淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1109200713135300
中文論文名稱 以實場量測方法探討斜張橋氣動力行為
英文論文名稱 Study of Aerodynamic Behavior of Cable-Stayed Bridge Using Field Measurements
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 蕭紋欣
研究生英文姓名 Wen-Shin Shiau
學號 694310458
學位類別 碩士
語文別 中文
口試日期 2007-07-17
論文頁數 85頁
口試委員 指導教授-林堉溢
委員-陳振華
委員-鄭啟明
中文關鍵字 斜張橋  實場量測  頻率域分解  隨機遞減法 
英文關鍵字 cable-stayed bridge  field measurements  frequency domain decomposition  random decrement 
學科別分類 學科別應用科學土木工程及建築
中文摘要 長跨徑橋梁之受風影響甚劇,而風洞實驗為目前認為可靠的研究方法,但最終仍然需要以實場量測來驗證其準確性。本文以目前國內最長之斜張橋-高屏溪橋為標的,於其主跨二分之一處裝置三維風速計與速度計,主跨三分之一處裝設速度計,以風速計量測颱風經過時週遭之風場特性。同時以速度計量測橋梁速度反應,藉此研究橋梁受風之效應。
本文利用凱米與寶發颱風經過時所紀錄到的資料進行研究,風場特性分析包括分析其平均風向、平均風速、紊流強度、紊流長度尺度及風速頻譜。結構反應則分別使用FDD法與多自由度RD法分析其結構動力特性,包括自然頻率、阻尼比與模態。結果顯示紊流強度隨著風速提高而減小,而順風向紊流長度尺度有隨風速增加有變大的趨勢,風速頻譜則和Karman的經驗公式吻合。由於監測到的平均風速不大,所識別的橋梁振動頻率對於風速變化並不敏感,而橋梁阻尼識別的結果較為散亂。最後將分析得之風場特性與結構動力特性代入數值模式中模擬橋梁抖振抖振反應,並與實場量測及風洞實驗的結果作比較。利用識別的結構參數代入數值模式的結果與實場監測的結果在托曳向的差異較大,約有52%的差異,而垂直與扭轉向則分別有44%與12% 的差異。
英文摘要 The effect of wind excitation on long-span bridges is extremely significant. Such effect is usually studied and analyzed through wind tunnel test which is one of the most reliable methods. However, the predicted results should be verified by field measurements. This study chose the longest cable-stayed bridge in Taiwan - Kao-Ping-Hsi Bridge as the target for field measurements. Two 3D anemometers were installed at the middle point of the longer span to measure the wind characteristics. Two sets of speedometers were respectively installed at the middle point and the one third point of the longer span to measure the dynamic responses of the bridge. Each set of speedometers contain two in vertical direction and one in drag direction. All the speedometers were positioned inside of the box girder.

The measured data including velocity, wind speed and wind direction were continuously recorded during Typhoon Bopha and Typhoon Kaemi attacking Taiwan in 2006. Detailed analysis of these data was conducted in this study. The analysis of wind characteristics includes mean wind direction, mean wind speed, turbulence intensity, turbulence length scale and spectra of wind fluctuations. The dynamic parameters of the targeted bridge, including modal frequencies, damping ratios and mode shapes, were identified by the methods of FDD and RD, respectively. The analyzed results show that the turbulence intensity decreases as the mean wind speed increases. The turbulence length scale in along wind direction increases with the mean wind speed. The measured wind spectrum agrees well with Von Karman spectrum. Since the wind speed is not large enough, the vibration frequencies are not sensitive to the mean wind speed and nearly remain constant. However, the damping rations are varied dispersedly. The identified structural frequencies and damping ratios and the fitted wind spectrum were substituted into the numerical model to evaluate the buffeting responses. The results from the re-analysis, the field measurements and the wind tunnel tests are compared. The comparative study indicates that the differences between the numerical results obtained from the re-analysis and the results analyzed from the field measurements are 12-52%. The discrepancy is larger in drag direction.
