§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1109201714231900
DOI 10.6846/TKU.2017.00366
論文名稱(中文) 近θ狀態合成奈米核殼高分子粒子的研究
論文名稱(英文) Study on Near θ-state synthesis of Nano-particulate Core-shell Polymer
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 邱奕傑
研究生(英文) YI-CHIEH CHIU
學號 604400274
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-07-18
論文頁數 114頁
口試委員 指導教授 - 林達鎔
委員 - 邱文英
委員 - 董崇民
委員 - 林達鎔
關鍵字(中) 三羥甲基丙烷三丙烯酸酯(TMPTA)
2-丙烯醯胺甲基丙烷磺酸(AMPS)
高分子電解質
核殼顆粒
關鍵字(英) 1,1,1-Trimethylolpropane triacrylate(TMPTA)
2-Acrylamido-2-methyl-1-propane sulfonic acid(AMPS)
Polymer electrolyte
core-shell particles
第三語言關鍵字
學科別分類
中文摘要
合成高分子電解質的遠期目標,顆粒高分子的直徑範圍為20~50nm。目前,已經可以合成的顆粒大小約為50~200nm。本研究工作主要探討的主題為:避免因為核粒子間的凝聚行為,以及凝聚後的化學鍵結反應,產生不規則的顆粒形態,粒徑分佈不均與過寬等現象,探討反應系統的組成與濃度、起始劑濃度、光起始反應照光週期的調整、混合溶劑系統的組成等,對於沉澱聚合之成核與成長現象的控制與影響。
本研究以單體為具備三個雙鍵官能基的TMPTA(1,1,1-Trimethylolpropane triacrylate, 三羥甲基丙烷三丙烯酸酯)為核心的主要成分,並作為殼層的交聯劑。混合溶劑系統主要為異丙醇與水的混合溶液,製備合成高交聯密度的核心高分子微粒子。
殼層則以AMPS(2-Acrylamido-2-methyl-1-propane sulfonic acid, 2-丙烯醯胺甲基丙烷磺酸),為主要單體。適當量的殼層單體AMPS(RMm = AMPS莫耳數/TMPTA莫耳數 = 0.3)時,可以得到圓球形的高分子顆粒。IR檢測的結果,顯示TMPTA的雙鍵官能基幾乎完全反應,以及呈現AMPS的特性官能基SO3H的訊號峰(1040cm-1),證明此合成接枝反應方式的可行性。
英文摘要
The long-term goal of polymer electrolyte synthesis, particle diameter range of 20 ~ 50nm. At present, the size of the particles that can be synthesized is about 50 to 200 nm. The main work of this research is to avoid the phenomenon of agglomeration between nuclear particles and the chemical bonding reaction after aggregation, resulting in irregular particle morphology, uneven distribution of particle size distribution and too wide, to discuss the composition of the reaction system and Concentration, concentration of initiating agent, adjustment of photoperiodic reaction time, composition of mixed solvent system, control and influence of nucleation and growth of precipitation polymerization.
In this study, TMPTA (1,1,1-Trimethylolpropane triacrylate) with three double bond functional groups was used as the main component of the core and used as a crosslinking agent for shell. The mixed solvent system is mainly mixed solution of isopropanol and water to prepare high molecular weight polymer particles with high cross-linking density.
Shell is AMPS (2-Acrylamido-2-methyl-1-propane sulfonic acid), as the main monomer. When the appropriate amount of the shell monomer AMPS (RMm = AMPS / TMPTA = 0.3), spherical polymer particles can be obtained. The results of IR detection show that the double bond functional groups of TMPTA are almost completely reacted and the signal peaks (1040 cm-1) of the characteristic functional groups SO3H exhibiting AMPS demonstrate the feasibility of this synthetic graft reaction.
