§ 瀏覽學位論文書目資料
系統識別號 U0002-1108202115530800
DOI 10.6846/TKU.2021.00244
論文名稱(中文) 生物可分解聚(3-羥基丁酯-co-4-羥基丁酯)/醋酸丁酸纖維素摻合物之物理、機械與形狀記憶性質
論文名稱(英文) Physical,mechanical and shape memory properties of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/cellulose acetate butyrate blends
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 蔡泓鈺
研究生(英文) Hong-Yu Tsai
學號 608400098
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-07-20
論文頁數 108頁
口試委員 指導教授 - 董崇民(tmdon@mail.tku.edu.tw)
委員 - 邱文英(ycchiu@ntu.edu.tw)
委員 - 賴森茂(smlai@niu.edu.tw)
關鍵字(中) 聚羥基丁酯
纖維素
形狀記憶
相容性
關鍵字(英) poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
cellulose acetate butyrate
shape memory polymer
compatibility
第三語言關鍵字
學科別分類
中文摘要
醋酸丁酸纖維素(cellulose acetate butyrate,CAB)具有高透明度、優良抗濕、耐紫外光、耐寒、柔韌、透明、電絕緣等優秀的性能且無毒性,且可溶於多種溶劑,但加工範圍窄,造成加工上有困難,而聚(3-羥基丁酯-co-4-羥基丁酯) (poly(3-hydroxybutyrate-co-4-hydroxybutyrate),P34HB)具有生物可分解性、生物來源、生物相容性,且機械性質好,但熱穩定性差的特性,為了保留其多項優秀的性能,同時又可以使CAB加工溫度降低,因此本研究利用熔融混摻將CAB與P34HB進行混合,目的是使混摻物同時具有CAB及P34HB的優點,並且克服他們的缺點,針對CAB/P34HB摻合物,測量不同組成摻合物之熱性質、物理性質、機械性質以及形狀記憶性質。而結合DSC及DMA測試可以確定CAB與P34HB並不如文獻中所說的完全相容,在P34HB含量少於20 % 時,CAB與P34HB才會完全相容,且在機械性質測試中發現抗張強度、楊氏模數及降伏強度在P34HB含量大於20 wt % 時也會有較大的改變,而利用DMA測得摻合物之形狀記憶性質則是隨著P34HB含量的增加會使摻合物的形狀恢復溫度降低,摻合物的形狀回復率隨著P34HB含量的增加而降低,在P34HB含量為20 wt %有最低之形狀回復率(Rr),繼續增加P34HB含量時,形狀回復率反而上升。
英文摘要
Cellulose acetate butyrate (CAB) has excellent properties such as high transparency, excellent moisture resistance, UV resistance, cold resistance, flexibility, transparency, electrical insulation, etc. It is non-toxic and soluble in a variety of solvents, but has a processing range Narrow, causing difficulties in processing, while poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) has biodegradability, biological origin, Biocompatibility, good mechanical properties, but poor thermal stability. In order to retain many of its excellent properties and reduce the processing temperature of CAB, this study uses melt blending to mix CAB and P34HB. The purpose is Make the blends have the advantages of CAB and P34HB at the same time, and overcome their shortcomings, for CAB/P34HB blends, measure the thermal properties, physical properties, mechanical properties and shape memory properties of the blends of different compositions. Combined with DSC and DMA tests, it can be determined that CAB and P34HB are not completely compatible as stated in the literature. When the content of P34HB is less than 20%, CAB and P34HB are completely compatible, and the tensile strength is found in the mechanical property test.,Young’s modulus and yield strength will also change greatly when the content of P34HB is greater than 20 wt%, and the shape memory properties of the blend measured by DMA will increase the content of P34HB. When the shape recovery temperature decreases, the shape recovery rate of the blend decreases with the increase of the P34HB content. When the P34HB content is 20 wt %, the shape recovery rate (Rr) is the lowest. When the P34HB content continues to be increased, the shape recovery rate increases instead.