論文目次 誌謝...................................................I
摘要..................................................II
Abstract.............................................III
目錄..................................................IV
表目錄................................................VI
圖目錄...............................................VII
第一章 緒論............................................1
1.1前言................................................1
1.2文獻回顧............................................2
1.3研究內容............................................4
1.4論文架構............................................4
第二章 理論背景........................................6
2.1 前言...............................................6
2.2 風場分析...........................................6
2.2.1 平均風速.........................................6
2.2.2 平均風向.........................................6
2.2.3 紊流強度(Turbulence Intensity).................6
2.2.4 紊流長度尺度(Turbulence Length Scale)..........7
2.2.5 風速擾動頻譜(Spectra of Velocity Fluctuations).7
2.2.6 風速擾動交頻譜(Cross-Spectra of Velocity
Fluctuations)...................................9
2.3 FDD識別理論.......................................11
2.3.1 FDD識別之理論背景...............................11
2.3.2 FDD識別流程.....................................13
2.4 隨機遞減法識別理論................................14
2.4.1 隨機遞減法......................................14
2.4.2 單自由度系統....................................15
2.4.3多自由度系統.....................................17
第三章 長跨徑橋梁受風反應之頻率域分析.................19
3.1前言...............................................19
3.2橋梁受風之氣動力效應...............................19
3.2.1 顫振效應(Flutter).............................19
3.2.2 抖振效應(Buffeting)...........................20
3.2.3 扭轉不穩定(Torsion Instability)...............20
3.2.4 渦流振動(Vortex Shedding).....................20
3.2.5 風馳效應(Galloping)...........................21
3.3橋梁受風反應的分析模式.............................22
3.3.1 自身擾動力(Self-Excited Force) .................22
3.3.2 抖振力(Buffeting Force).........................23
3.4橋體運動方程式之建立...............................24
3.5橋梁受風載重之位移反應.............................26
第四章 實場量測之分析與結果...........................29
4.1 前言..............................................29
4.2 高屏溪橋地理位置與幾何形狀........................29
3.3 現地儀器配置......................................29
4.4 風速計率定........................................30
4.5 風場分析..........................................30
4.6 結構特性分析......................................33
4.6.1 以FDD法識別結構參數.............................33
4.5.2 以多自由度隨機遞減法識別結構參數................34
4.6分析結果與比較.....................................35
4.6.1風場分析.........................................35
4.6.2結構動力參數分析.................................35
4.6.3氣動力阻尼的評估.................................36
第五章 風洞實驗、實場量測與數值計算...................38
5.1前言...............................................38