第三語言摘要
論文目次
目錄
致謝 .......................................................................................................................... I
中文摘要 ......................................................................................................................... II
英文摘要 ....................................................................................................................... III
目錄 ....................................................................................................................... IV
圖目錄 ...................................................................................................................... VII
表目錄 ........................................................................................................................ X
第1章 研究背景與目的................................................................................................... 1
1.1前言 ................................................................................................................. 1
1.2研究目的............................................................................................................... 2
第2章 接近θ狀態-核殼結構高分子電解質微粒子製備與檢測 ................................. 3
2.1文獻回顧............................................................................................................... 3
2.1.1高分子微粒子................................................................................................ 3
2.1.2高分子微粒子的製備.................................................................................... 6
2.1.2.1沉澱聚合微粒子的機制......................................................................... 6
2.1.3核殼微粒子的製備...................................................................................... 10
2.1.4製備高分子微粒子的程序控制條件.......................................................... 13
2.1.4.1單體濃度對製備微粒子的影響........................................................... 13
2.1.4.2溶劑對製備微粒子的影響................................................................... 14
2.1.5核殼結構高分子電解質微粒子.................................................................. 17
2.1.6接近θ狀態下合成核殼結構高分子電解質微粒子 .................................. 17
第3章 實驗流程與方法................................................................................................. 18
3.1藥品 ............................................................................................................... 18
3.2實驗設備與檢測儀器......................................................................................... 21
3.3實驗流程............................................................................................................. 31
3.3.1實驗前準備.................................................................................................. 31
3.3.2 Poly(TMPTA)微粒子的合成 ...................................................................... 31
3.3.3 Poly(TMPTA)-Poly(AMPS)微粒子的合成 ................................................ 31
3.4純化流程............................................................................................................. 31
第4章 結果與討論......................................................................................................... 32
4.1 Poly(TMPTA)高分子微粒子 ............................................................................. 32
4.1.1反應時間對合成Poly(TMPTA)微粒子的影響 ......................................... 33
4.1.2探討τd對一階段合成反應的影響 ............................................................. 36
4.2加入調整溶劑使反應溶液接近θ state的探討 ................................................ 42
4.3 Core-Poly(TMPTA)-Shell-Poly(AMPS)微粒子 ................................................ 45
4.3.1不同含量的AMPS與第二階段反應時間對於兩階段聚合反應的影響 . 45