第三語言摘要
論文目次
摘要	I
目錄	I
圖目錄	IV
表目錄	IX
第一章緒論	1
1.1 前言	1
1.2 研究目的與動機	1
第二章文獻回顧	3
2.1生物降解高分子	3
2.1.1生物降解高分子的種類	4
2.2聚羥基烷酯類 (Poly(hydroxyalkanoates);PHAs)	6
2.2.1 PHAs的發展史	6
2.2.2 PHAs的種類	6
2.2.3 PHAs的應用	6
2.3纖維素類(Cellulose)	7
2.3.1 Cellulose發展史	7
2.3.2 Cellulose種類	7
2.3.3 Cellulose應用	7
2.4 高分子摻合物	8
2.4.1 製備摻合物的方式	9
2.4.2 摻合物相容性	10
2.5 聚羥基烷酯摻合物的研究	12
2.6 纖維素摻合物的研究	13
2.7 纖維素與聚羥基烷酯摻合	14
2.8 高分子分解機制	15
2.8.1 生物降解	16
2.9 形狀記憶高分子 (Shape Memory Polymer, SMP)	17
2.9.1 形狀記憶高分子發展	20
2.10 形狀記憶高分子的應用	21
2.10.1 航太工程	21
2.10.2 生物醫學	22
第三章實驗方法與步驟	23
3.1 實驗藥品	23
3.2 實驗儀器	24
3.3 實驗步驟	27
3.3.1 利用溶劑法製備CAB/P34HB摻合物	27
3.3.2 利用熔融混練法製備CAB/P34HB摻合物	27
3.4 性質測試與結構分析	29
3.4.1 CAB/P34HB 摻合物化學結構分析(FTIR–ATR)	29
3.4.2 結晶構造分析(XRD)	29
3.4.3 薄膜結構觀察(SEM)	29
3.4.4 CAB/P34HB摻合物熱性質與相容性測試(DSC分析)	29
3.4.5 熱重損失測試(TGA)	29
3.4.6 拉伸機械性質測試(Tensile mechanical properties)	29
3.4.7 動態機械測試(DMA)	30
3.4.8 透明度及抗UV測試(UV-Vis Spectrophotometer)	30
3.4.9 形狀記憶測試(Shape memory test )	31
3.4.10 CAB/P34HB表面結構觀察(AFM)	31
3.4.11 疏水性測試(Contact Angle)	31
3.4.12 酵素分解測試(脂肪酶)	31
第四章結果與討論	32
4.1 溶劑摻混s-CAB/P34HB摻合物	32
4.1.1 溶劑摻混s-CAB/P34HB相容性	32
4.1.2 結晶構造分析(XRD)	36
4.2 熔融摻混m-CAB/P34HB 摻合物	37
4.2.1 m-CAB/P34HB 摻合物化學結構分析(ATR)	37
4.2.2 m-CAB/P34HB 結晶構造分析(XRD)	39
4.2.3 m-CAB/P34HB 薄膜結構觀察(SEM)	40
4.2.4 CAB/P34HB 摻合物的相容性	60
4.2.5 m-CAB/P34HB 摻合物之熱重損失測試(TGA)	63
4.2.6 摻合物拉伸性質測試(Tensile mechanical properties)	66
4.2.7 m-CAB/P34HB 摻合物動態機械測試(DMA)	71
4.2.8 m-CAB/P34HB透明度及抗UV測試(UV-Vis Spectrophotometer)	77
4.2.9 m-CAB/P34HB形狀記憶測試	78
4.2.10 CAB/P34HB 表面結構觀察(AFM)	89
4.2.11 疏水性測試(Contact Angle)	93
第五章結論	97
參考文獻	98
附錄	103
A. P34HB 組成分析(NMR)	103
B. m-C6P4低溫範圍動態機械測試(DMA)	105
C. C8P2及C6P4 97 ℃ 形狀記憶(DMA)	108

圖目錄
圖2-1有氧條件下高分子生物降解的機制3	3
圖2-2可生物降解和不可生物降解的塑料5	4
圖2-3 PHA的合成6	5
圖2-4 纖維素的不同來源19	8
圖2-5 DSC熱分析圖(a)可混溶的摻合物(b)接近相分離的可混溶的摻合物(c)接近完全不混溶的部分可混溶的摻合物和(d)不可混溶摻合物29。	11
圖2-6高分子降解種類41	15