5.2建立數值模型.......................................38
5.2.1 斷面性質........................................38
5.2.2結構特性模擬.....................................38
5.3氣動力阻尼的評估...................................39
5.4抖振反應分析.......................................39
5.5結果討論與比較.....................................41
第六章 結論與建議.....................................43
6.1 結論..............................................43
6.2 建議..............................................44
參考文獻..............................................45

表目錄
表3-1 氣動力參數代表的意義 50
表4-1風速計量測範圍 50
表4-2風速計率定公式 51
表4-3寶發颱風風向22.5°~67.5°各分量上紊流長度及紊流長度尺度 51
表4-4寶發颱風風向22.5°~67.5°之紊流頻譜參數 51
表4-5 FDD、MRD與微動試驗識別之自然頻率(1Hz以下)比較 52
表4-6 FDD與MRD識別無風狀態下之阻尼比(1Hz以下)比較(%) 52
表5-1 高屏溪橋橋面斷面性質 53
表5-2高屏溪橋橋塔斷面性質 53
表5-3高屏溪橋鋼纜材料性質 54
表5-4 高屏溪橋數值模型前十個振態 54
表5-5 數值計算實場與風洞實驗之條件說明 55
表5-6 風速9 m/s數值計算與實場反應比較 55

圖目錄
圖1-1 Tacoma Narrow Bridge 發生顫振(flutter)的情形 56
圖3-1扭轉不穩定之幾何示意圖 57
圖3-2橋面版節點與單位長度受風力之示意圖 57
圖4-1高屏溪橋之幾何形狀與鋼纜編號 58
圖4-2高屏溪橋長期監測系統架設位置圖 59
圖4-3高屏溪橋長期監測系統架設剖面圖 59
圖4-4高屏溪橋長期風力監測系統架構圖 60
圖4-5高屏溪橋長期振動監測系統架構圖 60
圖4-7振動量測的自由度設定圖 61
圖4-8率定公式圖 62
圖4-9 風場分析流程圖 63
圖4-10寶發颱風侵颱期間10分鐘平均風速歷時 63
圖4-11寶發颱風侵颱期間10分鐘平均風向歷時 64
圖4-12寶發颱風侵颱期間10分鐘平均風向分佈圖 64
圖4-13寶發颱風8月9日03:50 ~ 04:00風速歷時 65
圖4-14寶發颱風8月9日03:50 ~ 04:00三分量風速歷時 65
圖4-15寶發颱風8月9日03:50 ~ 04:00 順風向風速分佈概率 66
圖4-16寶發颱風8月9日03:50 ~ 04:00 橫風向風速分佈概率 66
圖4-17寶發颱風8月9日03:50 ~ 04:00 垂直向風速分佈概率 66
圖4-18寶發颱風8月9日03:50 ~04:50順風向紊流頻譜 67
圖4-19寶發颱風8月9日03:50 ~04:50垂直向紊流頻譜 67
圖4-20 FDD法分析流程圖 68
圖4-21 多自由度RD法分析流程圖 68
圖4-22寶發颱風8月9日03:50 ~04:50振動資料奇異值圖 69
圖4-23接近無風狀態(>1m/s)下之奇異值圖 69
圖4-24寶發颱風8月9日03:50 ~04:50 1/2跨垂直向RD訊號 70
圖4-25寶發颱風8月9日03:50 ~04:50 1/2跨扭轉向RD訊號 70
圖4-26寶發颱風8月9日03:50 ~04:50 1/2跨水平向RD訊號 71
圖4-27寶發颱風8月9日03:50 ~04:50 1/3跨垂直向RD訊號 71
圖4-28寶發颱風8月9日03:50 ~04:50 1/3跨扭轉向RD訊號 72
圖4-29寶發颱風8月9日03:50 ~04:50 1/3跨水平向RD訊號 72
圖4-30寶發颱風風向22.5°~67.5° 紊流強度與風速的關係 73
圖4-31寶發颱風風向22.5°~67.5° 紊流長度尺度與風速的關係 73
圖4-32 各方向第一振態所識別之風速與振動頻率之關係 74
圖4-33 各方向第一振態所識別之風速與識別阻尼比之關係 75
圖5-1高屏溪橋塔立面圖 76
圖5-2 樑元素之自由度編號 76
圖5-3桁架元素之自由度編號 77
圖5-4 高屏溪橋有限元素數值模型 77
圖5-5 有限元素分析之mode Shape 78
圖5-6 各方向第一振態所識別之風速與識別氣動力阻尼之關係 79
圖5-7 風速1 ~ 20 m/s橋面板1/2跨位置垂直反應RMS值 80
圖5-8 風速1 ~ 20 m/s橋面板1/3跨位置垂直反應RMS值 80
圖5-9 風速1 ~ 20 m/s橋面板1/2跨位置水平反應RMS值 81
圖5-10 風速1 ~ 20 m/s橋面板1/3跨位置水平反應RMS值 81
圖5-11 風速1 ~ 20 m/s橋面板1/2跨位置扭轉反應RMS值 82
圖5-12 風速1 ~ 20 m/s橋面板1/3跨位置扭轉反應RMS值 82
圖5-13 風速1 ~ 120 m/s橋面板1/2跨位置垂直反應RMS值 83
圖5-14 風速1 ~ 120 m/s橋面板1/3跨位置垂直反應RMS值 83
圖5-15 風速1 ~ 120 m/s橋面板1/2跨位置水平反應RMS值 84
圖5-16 風速1 ~ 120 m/s橋面板1/3跨位置水平反應RMS值 84
圖5-17 風速1 ~ 120 m/s橋面板1/2跨位置扭轉反應RMS值 85
圖5-18 風速1 ~ 120 m/s橋面板1/3跨位置扭轉反應RMS值 85
參考文獻 1.Scanlan, R. H. and Tomko, J. J.,“ Airfoil and Bridge Deck Flutter Derivatives”,Journal of Eng.Mech.Div., Vol.97, pp.1717-1737,(1971)
2.Bendat, J. S. and Piersol, A. G. “Engineering Applications of Correl-eration and Spectral Analysis.” ,(1993).