4.3.2接近θ state溶劑組成對兩階段合成反應的影響 ..................................... 51
4.3.3探討τd對兩階段合成反應的影響 ............................................................. 56
4.3.4 τ1=2時的兩階段合成反應 ......................................................................... 60
4.3.5 τ1=1小時與τ1=2小時的兩階段合成反應的比較 .................................... 64
4.4紅外線光譜(FTIR)的檢測 ................................................................................. 66
4.4.1 Poly(TMPTA)紅外線光譜 .......................................................................... 66
4.4.2 Core-Poly(TMPTA)-Shell-Poly(AMPS)紅外線光譜 ................................. 68
4.4.2.1不同含量的AMPS與第二階段反應時間之IR檢測 ........................ 68
4.4.2.2固定調整溶劑總量時,水與丙酮比例不同之IR光譜檢測............. 70
4.4.2.3不同τd之IR檢測 ................................................................................ 72
4.5 Core-Poly(TMPTA)-Shell-Poly(AMPS)J微粒子產率與滴定檢測 .................. 74
4.5.1 不同τ2與AMPS添加量對於產率及AMPS莫耳分率(RPn)的影響 ..... 74
4.5.2 不同調整溶劑比例,對於產率及RPn的影響 ........................................ 76
4.5.3 不同τd,對於產率及RPn的影響 ............................................................ 77
4.5.4 當τ1=2小時不同τd時的產率及RPn ....................................................... 78
4.5.5 調整溶劑為40g水、30g丙酮時,不同第一階段反應時間τ1,對於
產率及RPn的影響 .............................................................................................. 78
4.5.6不同第一階段反應時間τ1,且在最接近θ state時進行兩階段聚合反
應,對於產率及RPn的影響 .............................................................................. 79
4.6微分掃描熱卡儀測試 (DSC) ............................................................................ 80
4.7導電率測試......................................................................................................... 83
4.8減緩高分子微粒子過於凝聚之兩階段合成反應............................................. 86
4.8.1再次遠離,減緩顆粒凝聚之core-Poly(TMPTA)-shell-Poly(AMPS)微
粒子的合成 ................................................................................................... 88
4.8.2紅外線光譜檢測.......................................................................................... 93
4.8.3產率與滴定檢測.......................................................................................... 94
4.8.4不同τd、AMPS添加流程(流程一、流程二;圖)的比較 ....................... 95
4.8.5 I1d051與先前合成之反應樣品(D-2-5、D-2-11)的差異 .......................... 96
第5章 結論..................................................................................................................... 98
參考文獻 ..................................................................................................................... 100
附錄 ..................................................................................................................... 104
附錄1 符號說明.................................................................................................... 104
附錄2 溶劑的溶解度參數表................................................................................ 105
附錄3 高分子的溶解度參數表............................................................................ 107
附錄4 動態光散射DLS ....................................................................................... 108
附錄5 TEM圖 ........................................................................................................113
圖目錄
圖4.1 D-2-{1}~D-2-{4}反應後溶液 ............................................................................... 34
圖4.2 D-2-{1}~D-2-{4}產物純化後,分散於丙酮中 ................................................... 34
圖4.3 D-2-{3}、D-2-{4}Poly(TMPTA)微粒子SEM圖 ............................................... 35
圖4.4 τ1=1且不同τd,Poly(TMPTA)微粒子SEM圖 .................................................. 38
圖4.5 τ1=2且不同τd,Poly(TMPTA)微粒子SEM圖 .................................................. 39