圖2-7雙向形狀記憶高分子的(A)機械力與(B)能量表示圖47	18
圖2-8形狀記憶高分子在航太工程的應用46	21
圖2-9形狀記憶高分子於生物醫學上之應用46	22
圖3-1 ASTM D 638 Type Ⅴ 標準試片圖	30
圖4-1 利用溶劑混練法製備不同比例s-CAB/P34HB摻合物第一次升溫圖,升溫速率10 ℃/min	33
圖4-2 利用溶劑混練法製備不同比例s-CAB/P34HB摻合物第二次升溫圖升溫速率10 ℃/min	33
圖4-3 利用溶劑混練法製備不同比例CAB/P34HB摻合物的XRD圖	36
圖4-4熱壓製備CAB及P34HB的 FTIR圖(CAB先經過混練)	38
圖4-5 熔融混練法製備不同比例m-CAB/P34HB 摻合物的FTIR圖	38
圖4-6 利用熔融混練法熱壓製備不同比例CAB/P34HB的XRD圖	39
圖4-7 m-CAB表面SEM圖	41
圖4-8 m-CAB淬斷面SEM圖	41
圖4-9 m-C9P1摻合物表面SEM圖	42
圖4-10 m-C9P1摻合物淬斷面SEM圖	42
圖4-11 m-C8P2摻合物表面SEM圖	43
圖4-12 m-C8P2摻合物淬斷面SEM圖	43
圖4-13 m-C7P3摻合物表面SEM圖	44
圖4-14 m-C7P3摻合物淬斷面SEM圖	44
圖4-15 C-C6P4摻合物表面SEM圖	45
圖4-16 m--C6P4摻合物淬斷面SEM圖	45
圖4-17 c-P34HB表面SEM圖	46
圖4-18 c-P34HB淬斷面SEM圖	46
圖4-19 m-CAB拉伸斷裂平面SEM圖	47
圖4-20 m-CAB拉伸斷裂面SEM圖	47
圖4-21 m-C9P1摻合物拉伸斷裂平面SEM圖	48
圖4-22 m-C9P1摻合物拉伸斷裂面SEM圖	48
圖4-23 m-C8P2摻合物拉伸斷裂平面SEM圖	49
圖4-24 m-C8P2摻合物拉伸斷裂面SEM圖	49
圖4-25 m-C7P3摻合物拉伸斷裂平面SEM圖	50
圖4-26 m-C7P3摻合物拉伸斷裂面SEM圖	50
圖4-27 m-C6P4摻合物拉伸斷裂平面SEM圖	51
圖4-28 m-C6P4摻合物拉伸斷裂面SEM圖	51
圖4-29 c-P34HB拉伸斷裂平面SEM圖	52
圖4-30 c-P34HB拉伸斷裂面SEM圖	52
圖4-31 m-CAB經Lipase分解95天後的SEM圖	53
圖4-32 m-C9P1經Lipase分解95天後的SEM圖	54
圖4-33 m-C8P3經Lipase分解95天後的SEM圖	55
圖4-34 m-C7P3經Lipase分解95天後的SEM圖	56
圖4-35 m-C6P4經Lipase分解95天後的SEM圖	57
圖4-36 c-P34HB經Lipase分解95天後的SEM圖	58
圖4-37 不同比例摻合物DSC第一次升溫圖	61
圖4-38 不同比例摻合物DSC第二次升溫圖	61
圖4-39 不同比例m-CAB/P34HB熱重損失圖。	64
圖4-40 不同比例m-CAB/P34HB摻合物熱重損失一次微分圖。	64
圖4-41 不同比例m-CAB/P34HB摻合物拉伸應力應變圖。	67
圖4-42 不同比例m-CAB/P34HB摻合物之斷裂伸長率。	67
圖4-43 不同比例m-CAB/P34HB摻合物之破壞強度。	68
圖4-44 不同比例m-CAB/P34HB摻合物之降伏強度。	68
圖4-45 不同比例m-CAB/P34HB摻合物之楊氏模數。	69
圖4-46 CAB/P34HB摻合物經拉力測試後之斷裂樣品(由右至左為1 = CAB、2 = C9P1、3 = C8P2、4 = C7P3、5 = C6P4、6 = C5P5、7 = P34HB)。	70
圖4-47 不同比例m-CAB/P34HB摻合物儲存模量(E’)圖。	72
圖4-48 不同比例m-CAB/P34HB摻合物損失模量圖(E”)。	72
圖4-49不同比例m-CAB/P34HB摻合物的損耗正切圖(Tanδ)。	73
圖4-50 不同比例m-CAB/P34HB摻合物在30 ℃ 下的儲存模量(E’)圖。	73
圖4-51 不同比例m-CAB/P34HB摻合物在30 ℃ 下的損失模量(E”)圖。	74
圖4-52 不同比例m-CAB/P34HB摻合物在30 ℃ 下的損耗正切(Tanδ)圖。	74
