PEG/PLLA(90/10) DBS 1 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 145 oC (c) 149 oC 降溫段(d) 94 oC (e) 91.8oC (f) 65 oC	68
圖 4-2 13 PEG/PLLA(90/10) DBS 3 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 149 oC (c) 157 oC 降溫段(d) 180 oC (e) 105 oC (f) 90 oC	69
圖 4-2 14 PEG/PLLA(90/10) DBS 5 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 146 oC (c) 156 oC 降溫段(d) 180 oC (e) 107 oC (f) 90 oC	70
圖 4-2 15 PEG/PLLA(70/30) DBS 1 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 147 oC (c) 151 oC 降溫段(d) 180 oC (e) 104 oC (f) 80 oC	71
圖 4-2 16 PEG/PLLA(70/30) DBS 3 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 150 oC (c) 154 oC 降溫段(d) 180 oC (e) 105 oC (f) 80 oC	72
圖 4-2 17 PEG/PLLA(70/30) DBS 5 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 150 oC (c) 154 oC 降溫段(d) 180 oC (e) 109 oC (f) 91 oC	73
圖 4-2 18 PEG/PLLA(50/50) DBS 1 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 119 oC (c) 157 oC 降溫段(d) 180 oC (e) 117 oC (f) 90 oC	74
圖 4-2 19 PEG/PLLA(50/50) DBS 3 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 153 oC (c) 158 oC 降溫段(d) 180 oC (e) 112 oC (f) 90 oC	75
圖 4-2 20 PEG/PLLA(50/50) DBS 5 wt%升降溫POM觀測圖 升溫段 (a) 30oC (b) 155 oC (c) 160 oC 降溫段(d) 180 oC (e) 115 oC (f) 95 oC	76
圖 4-2 21 PEG/PLLA(90/10)不同濃度DBS摻合之DSC溫度掃描圖 
(2nd run cooling)	77

圖 4-2 22 PEG/PLLA(70/30)不同濃度DBS摻合之DSC溫度掃描圖 
(2nd run cooling)	77
圖 4-2 23 PEG/PLLA(90/10)不同濃度DBS摻合之DSC溫度掃描圖	78
圖 4-2 24 PLLA不同等溫結晶溫度之結晶週期圖	82
圖 4-2 25 PEG/PLLA(90/10)摻合不同比例DBS複合材料結晶週期圖	83
圖 4-2 26 PEG/PLLA(70/30)摻合不同比例DBS複合材料結晶週期圖	84
圖 4-2 27 PEG/PLLA(50/50)摻合不同比例DBS複合材料結晶週期圖	85
圖 4-2 28 PLLA不同等溫結晶溫度結晶半週期圖	86
圖 4-2 29 PEG/PLLA/DBS複合材料不同等溫結晶溫度結晶半週期圖	86
圖 4-2 30 PEG/PLLA/DBS複合材料不同等溫結晶溫度結晶半週期圖	87
圖 4-2 31 PEG/PLLA/DBS複合材料不同等溫結晶溫度結晶半週期圖	87
圖 4-2 32 PEG/PLLA(90/10)/DBS複合材料不同溫度下Avrami equaiton關係圖 (a) 90oC (b) 100oC (c) 110oC	88
圖 4-2 33 PEG/PLLA (70/30)/DBS複合材料不同溫度下Avrami equaiton關係圖 (a) 90oC (b) 100oC (c) 110oC (d)110oC	89
圖 4-2 34 PEG/PLLA(50/50)/DBS複合材料不同溫度下Avrami equaiton關係圖 (a) 90oC (b) 100oC (c) 110oC (d)110oC	90
圖 4-2 35 PLLA不同溫度下Avrami equaiton關係圖	91
圖 4-2 36 PLLA不同等溫結晶溫度對結晶速率常數圖	91
圖 4-2 37 PEG/PLLA/DBS複合材料不同等溫結晶溫度對結晶速率常數圖	92
圖 4-2 38 PEG/PLLA/DBS複合材料不同等溫結晶溫度對結晶速率常數圖	92
圖 4-2 39 PEG/PLLA/DBS複合材料不同等溫結晶溫度對結晶速率常數圖	93
圖 4-2 40 PEG/PLLA90/10 於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	97

圖 4-2 41 PEG/PLLA (90/10) 1% DBS 90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	97
圖 4-2 42 PEG/PLLA (90/10) 3 % DBS 90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	98
圖 4-2 43 PEG/PLLA (90/10) 5 % DBS於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 5min	98
圖 4-2 44 PEG/PLLA 70/30 於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	99