圖4.6經過不同τd之Poly(TMPTA)純化後,分散於丙酮中 ....................................... 41
圖4.7.1 Core-Poly(TMPTA)-shell-Poly(AMPS) 純化後SEM圖-(1) ........................... 47
圖4.7.2 Core-Poly(TMPTA)-shell-Poly(AMPS) 純化後SEM圖-(2) ........................... 48
圖4.8 Core-Poly(TMPTA)-shell-Poly(AMPS) 純化後TEM圖 .................................... 49
圖4.9 D-2-1~D-2-9產物純化後,分散於丙酮中 ......................................................... 50
圖4.10固定調整溶劑總克數,不同水與丙酮組成比例的Poly(TMPTA)-Poly(AMPS) 微粒子SEM圖 ................................................................. 53
圖4.11固定調整溶劑中水的重量,添加不同丙酮克數的Poly(TMPTA)-Poly(AMPS) 微粒子SEM圖 ................................................................. 54
圖4.12不同調整溶劑比例,兩階段光聚合反應的產物,純化後分散於丙酮中...... 55
圖4.13調整溶劑為40g水、30g丙酮,不同τd的Poly(TMPTA)-Poly(AMPS) 微粒子SEM圖 ............................................................................................................ 57
圖4.14調整溶劑為50g水、5g丙酮,不同τd的Poly(TMPTA)-Poly(AMPS) 微粒子SEM圖 ................................................................................................................ 58
圖4.15不同τd,兩階段光聚合反應的產物,純化後分散於丙酮中 .......................... 59
圖4.16第一階段反應時間τ1=2小時,Poly(TMPTA)-Poly(AMPS) 微粒子SEM圖
....................................................................................................................... 62
圖4.17 τ1=2小時,兩階段光聚合反應的產物,純化後分散於丙酮中 ..................... 63
圖4.18不同τ1,Poly(TMPTA)-Poly(AMPS)微粒子SEM圖 ...................................... 65
圖4.19 TMPTA單體紅外線光譜圖 ............................................................................... 66
圖4.20 Poly(TMPTA)微粒子紅外線光譜圖 .................................................................. 66
圖4.21 TMPTA與Poly(TMPTA)紅外線光譜圖 ........................................................... 67
圖4.22 AMPS與Poly(AMPS)紅外線光譜圖 ................................................................ 68
圖4.23 D-2-1~D-2-9 core-Poly(TMPTA)-shell-Poly(AMPS)微粒子紅外線光譜圖 ..... 69
圖4.24 D-2-10~D-2-12 core-Poly(TMPTA)-shell-Poly(AMPS)微粒子紅外線光譜圖 . 69
圖4.25 D-2-4~D-2-6、D-2-10~D-2-12紅外線光譜圖 .................................................. 69
圖4.26調整溶劑為70g時,不同水與丙酮比例的樣品之IR光譜圖........................ 70
圖4.27調整溶劑中水為50g時,不同丙酮添加量的樣品之IR光譜圖.................... 71
圖4.28調整溶劑為40g水與30g丙酮的樣品之IR光譜圖........................................ 72
圖4.29調整溶劑為50g水與5g丙酮的樣品之IR光譜圖.......................................... 73
圖4.30接近θ state調整溶劑為40g水30g丙酮,第二階段聚合反應後之DSC (一次升溫) ................................................................................................................. 81
圖4.31接近θ state調整溶劑為50g水5g丙酮,第二階段聚合反應後之DSC (一次升溫) ................................................................................................................. 81
圖4.32接近θ state調整溶劑為40g水30g丙酮,第二階段聚合反應後之DSC (二次升溫) ................................................................................................................. 82
圖4.33接近θ state調整溶劑為50g水5g丙酮,第二階段聚合反應後之DSC (二次升溫) ................................................................................................................. 82
圖4.34交流阻抗測試流程圖(1→2→3→4) ................................................................... 83
圖4.35減緩粒子過於凝聚現象之兩階段聚合反應示意圖-流程一 ............................ 87
圖4.36減緩粒子過於凝聚現象之兩階段聚合反應示意圖-流程二 ............................ 87
圖4.37加入IPA再遠離θ state,兩階段聚合反應的產物,純化後分散於丙酮中 .. 92
圖4.38 I5d051(上)、I3d051(中)、I1d051(下) 紅外線光譜圖 .................................... 93
圖4.39 I5d351(上)、I3d351(中)、I1d351(下) 紅外線光譜圖...................................... 93
圖4.40 I5d351A(上)、I3d351A(中)、I1d351A(下) 紅外線光譜圖 ............................. 93
圖4.41 D-2-5、I1d051、D-2-11 紅外線光譜圖 ........................................................... 97
表目錄