圖4-53 由DMA求得之Tg擬合Gordon-Taylor equation (為實際值)。	75
圖4-54 由DMA求得之Tg擬合Fox equation (為實際值)。	76
圖4-55 由DSC求得之Tg擬合Fox equation (為實際值)。	76
圖4-56 CAB、P34HB及不同比例m-CAB/P34HB摻合物在不同波長的穿透率,薄膜厚度約為0.4 mm	77
圖4- 57 m-CAB形狀記憶測試之應力、應變與溫度關係圖	82
圖4- 58 m-CAB形狀記憶測試之應力、應變、溫度對時間做圖	82
圖4- 59 m-C9P1形狀記憶測試之應力、應變與溫度關係圖	83
圖4- 60 m-C9P1形狀記憶測試之應力、應變、溫度對時間做圖	83
圖4-61 m-C8P2形狀記憶測試之應力、應變與溫度關係圖	84
圖4-62 m-C8P2形狀記憶測試之應力、應變、溫度對時間做圖	84
圖4- 63 m-C7P3形狀記憶測試之應力、應變與溫度關係圖	85
圖4- 64 m-C7P3形狀記憶測試之應力、應變、溫度對時間做圖	85
圖4-65 m-C6P4形狀記憶測試之應力、應變與溫度關係圖	86
圖4-66 m-C6P4形狀記憶測試之應力、應變、溫度對時間做圖	86
圖4-67 m-C5P5形狀記憶測試之應力、應變與溫度關係圖	87
圖4-68 m-C5P5形狀記憶測試之應力、應變、溫度對時間做圖	87
圖4-69 不同比例m-CAB/P34HB摻合物形狀固定率(Rf)	88
圖4-70 不同比例m-CAB/P34HB摻合物形狀回復率(Rr)	88
圖4-71 C-CAB表面AFM圖	90
圖4-72 C-C9P1表面AFM圖	90
圖4-73 C-C8P2表面AFM圖	91
圖4-74 C-C7P3表面AFM圖	91
圖4-75 C-C6P4表面AFM圖	92
圖4-76 C-P34HB表面AFM圖	92
圖4-77 m-CAB接觸角圖	93
圖4-78 m-C9P1接觸角圖	93
圖4-79 m-C8P2接觸角圖	94
圖4-80 m-C7P3接觸角圖	94
圖4-81 m-C6P4接觸角圖	95
圖4-82 m-P34HB接觸角圖	95
圖4-83 不同比例m-CAB/P34HB摻合物接觸角度圖	96
圖A-1 P34HB NMR圖	103
圖A-2 CAB NMR圖	104
圖B-1 C6P4摻合物低溫範圍儲存模量(E’)圖,頻率 = 1 Hz ,	105
圖B-2 C6P4摻合物低溫範圍損失模量(E”)圖,頻率 = 1 Hz ,	106
圖B-3 C6P4摻合物低溫範圍損耗正切圖(Tanδ),頻率 = 1 Hz ,	107
圖C-1 C8P2形狀記憶	108
圖C-2 C6P4形狀記憶	108

表目錄
表3-1 溶劑混練製備各比例代號表	27
表3-2 熔融混練製備各比例代號表	28
表4-1 溶劑混練法治被不同比例CAB/P34HB摻合物第一次升溫圖	34
表4-2 溶劑混練法治被不同比例CAB/P34HB摻合物第二次升溫圖	35
表4-3 不同比例CAB/P34HB經酵素分解後重量(mg)	59
表4-4 不同比例CAB/P34HB經酵素分解後厚度(mm)	59
表4-5 不同組成m-CAB/P34HB摻合物的熱轉移溫度	62
表4-6 m-CAB/P34HB摻合物的熱降解溫度及殘渣量表	65
表4-7 不同比例CAB/P34HB摻合物之拉伸機械性質	69
表4-8 不同比例CAB/P34HB動態機械性	71
表4-9 利用DMA進行形狀記憶測試條件	79
表4-10 不同比例CAB/P34HB 摻合物形狀固定率(Rf)及形狀回復率(Rr)	80
表4-11 不同步驟應變圖	81
表4-12 不同比例CAB/P34HB透光度、接觸角、表面粗糙度	96
參考文獻
1	Kanis, L. A. et al. Cellulose acetate butyrate/poly (caprolactonetriol) blends: Miscibility, mechanical properties, and in vivo inflammatory response. Journal of biomaterials applications 29, 654-661 (2014).