圖 4-2 45 PEG/PLLA (70/30) 1 % DBS於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	99
圖 4-2 46 PEG/PLLA (70/30) 3 % DBS 於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	100
圖 4-2 47 PEG/PLLA (70/30) 5 % DBS 於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	100
圖 4-2 48 PEG/PLLA 50/50 於90oC等溫結晶變化POM觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	101
圖 4-2 49 PEG/PLLA (50/50) 1%DBS 於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	101
圖 4-2 50 PEG/PLLA (50/50) 3% DBS 於90oC等溫結晶變化觀測圖 
(a) 30s (b) 40s (c) 2min (d) 3min	102
圖 4-2 51 PEG/PLLA (50/50) 5 %DBS 於90oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	102
圖 4-2 52 PEG/PLLA 90/10 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	103

圖 4-2 53 PEG/PLLA (90/10) 1% DBS於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	103
圖 4-2 54 PEG/PLLA (90/10) 3 % DBS 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	104
圖 4-2 55 PEG/PLLA (90/10) 5 % DBS於100oC等溫結晶變化觀測圖 
(a) 1min (b) 2min (c) 3min (d) 4min	104
圖 4-2 56 PEG/PLLA 70/30 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	105
圖 4-2 57 PEG/PLLA (70/30) 1 % DBS 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	105
圖 4-2 58 PEG/PLLA (70/30) 3 % DBS 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	106
圖 4-2 59 PEG/PLLA (70/30) 5 % DBS 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	106
圖 4-2 60 PEG/PLLA 50/50 於100oC等溫結晶隨變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	107
圖 4-2 61 PEG/PLLA (50/50) 1 %DBS 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	107
圖 4-2 62 PEG/PLLA (50/50) 3 %DBS 於100oC等溫結晶變化觀測圖 
(a) 30s (b) 40s (c) 1min (d) 5min	108
圖 4-2 63 PEG/PLLA (50/50) 5 %DBS 於100oC等溫結晶變化觀測圖 
(a) 20s (b) 30s (c) 1min (d) 3min	108
圖 4-2 64 PEG/PLLA 90/10 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	109

圖 4-2 65 PEG/PLLA (90/10) 1 % DBS於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	109
圖 4-2 66 PEG/PLLA (90/10) 3 % DBS 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	110
圖 4-2 67 PEG/PLLA (90/10) 5 % DBS於110oC等溫結晶變化觀測圖 
(a) 1min (b) 2min (c) 3min (d) 4min	110
圖 4-2 68 PEG/PLLA 70/30 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 2min (d) 3min	111
圖 4-2 69 PEG/PLLA (70/30) 1 % DBS 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	111
圖 4-2 70 PEG/PLLA (70/30) 3 % DBS 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	112
圖 4-2 71 PEG/PLLA (70/30) 5 % DBS 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	112
圖 4-2 72 PEG/PLLA 50/50 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	113
圖 4-2 73 PEG/PLLA (50/50) 1 %DBS 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	113