表4.1不同反應時間Poly(TMPTA)微粒子的合成 ....................................................... 33
表4.2 D-2-{1}~D-2-{4}光聚合反應過程中,反應溶液的變化情形 ........................... 34
表4.3.1經過不照光持續攪拌,不同τd之Poly(TMPTA)的合成-(1) .......................... 36
表4.3.2經過不照光持續攪拌,不同τd之Poly(TMPTA)的合成-(2) .......................... 37
表4.4經過不照光持續攪拌,一階段光聚合反應過程中,反應溶液的變化情形.... 40
表4.5.1 DLS檢測參數基準 ............................................................................................ 42
表4.5.2第一階段反應後加入調整溶劑,高分子在溶劑中的狀態變化過程............. 42
表4.5.3以DLS量測反應溶液加入非溶劑,粒徑的變化情形 ................................... 44
表4.6 Core-Poly(TMPAT)-shell-Poly(AMPS)合成之單體組成與反應條件 ................. 45
表4.7 D-2-1~D-2-12光聚合反應過程中,反應溶液的變化情形 ............................... 50
表4.8不同調整溶劑比例,兩階段聚合反應之單體組成與反應條件........................ 51
表4.9不同調整溶劑比例,兩階段光聚合反應過程中,反應溶液的變化情形........ 55
表4.10不同τd,兩階段聚合反應之單體組成與反應條件 .......................................... 56
表4.11不同τd,兩階段光聚合反應過程中,反應溶液的變化情形 .......................... 59
表4.12第一階段反應時間τ1=2小時,兩階段聚合反應之單體組成與反應條件 .... 60
表4.13第一階段反應時間τ1=2小時,兩階段光聚合反應過程中,反應溶液的變化情形 ................................................................................................................... 63
表4.14不同τ1,兩階段聚合反應之單體組成與反應條件 .......................................... 64
表4.15 TMPTA的紅外線光譜標定特官能基 ............................................................... 67
表4.16 AMPS的紅外線光譜標定特官能基 .................................................................. 68
表4.17.1不同τ1,與AMPS添加量,核殼微粒子的產率及AMPS莫耳分率 ......... 75
表4.17.2不同τ1,與AMPS添加量,核殼微粒子的產率及AMPS莫耳分率 ......... 75
表4.17.3核殼微粒子的TMPTA與AMPS轉化率 ...................................................... 75
表4.18.1不同調整溶劑比例,核殼微粒子的產率及AMPS莫耳分率-(1) ................ 76
表4.18.2不同調整溶劑比例,核殼微粒子的產率及AMPS莫耳分率-(2) ................ 76
表4.19.1調整溶劑為40g水、30g丙酮,不同τd,核殼微粒子的產率及AMPS莫耳分率-(1) ................................................................................................................. 77
表4.19.2調整溶劑為50g水、5g丙酮,不同τd,核殼微粒子的產率及AMPS莫耳分率-(2) ............................................................................................................. 77
表4.20 τ1=2小時,不同τd,核殼微粒子的產率及AMPS莫耳分率 ........................ 78
表4.21調整溶劑為40g水、30g丙酮,不同τ1,核殼微粒子的產率及AMPS莫耳分率 ............................................................................................................... 78
表4.22最接近θ state時,不同τ1,核殼微粒子的產率及AMPS莫耳分率 ............ 79
表4.23第二階段聚合反應後之玻璃轉移溫度(Tg) ...................................................... 80
表4.24.1 Core-Poly(TMPTA)-shell-Poly(AMPS)微粒子的交流阻抗 ........................... 84
表4.24.2 Core-Poly(TMPTA)-shell-Poly(AMPS)微粒子的導電率 ............................... 84
表4.24.3 D-2-4~D-2-6不同濃度的交流阻抗與導電率 ................................................ 85
表4.25接近θ state調整溶劑為50g水5g丙酮,進行兩階段聚合反應,隨時間增加溶液的變化狀態........................................................................................................... 86
表4.26.1加IPA再遠離θ state,兩階段聚合反應後之單體組成與反應條件(1)....... 88
表4.26.2加IPA再遠離θ state,兩階段聚合反應後之單體組成與反應條件(2)....... 89
表4.27加IPA再遠離θ state,兩階段聚合反應後之SEM、TEM圖........................ 90
表4.28加IPA再遠離θ state,兩階段聚合反應的微粒子粒徑大小 .......................... 91
表4.29.1加IPA再遠離θ state,兩階段聚合反應的溶液變化情形 ........................... 91
表4.29.2加IPA再遠離θ state,兩階段聚合反應的溶液變化情形 ........................... 91
表4.30加IPA再遠離θ state,兩階段聚合反應的微粒子產率及RPn ...................... 94
表4.31 I1d051、I1d351與I1d351A微粒子的檢測比較表 .......................................... 95
表4.32 I1d051與D-2-5、D-2-11微粒子的檢測比較表 .............................................. 96
參考文獻
參考文獻
【1】 Schachschal S., Balaceanu A., Melian C., Demco D. E., Eckert T., Richtering W., Pich A., "Polyampholyte Microgels with anionic core and cationic shell", Macromolecules, 2010, 43, 4331-4339.