3.Brincker, R. ,Zhang, L.and Andersen P.,”Output-Only Modal Analysis by Frequency Domain Decomposition”. in Proc. Of the ISMA25 conference in Leuven. Septemember 2000.
4.Brian, M. and Mehdi, B.,” OMA test by SLDV with FEM Pre and POST-test Analysis.”, (2002).
5.Brincker, R. and Andersen P. ” Ambient response analysis of the Heritage Court Tower building structure” Proc 18th Int. Modal Analysis Conf.(San Antonio,TX,7-10 February,2000).
6.Brincker, R.,Frandsen J .and Andersen P. “Ambient response analysis of the Great Belt Bridge”Proc 18th Int. Modal Analysis Conf. (San Antonio,TX,7-10 February,2000).
7.Brincker, R., Carlos E., Ventura and Palle Andersen, “Damping Esti-mation by Frequency Domain Decomposition”,(2002).
8.Cole, H. A., “Methods and Apparatus for Measuring the Damping Characteristics of a Structure,” United States Patent No.3-620-069(1979)
9.Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., and Cook, M.F., “A Mathematical Basis for the Random Decrement Vibration Signat-ure Analysis Technique,” Journal of Mechanical Design, Vol 104, pp.307-313(1982).
10.Bedewi, N. E.,“ The Mathematical foundation of the Auto and Cross-Random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration,”Ph. D Thesis, University of Maryland College Park,(1986)
11.黃炯憲、葉錦勳、林憲忠、葉公贊,「隨機遞減法在微震量測之應用-比例阻尼系統」,國家地震工程研究中心研究報告NCREE-96-013,台北(1996)。
12.Delaunay,D., Grillaud,G.,”Field measurements of the wind-induced re-sponse of a cable stayed bridge: Validation of previsional studies ” Journal of Wind Engineering and Industrial Aerodynamics,Vol74-76,pp883-890,(1998).
13.J.B. Frandsen, ”Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge ”, Journal of Wind Engineering and Industrial Aerodynamics,Vol89 (2001) 95-129
14.TAMURA,Y.,ZHANG L., YOSHID A.,NAKATA S.and ITOH,T., ” Ambient Vibration Test and Modal Identification of Structures by FDD and 2DOF-RD Technique”.(2002).
15.Gurung,H.,Yamaguchi,T. Yukino, “ Identification and characterization of galloping of Tsuruga test line based on multi-channel modal anal-ysis of field data”, Journal of Wind Engineerring and Industrial Aer-odynamics, Vol 91,pp.903-942(2003).
16.John H.G. Macdonald, “Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements”, Journal of Wind Engineering and Industrial Aerodynamics Vol91 (2003) 1465–1483
17.Xu,Y. L.,Guo,W. W,”Dynamic Response of Suspension Bridge to Ty-phoon and Trains.I:Field Measurement Results” Journal of Structural Engineering,Vol. 133,pp733-9445(2007).
18.Kaimal et al., “Spectral Characteristics of Surface-Layer Turbulence” J. Royal Meteorol. Soc.,98,pp563-589, (1972)
19.Davenport, A G. ,“ The Spectrum of Horizontal Gustiness Near the Ground in High Winds,” J. Royal Meteorol. Soc.87,pp194-211,(1961).
20.Lumley, J. L. and Panofsky , H. A., The Structure of Atmospheric Turbulence, Wiley, New York (1964).