圖 4-2 74 PEG/PLLA (50/50) 3 %DBS 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	114
圖 4-2 75 PEG/PLLA (50/50) 5%DBS 於110oC等溫結晶變化觀測圖 
(a) 30s (b) 1min (c) 3min (d) 5min	114
圖 4-2 76 PEG/PLLA/DBS複合材料不同溫度之球晶成長速率關係圖 (a)PEG/PLLA重量比 90/10 (b)PEG/PLLA重量比 70/30 (c)PEG/PLLA 重量比50/50(d) PEG/PLLA 不同重量比	115
圖 4-2 77 PLLA平衡熔點關係圖	116
圖 4-2 78 PEG/PLLA(90/10)/DBS複合材料平衡熔點關係圖 
(a) 0 wt% DBS (b) 1 wt% DBS (c) 3 wt% DBS (d) 5 wt% DBS	117
圖 4-2 79 PEG/PLLA(70/30)/DBS複合材料平衡熔點關係圖 
(a) 0 wt% DBS (b) 1 wt% DBS (c) 3 wt% DBS (d) 5 wt% DBS	118
圖 4-2 80 PEG/PLLA(50/50)/DBS複合材料平衡熔點關係圖 
(a) 0 wt% DBS (b) 1 wt% DBS (c) 3 wt% DBS (d) 5 wt% DBS	119
圖 4-2 81 PEG/PLLA(50/50)/DBS複合材料平衡熔點關係圖 
(a) 0 wt% DBS (b) 1 wt% DBS (c) 3 wt% DBS (d) 5 wt% DBS	120
圖 4-2 82 PEG/PLLA (90/10)摻合不同濃度DBS之凝膠溶解溫度比較圖	122
圖 4-2 83 PEG/PLLA(70/30)不同比例DBS摻合之儲存模數(G’)比較圖	124
圖 4-2 84 PEG/PLLA(70/30)不同比例DBS摻合之損耗因數( Tanδ )比較圖	124
圖 4-2 85 PEG/PLLA(50/50)不同比例DBS摻合之儲存模數(G’)比較圖	125
圖 4-2 86 PEG/PLLA(50/50)不同比例DBS摻合之損耗因數( Tanδ )比較圖	125
圖 4-3 1 PEG摻合不同重量比例LiClO4之導電度關係圖	130
圖 4-3 2 PEG 1000摻合不同重量比例LiClO4之導電度關係圖	131
圖 4-3 3各比例PEG/PLLA摻合不同重量比例LiClO4之導電度關係圖	131
圖 4-3 4 不同比例DBS之PEG/PLLA複合電解液之導電度關係圖	132
圖 4-3 5 不同比例PEG/PLLA之導電度對溫度變化關係圖	132
圖 4-3 6 不同重量比例PEG/PLLA線性掃描圖	135
圖 4-3 7不同濃度DBS摻合PEG/PLLA重量比90/10之線性掃描圖	136
圖 4-3 8不同濃度DBS摻合PEG/PLLA重量比70/30之線性掃描圖	137
圖 4-3 9不同濃度DBS摻合PEG/PLLA重量比50/50之線性掃描圖	138
圖 4-3 10 PEG/PLLA (90/10) 循環伏安掃描圖	139
圖 4-3 11 PEG/PLLA/DBS (90/10/3 wt%) 循環伏安掃描圖	139
圖 4-3 12 PEG/PLLA (70/30) 循環伏安掃描圖	140
圖 4-3 13 PEG/PLLA/DBS (70/30/3 wt%) 循環伏安掃描圖	140
圖 4-3 14 PEG/PLLA (50/50) 循環伏安掃描圖	141
圖 4-3 15 PEG/PLLA/DBS (50/50/3 wt%) 循環伏安掃描圖	141
圖 4-3 16 不同重量比例PEG/PLLA循環伏安掃描圖	142
圖 4-3 17不同重量比例PEG/PLLA摻合DBS(3wt%)循環伏安掃描圖	142
圖 4-3 18 不同重量比例PEG/PLLA充放電循環測試圖	144
圖 4-3 19 不同重量比例PEG/PLLA摻合DBS充放電循環測試圖	144
 
表目錄
表 3-3 1、PEG/PLLA複合材料樣品含量表	28
表 3-3 2、PEG/PLLA/LiClO4複合電解液樣品含量表	29
表 3-3 3、PEG/PLLA/LiClO4複合電解液元件樣品含量表	30
表 4-1 1、不同比例PEG/PLLA摻合相態表	35
表 4-1 2、不同重量比例PEG/PLLA摻合裂解溫度比較表	38
表 4-1 3、PEG 400與PLLA官能基特性峰位置表	40
表 4-1 4、PEG/PLLA不同比例摻合之熱性質比較表	44
表 4-1 5、PEG/PLLA不同重量比例下機械性質分析表	51
表 4-2 1、PEG/PLLA摻合不同比例DBS之纖維尺寸表	54
表 4-2 2、DBS官能基特峰位置表	66
表 4-2 3、Avrami指數與成核成長機制關係表	82
表 4-2 4、PEG/PLLA/DBS複合材料之不同溫度下結晶半週期之時間表	94
表 4-2 5、PEG/PLLA/DBS複合材料不同溫度之成核機制常數對應表	95
表 4-2 6、PEG/PLLA/DBS複合材料不同溫度之結晶速率常數對應表	96
表 4-2 7、PEG/PLLA/DBS複合材料之平衡熔點與表面自由能分析表	121
表 4-2 8、PEG/PLLA/DBS不同重量比例下機械性質分析表	126
表 4-3 1、各比例PEG/PLLA摻合不同重量比例LiClO4之導電度關係表	133
表 4-3 2、PEG/PLLA/DBS之複合電解液氧化峰與反應性比較表	143
表 4-3 3、不同重量比之PEG/PLLA/DBS複合電解液之充放電循環電容量表	145
參考文獻
[1]	L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, “All solid-state polymer electrolytes for high-performance lithium ion batteries,” Energy Storage Materials, vol. 5, pp. 139-164, 2016.