【2】 羅祥林編著,功能高分子材料,化学工業出版社,2010。
【3】 Jeffrey S. Downey, Geoff McIsaac, Randy S. Frank, Harald D. H. Sto1ver, Macromolecules 2001, 34, 4534-4541.
【4】 Qing Yan, Yaowen Bai, Zhe Meng, Wantai Yang, J. Phys. Chem. B 2008, 112, 6914–6922.
【5】 George Odian, "Principles of polymerization", 4th Ed., pp. 287~289.
【6】 Antonio L. Medina-Castillo, Jorge F. Fernandez-Sanchez, Antonio Segura-Carretero, Alberto Fernandez-Gutierrez, Macromolecules 2010, 43, 5804–5813.
【7】 Jin J. M., Lee J. M., Ha M. H., Lee K. Choe S., "Highly crosslinked poly(glycidyl methacrylate-co-divinyl benzene) particles by precipitation polymerization", Polymer, 20067, 48, 3107-3115.
【8】 LiméF., Irgum K., “Monodisperse polymeric particles by photoinitiated precipitation polymerization”, Macromolecules, 2007, 40, 1962-1968.
【9】 LiméF., Irgum K., “Preparation of divinylbenzene and divinylbenzene-co-Glycidyl methacrylate particles by photoinitiated precipitation polymerization in different solvent mixtures”, Macromolecules, 2009, 42, 4436-4442.
【10】 Blackburn W. H., Lyon L. A., “Size-controlled synthesis of monodisperse core/shell nanogels”, Colloid Polym.Sci., 2008, 286, 563-569.
【11】 Koprinarov, A. P. Hitchcock, W. H. Li, Y. M. Heng, H. D. H. Sto1ver, Macromolecules 2001, 34, 4424-4429.
101
【12】 Guoliang Li, Gang Liu, E. T. Kang, K. G. Neoh, Xinlin Yang, Langmuir 2008, 24, 9050-9055.
【13】 K. F. Ni, G. R. Shan, Z. X. Weng, N. Sheibat-Othman, G. Fevotte, F. Lefebvre, E. Bourgeat-Lami, Macromolecules 2005, 38, 7321-7329.
【14】 C. M. Hansen, Solubility in the coatings industry, Sksnd. Tidskr. Faerg. Lack, 17, 69. 1971.
【15】 Scott, K.; Taama, W.M.; Argyropoulos, P.; J. Membr. Sci., 2000, 171, 119.
【16】 Shen, M.; Roy, S.; Kuhlmann, J. W.; Scott, K.; Lovell, K.; Hrsfall, J.A.; J. Membr. Sci., 2005, 251,121.
【17】 Saarinen, V.; Kallio, T.; Paronen, M.; Tikkanen, P.; Rauhala, E.; Kontturi, K.; Electrochem. Acta, 2005, 50, 3453.