21.Davenport, A. G., “ The Dependence of Wind Load upon Metrorolo-gical Parameters, ” Proceedings of the International Research Seminar on Wind Effects on Buildings and Structure, University of Toronto, pp.19-82 (1968).
22.Vickery, B. J., “On the Reliability of Gust Loading Factors”,Proceed-ings of the Technical Meeting Concerning Wind Loads on Buildings and Structures, National Bureau of Standards, Building Science Series 30, Washington, D.C., pp. 93-104 (1970).
23.Shiotani, M., "Structure of Gusts in High Winds, Part 1-4", The Ph-ysical Sciences Laboratory, Nikon University, Furabashi, Chiba, Japan (1967-1971).
24.Kristensen , L. and Jensen, N. O., “Lateral Coherance in Isotropic Turbulence and in the Natural Wind ”, Bound. Layer Meterol., 17, pp.353-373(1979).
25.Blackadar,A.K., Panofsky H.A. and Fiedler,F., “ Investigation of the Turbulent Wind Field Below 500 Feet Altitude at the Eastern Test Range”, Florida, NASA CR-2438, National Aeronautics and Space Administration, Washington, D.C. (1974).
26.Bendat J S and Piersol A G, “ Random Data, Analysis and Measur-ement Procedures”(New York:Wiley), (1986).
27.Simiu, E. and Scanlan, R. H.,“Wind Effects on Structures, ”John Wiley & Sons. (1986).
28.Jones, A. J., Nicholas, P. and Scanlan, R. H., "Coupled Flutter and Buffeting Analysis of Long-Span Bridges", Journal of Structural Eng-ineering, ASCE, Vol. 122, No. 7, pp.716-725,(1996).
29.Scanlan, R. H., “ Interpreting Aeroelastic Models of Cable-Stayed Bridges, ” Journal of Engineering Mechanics,ASCE, Vol. 113(4), pp. 555-576 (1987).
30.Hikami, Y. and Shiraishi, N., “ Rain-Wind Induced Vibrations of Cable Stayed Bridges,” Journal of Wind Engineering and Industrial Aero-dynamics, Vol. 29, pp.409-418(1988).
31.Laneville, A., “ Effect of turbulence on wind-induced vibration of bluff cylinders”, Ph.D. Thesis, University of Britain Columbia.
32.Yoshimura, T., Savage, M. G., Tanaka, H. and Wakasa, T.,“A device for suppressing wake galloping of stayed-cables for cable-stayed bridges,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, pp.497-506(1993).
33.黃永昇,“微動訊號之處理與應用”,國立成功大學土木工程研究所碩士論文(2000).
34.Shiau,B-S.,“Velocity Spectra and Turbulence Statistics at the Northe-astern Coast of Taiwan under High-wind condition”,Journal of Wind Engineering and Industrial Aerodynamics, 88:139-151.(2000).
35.鄭啟明,”淡江大學風工程研究中心的近期工作:E-WIND與實場監測”,全球華人風工程論壇論文集.
36.A.G. Davenport, The response of slender, line-like structures to a gusty wind, Proceedings of the ICE,Vol. 23, 1962, pp. 389–408.
37.A.G. Davenport, Buffeting of a suspension bridge by storm winds, J. Struct. Division ASCE 88 (ST3)(1962) 233–264
38.何明錦,葉祥海,鄭啟明,「風洞實驗技術於土木建築構造物之應用與驗證計畫-橋梁風洞實驗」,內政部建築研究所,(2005)
39.中華民國交通部台灣區國道新建工程局,「第二高速公路後續計劃燕巢九如段:高屏溪(主橋)風洞試驗報告」
40.Liepmann, R. W., “On the application of statistical concept to the buffeting problem, ” J. Aero. Sci., Vol.19,No. 12.,(1952)
41.Vickery, B. J., "On the flow of behind a coarse grid and its use a modal of atmospheric turbulence in studies related to wind load on building," N. P. L. Aero. Report 1143,(1965)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-09-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-09-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信