[2]	K. Chew, T. Ng, and Z. How, “Conductivity and microstructure study of PLA-based polymer electrolyte salted with lithium perchloride, LiClO4,” Int J Electrochem Sci, vol. 8, no. 5, 2013.
[3]	J. B. Goodenough, H. Abruna, and M. Buchanan, Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007, DOESC (USDOE Office of Science (SC)), 2007.
[4]	C.-L. W. Yu-Shiang Wu, Yan-Ming Chang, “Development and Improvement of the Lithium Ion Battery Negative Material Surface Modification,” Journal of China Institute of Technology, vol. 31, 2004.
[5]	呂學隆, “鋰電池正極材料技術與產業趨勢,” 電子材料智庫, 2011.
[6]	G. Zhou, E. Paek, G. S. Hwang, and A. Manthiram, “Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge,” Nature communications, vol. 6, pp. 7760, 2015.
[7]	葉定儒, 陳金銘, and 廖世傑, "高安全鋰電池電解液," 2012.
[8]	S.-I. Tobishima, and A. Yamaji, “Ethylene carbonate—propylene carbonate mixed electrolytes for lithium batteries,” Electrochimica acta, vol. 29, no. 2, pp. 267-271, 1984.
[9]	R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, “A review of advanced and practical lithium battery materials,” Journal of Materials Chemistry, vol. 21, no. 27, pp. 9938-9954, 2011.
[10]	P. Verma, P. Maire, and P. Novák, “A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries,” Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010.
[11]	P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Grätzel, “Hydrophobic, highly conductive ambient-temperature molten salts,” Inorganic chemistry, vol. 35, no. 5, pp. 1168-1178, 1996.
[12]	K. Hanabusa, K. Hiratsuka, M. Kimura, and H. Shirai, “Easy preparation and useful character of organogel electrolytes based on low molecular weight gelator,” Chemistry of materials, vol. 11, no. 3, pp. 649-655, 1999.
[13]	Y. Shi, C. Zhan, L. Wang, B. Ma, R. Gao, Y. Zhu, and Y. Qiu, “The electrically conductive function of high-molecular weight poly (ethylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells,” Physical chemistry chemical physics, vol. 11, no. 21, pp. 4230-4235, 2009.
[14]	A. Nogueira, C. Longo, and M.-A. De Paoli, “Polymers in dye sensitized solar cells: overview and perspectives,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1455-1468, 2004.
[15]	J. W. Fergus, “Ceramic and polymeric solid electrolytes for lithium-ion batteries,” Journal of Power Sources, vol. 195, no. 15, pp. 4554-4569, 2010.
[16]	C. P. Fonseca, and S. Neves, “Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery,” Journal of Power Sources, vol. 159, no. 1, pp. 712-716, 2006.
[17]	J. W. Fergus, “Recent developments in cathode materials for lithium ion batteries,” Journal of Power Sources, vol. 195, no. 4, pp. 939-954, 2010.
[18]	E. M. Masoud, A.-A. El-Bellihi, W. Bayoumy, and M. Mousa, “Organic–inorganic composite polymer electrolyte based on PEO–LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties,” Journal of Alloys and Compounds, vol. 575, pp. 223-228, 2013.
[19]	A. M. Stephan, and K. Nahm, “Review on composite polymer electrolytes for lithium batteries,” Polymer, vol. 47, no. 16, pp. 5952-5964, 2006.
[20]	D. Fenton, J. Parker, and P. Wright, “Complexes of alkali metal ions with poly (ethylene oxide),” polymer, vol. 14, no. 11, pp. 589, 1973.
[21]	B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 90, no. 5, pp. 549-573, 2006.
[22]	J. Song, Y. Wang, and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries,” Journal of Power Sources, vol. 77, no. 2, pp. 183-197, 1999.
[23]	Y. S. Lee, J. H. Lee, J. Choi, W. Y. Yoon, and D. W. Kim, “Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode,” Advanced Functional Materials, vol. 23, no. 8, pp. 1019-1027, 2013.
[24]	K. Vignarooban, M. Dissanayake, I. Albinsson, and B.-E. Mellander, “Effect of TiO 2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes,” Solid State Ionics, vol. 266, pp. 25-28, 2014.