【18】 S. Shi, S. Kuroda, K. Hosoi, H. Kubota, "Poly(methyl methacrylate)/polyacrylonitrile composite latex particles with a novel surface morphology" ,Polymer 46 (2005) 3567–3570
【19】 Vanessa Zamora-Mora, Mar Fernández-Gutiérrez, Julio San Román,Gerardo Goya, Rebeca Hernández, Carmen Mijangos, Magnetic core–shell chitosan nanoparticles: Rheologicalcharacterization and hyperthermia application , Carbohydrate Polymers 102 (2014) 691– 698
【20】 Matthias Karg · Stefan Wellert · Sylvain Prevost , Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core , Colloid Polym Sci (2011) 289:699–709
【21】 N. Pérez-Moral, A.G. Mayes , Comparative study of imprinted polymer particles prepared by different polymerisation methods , Analytica Chimica Acta 504 (2004) 15–21
【22】 Wenqin Wang,Wenjuan Liu,Gregory J. Tudryn Ralph H. Colby,and Karen I. Winey, , Multi-Length Scale Morphology of Poly(ethylene oxide)-Based Sulfonate Ionomers with Alkali Cations at Room Temperature , Macromolecules 2010, 43, 4223–4229
102
【23】 Liting Liu,, Meng Yu,Ying Zhang, Changchun Wang, and Haojie Lu , Hydrazide Functionalized Core−Shell Magnetic Nanocomposites for Highly Specific Enrichment of N‑Glycopeptides , ACS Appl. Mater. Interfaces 2014, 6, 7823−7832
【24】 Ke Yang, Xingyi Huang, Ming Zhu, Liyuan Xie, Toshikatsu Tanaka, and Pingkai Jiang, Combining RAFT Polymerization and Thiol−Ene Click Reaction for Core−Shell Structured Polymer@BaTiO3 Nanodielectrics with High Dielectric Constant, Low Dielectric Loss, and High Energy Storage Capability , ACS Appl. Mater. Interfaces 2014, 6, 1812−1822
【25】 Fredrik Lime´ and Knut Irgum, Fredrik Lime´ and Knut Irgum Department of Chemistry, Umeå UniVersity, S-90187 Umeå, Sweden ReceiVed August 10, 2006; ReVised Manuscript ReceiVed January 18, 2007 , Macromolecules 2007, 40, 1962-1968
【26】 Jingshuai Jiang, Ying Zhang, Xianzhi Guo, and Huiqi Zhang , Narrow or Monodisperse, Highly Cross-Linked, and “Living” Polymer Microspheres by Atom Transfer Radical Precipitation Polymerization , Macromolecules 2011, 44, 5893–5904
【27】 Aguiar, S. Gonza´ lez-Villegas, M. Rabelero, E. Mendiza´ bal, and J. E. Puig* , Core-Shell Polymers with Improved Mechanical Properties Prepared by Microemulsion Polymerization , Macromolecules 1999, 32, 6767-6771 6767
【28】 Juan A. Gonzalez-Leon, Sang-Woog Ryu, Sheldon A. Hewlett, Sarah H. Ibrahim, and Anne M. Mayes*, Core-Shell Polymer Nanoparticles for Baroplastic Processing , Macromolecules 2005, 38, 8036-8044
【29】 Jian-Feng Zhang, Dong-Zhi Yang, Fei Xu, Zi-Ping Zhang, Rui-Xue Yin, and Jun Nie* , Electrospun Core-Shell Structure Nanofibers from Homogeneous Solution of Poly(ethylene oxide)/Chitosan , Macromolecules 2009, 42, 5278–5284
103
【30】 Qisheng Huo, Jun Liu,*Li-Qiong Wang, Yingbing Jiang,Timothy N. Lambert, and Erica Fang, A New Class of Silica Cross-Linked Micellar Core-Shell Nanoparticles , J. AM. CHEM. SOC. 2006, 128, 6447-6453
【31】 Didier Juhu6t and Jacques Lanp , Film Formation from Dispersion of Core-Shell Latex Particles , Macromolecules 1996,28, 1306- 1308
【32】 Jan-Erik Jo1nsson,† Ola J. Karlsson, Helen Hassander, and Bertil To1 rnell , Shell-Layer Stability in Core-Shell Particles Prepared with Different Initiators , Macromolecules, Vol. 34, No. 5, 2001
【33】 M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna , Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals , Langmuir 2001, 17, 903-907 903
【34】 Qiwei Tian, Junqing Hu, Yihan Zhu, Rujia Zou, Zhigang Chen, Shiping Yang, Runwei Li, Qianqian Su, Yu Han, and Xiaogang Liu* , Sub-10 nm Fe3O4@Cu2−xS Core−Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy , ja4013497 | J. Am. Chem. Soc. 2013, 135, 8571−8577
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信