2	Tan, H.-L. et al. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: a potential scaffold for tissue engineering. Colloids and surfaces B: Biointerfaces 188, 110713 (2020).
3	Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. J. B. a. Biological degradation of plastics: a comprehensive review.  26, 246-265 (2008).
4	Abhilash, M. & Thomas, D. in Biopolymer Composites in Electronics     405-435 (Elsevier, 2017).
5	Meereboer, K. W., Misra, M. & Mohanty, A. K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry 22, 5519-5558 (2020).
6	Ashter, S. A. Introduction to bioplastics engineering.  (William Andrew, 2016).
7	Chowdhury, A. A. Poly-beta-hydroxybutyric acid-splitting bacteria and an exoenzyme. Archiv fur Mikrobiologie 47, 167-200 (1963).
8	Chodak, I. in Monomers, polymers and composites from renewable resources     451-477 (Elsevier, 2008).
9	Lenz, R. W. & Marchessault, R. H. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6, 1-8 (2005).
10	Doudoroff, M. & Stanier, R. Y. Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature 183, 1440-1442 (1959).
11	Oeding, V. & Schlegel, H. G. β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochemical Journal 134, 239-248 (1973).
12	Schlegel, H. G., Gottschalk, G. & Von Bartha, R. Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191, 463-465 (1961).
13	Senior, P. J. & Dawes, E. A. The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochemical Journal 134, 225-238 (1973).
14	Stockdale, H., Ribbons, D. W. & Dawes, E. A. Occurrence of poly-β-hydroxybutyrate in the Azotobacteriaceae. Journal of Bacteriology 95, 1798-1803 (1968).
15	Fedorov, M. B. et al. Antimicrobial activity of core-sheath surgical sutures modified with poly-3-hydroxybutyrate. Applied Biochemistry and Microbiology 43, 611-615 (2007).
16	Wang, Y. et al. Fabrication, characterization and long-term in vitro release of hydrophilic drug using PHBV/HA composite microspheres. Materials Letters 61, 1071-1076 (2007).
17	Corbin, A. et al. Using biodegradable plastics as agricultural mulches.  (2013).
18	Dharmalingam, S. Biodegradation and photodegradation of polylactic acid and polylactic acid/polyhydroxyalkanoate blends nonwoven agricultural mulches in ambient soil conditions.  (2014).
19	Gupta, P. K. et al. in Cellulose     (IntechOpen, 2019).
20	Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition 44, 3358-3393 (2005).
21	Wisniak, J. Anselme Payen. Educación química 16, 568-581 (2005).
22	Dürig, T. & Karan, K. in Handbook of Pharmaceutical Wet Granulation     317-349 (Elsevier, 2019).
23	Chandra, R. & Rustgi, R. Biodegradable polymers. Progress in polymer science 23, 1273-1335 (1998).
24	Kango, S., Kalia, S., Thakur, P., Kumari, B. & Pathania, D. Semiconductor–polymer hybrid materials. Organic-Inorganic Hybrid Nanomaterials, 283-311 (2014).
25	Sivasankaran, S. Nanocomposites: Recent Evolutions.  (BoD–Books on Demand, 2019).
26	Linares, E., Rippel, M. M., da Silva, L. L., Januzzi, S. A. & Galembeck, F. LATEX BLENDS: OVERCOMING COMPATIBILITY LIMITATIONS BY ELECTROSTATIC ADHESION.