[25]	Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, and X. Xu, “A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries,” Journal of Power Sources, vol. 301, pp. 47-53, 2016.
[26]	Y. Li, J. Wang, J. Tang, Y. Liu, and Y. He, “Conductive performances of solid polymer electrolyte films based on PVB/LiClO4 plasticized by PEG200, PEG400 and PEG600,” Journal of Power Sources, vol. 187, no. 2, pp. 305-311, 2009.
[27]	Y. Ito, K. Kanehori, K. Miyauchi, and T. Kudo, “Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly (ethylene glycol),” Journal of materials science, vol. 22, no. 5, pp. 1845-1849, 1987.
[28]	D. C. Bassett, Principles of polymer morphology: CUP Archive, 1981.
[29]	F. Bueche, “Physical properties of polymers,” 1962.
[30]	P.-G. De Gennes, Scaling concepts in polymer physics: Cornell university press, 1979.
[31]	M. Shimao, “Biodegradation of plastics,” Current opinion in Biotechnology, vol. 12, no. 3, pp. 242-247, 2001.
[32]	A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, “Biological degradation of plastics: a comprehensive review,” Biotechnology advances, vol. 26, no. 3, pp. 246-265, 2008.
[33]	R. M. Rasal, A. V. Janorkar, and D. E. Hirt, “Poly (lactic acid) modifications,” Progress in polymer science, vol. 35, no. 3, pp. 338-356, 2010.
[34]	J. Pospíšil, and S. Nešpůrek, "Highlights in chemistry and physics of polymer stabilization." pp. 143-163.
[35]	S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review,” Advanced drug delivery reviews, vol. 107, pp. 367-392, 2016.
[36]	S. Fairgrieve, Nucleating agents: iSmithers Rapra Publishing, 2007.
[37]	E. A. Wilder, R. J. Spontak, and C. K. Hall, “The molecular structure and intermolecular interactions of 1, 3: 2, 4-dibenzylidene-D-sorbitol,” Molecular Physics, vol. 101, no. 19, pp. 3017-3027, 2003.
[38]	J. R. Ilzhoefer, and R. J. Spontak, “Effect of polymer composition on the morphology of self-assembled dibenzylidene sorbitol,” Langmuir, vol. 11, no. 9, pp. 3288-3291, 1995.
[39]	陳劉旺, and 丁金超, 高分子加工: 高立圖書, 1988.
[40]	K. R. Rajagopal, “Mechanics of non-Newtonian fluids,” Pitman Research Notes in Mathematics Series, pp. 129-129, 1993.
[41]	C. Nakaruku, “Effects of molecular weight on the melting and crystallization of poly (L-lactic acid) in a mixture with poly (ethylene oxide),” Polymer journal, vol. 28, no. 7, pp. 568, 1996.
[42]	A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, “High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties,” Polymer, vol. 37, no. 26, pp. 5849-5857, 1996/01/01/, 1996.
[43]	G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons, 2001.
[44]	B. W. Chieng, N. A. Ibrahim, W. M. Z. W. Yunus, M. Z. Hussein, Y. Y. Then, and Y. Y. Loo, “Effects of graphene nanoplatelets and reduced graphene oxide on poly (lactic acid) and plasticized poly (lactic acid): a comparative study,” Polymers, vol. 6, no. 8, pp. 2232-2246, 2014.
[45]	H. S. Mansur, R. L. Oréfice, and A. A. Mansur, “Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy,” Polymer, vol. 45, no. 21, pp. 7193-7202, 2004.
[46]	J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, “Crystal modifications and thermal behavior of poly (L-lactic acid) revealed by infrared spectroscopy,” Macromolecules, vol. 38, no. 19, pp. 8012-8021, 2005.
[47]	P. Pan, B. Zhu, W. Kai, T. Dong, and Y. Inoue, “Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly (L‐lactide),” Journal of Applied Polymer Science, vol. 107, no. 1, pp. 54-62, 2008.
[48]	K. S. Kim, I. J. Chin, J. S. Yoon, H. J. Choi, D. C. Lee, and K. H. Lee, “Crystallization behavior and mechanical properties of poly (ethylene oxide)/poly (L‐lactide)/poly (vinyl acetate) blends,” Journal of applied polymer science, vol. 82, no. 14, pp. 3618-3626, 2001.
[49]	M. Sheth, R. A. Kumar, V. Davé, R. A. Gross, and S. P. McCarthy, “Biodegradable polymer blends of poly (lactic acid) and poly (ethylene glycol),” Journal of applied polymer science, vol. 66, no. 8, pp. 1495-1505, 1997.
[50]	C.-C. Chao, C.-K. Chen, Y.-W. Chiang, and R.-M. Ho, “Banded spherulites in PS− PLLA chiral block copolymers,” Macromolecules, vol. 41, no. 11, pp. 3949-3956, 2008.
[51]	J. Xu, B.-H. Guo, J.-J. Zhou, L. Li, J. Wu, and M. Kowalczuk, “Observation of banded spherulites in pure poly (l-lactide) and its miscible blends with amorphous polymers,” Polymer, vol. 46, no. 21, pp. 9176-9185, 2005.
[52]	H. Zhou, T. B. Green, and Y. L. Joo, “The thermal effects on electrospinning of polylactic acid melts,” Polymer, vol. 47, no. 21, pp. 7497-7505, 2006.
[53]	B. W. Chieng, I. N. Azowa, W. M. Zin, W. Yunus, and M. Z. Hussein, "Effects of Graphene Nanopletelets on Poly (Lactic Acid)/Poly (Ethylene Glycol) Polymer Nanocomposites." pp. 136-139.
[54]	N. Ljungberg, and B. Wesslen, “Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging,” Polymer, vol. 44, no. 25, pp. 7679-7688, 2003.
[55]	R. M. Rasal, and D. E. Hirt, “Poly (lactic acid) toughening with a better balance of properties,” Macromolecular Materials and Engineering, vol. 295, no. 3, pp. 204-209, 2010.
[56]	O. Martin, and L. Averous, “Poly (lactic acid): plasticization and properties of biodegradable multiphase systems,” Polymer, vol. 42, no. 14, pp. 6209-6219, 2001.
[57]	S. Yamasaki, Y. Ohashi, H. Tsutsumi, and K. Tsujii, “The aggregated higher-structure of 1, 3: 2, 4-di-O-benzylidene-D-sorbitol in organic gels,” Bulletin of the Chemical Society of Japan, vol. 68, no. 1, pp. 146-151, 1995.
[58]	L. H. Sperling, Introduction to physical polymer science: John Wiley & Sons, 2005.
[59]	T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya, M. Nakano, H. Okamoto, J. Kawada, A. Usuki, and N. Honma, “Crystallization and melting behavior of poly (L-lactic acid),” Macromolecules, vol. 40, no. 26, pp. 9463-9469, 2007.
[60]	J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, "The rate of crystallization of linear polymers with chain folding," Treatise on solid state chemistry, pp. 497-614: Springer, 1976.
[61]	F. Yuan, H.-Z. Chen, H.-Y. Yang, H.-Y. Li, and M. Wang, “PAN–PEO solid polymer electrolytes with high ionic conductivity,” Materials chemistry and physics, vol. 89, no. 2-3, pp. 390-394, 2005.
[62]	R. Tanaka, M. Sakurai, H. Sekiguchi, H. Mori, T. Murayama, and T. Ooyama, “Lithium ion conductivity in polyoxyethylene/polyethylenimine blends,” Electrochimica acta, vol. 46, no. 10-11, pp. 1709-1715, 2001.
[63]	P. J. Li, J. H. Wu, M. L. Huang, Z. Lan, Q. Li, and S. Kang, “The application of P (MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature,” Electrochimica acta, vol. 53, no. 2, pp. 903-908, 2007.
[64]	A. M. Stephan, “Review on gel polymer electrolytes for lithium batteries,” European polymer journal, vol. 42, no. 1, pp. 21-42, 2006.
[65]	T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. L. Allen, E. Kioupakis, D. J. Siegel, and J. Sakamoto, “Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12,” ACS Energy Letters, vol. 2, no. 2, pp. 462-468, 2017.
[66]	J. Kasnatscheew, B. Streipert, S. Röser, R. Wagner, I. C. Laskovic, and M. Winter, “Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies,” Physical Chemistry Chemical Physics, vol. 19, no. 24, pp. 16078-16086, 2017.
[67]	H. Nithya, S. Selvasekarapandian, P. C. Selvin, D. A. Kumar, and J. Kawamura, “Effect of propylene carbonate and dimethylformamide on ionic conductivity of P (ECH-EO) based polymer electrolyte,” Electrochimica Acta, vol. 66, pp. 110-120, 2012.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信