27	Fox, T. G. Influence of Diluent and of Copolymer Composition on the Glass Temperature of a Poly-mer System. Bull. Am. Phys. Soc. 1, 123 (1956).
28	Gordon, M. & Taylor, J. S. Ideal copolymers and the second‐order transitions of synthetic rubbers. I. Non‐crystalline copolymers. Journal of Applied Chemistry 2, 493-500 (1952).
29	Saini, P., Arora, M. & Kumar, M. N. V. R. Poly (lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews 107, 47-59 (2016).
30	Koller, I. & Owen, A. J. Starch‐Filled PHB and PHB/HV copolymer. Polymer International 39, 175-181 (1996).
31	Godbole, S., Gote, S., Latkar, M. & Chakrabarti, T. Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresource technology 86, 33-37 (2003).
32	Ma, P. et al. Structure–property relationships of reactively compatibilized PHB/EVA/starch blends. Carbohydrate polymers 108, 299-306 (2014).
33	Seoane, I. T., Fortunati, E., Puglia, D., Cyras, V. P. & Manfredi, L. B. Development and characterization of bionanocomposites based on poly (3‐hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polymer International 65, 1046-1053 (2016).
34	Nishio, Y. & Manley, R. S. J. Cellulose-poly (vinyl alcohol) blends prepared from solutions in N, N-dimethylacetamide-lithium chloride. Macromolecules 21, 1270-1277 (1988).
35	Liang, X.-H., Guo, Y.-Q., Gu, L.-Z. & Ding, E.-Y. Crystalline-amorphous phase transition of poly (ethylene glycol)/cellulose blend. Macromolecules 28, 6551-6555 (1995).
36	Nam, B.-U., Min, K.-D. & Son, Y. Investigation of the nanostructure, thermal stability, and mechanical properties of polylactic acid/cellulose acetate butyrate/clay nanocomposites. Materials Letters 150, 118-121 (2015).
37	Scandola, M., Ceccorulli, G. & Pizzoli, M. Miscibility of bacterial poly (3-hydroxybutyrate) with cellulose esters. Macromolecules 25, 6441-6446 (1992).
38	El-Shafee, E., Saad, G. R. & Fahmy, S. M. Miscibility, crystallization and phase structure of poly (3-hydroxybutyrate)/cellulose acetate butyrate blends. European polymer journal 37, 2091-2104 (2001).
39	Park, J. W., Doi, Y. & Iwata, T. Unique crystalline orientation of poly [(R)-3-hydroxybutyrate]/cellulose propionate blends under uniaxial drawing. Macromolecules 38, 2345-2354 (2005).
40	Suttiwijitpukdee, N., Sato, H., Zhang, J., Hashimoto, T. & Ozaki, Y. Intermolecular interactions and crystallization behaviors of biodegradable polymer blends between poly (3-hydroxybutyrate) and cellulose acetate butyrate studied by DSC, FT-IR, and WAXD. Polymer 52, 461-471 (2011).
41	Luyt, A. S. & Malik, S. S. in Plastics to Energy     403-423 (Elsevier, 2019).
42	Crawford, R. L. Biodegradation: principles, scope, and technologies.  (2011).
43	Huang, S. J. in Comprehensive Polymer Science and Supplements   (eds Geoffrey Allen & John C. Bevington)  597-606 (Pergamon, 1989).
44	Xie, T. Tunable polymer multi-shape memory effect. Nature 464, 267-270 (2010).
45	Meng, Q. & Hu, J. A review of shape memory polymer composites and blends. Composites Part A: Applied Science and Manufacturing 40, 1661-1672 (2009).
46	Xia, Y., He, Y., Zhang, F., Liu, Y. & Leng, J. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Advanced Materials 33, 2000713 (2021).
47	Wang, K., Jia, Y.-G., Zhao, C. & Zhu, X. X. Multiple and two-way reversible shape memory polymers: Design strategies and applications. Progress in Materials Science 105, 100572 (2019).
48	Odian, G. & Bernstein, B. S. Memory effects in irradiated polyethylene. Journal of Applied Polymer Science 8, 1853-1867 (1964).
49	Li, F., Chen, Y., Zhu, W., Zhang, X. & Xu, M. Shape memory effect of polyethylene/nylon 6 graft copolymers. Polymer 39, 6929-6934 (1998).
50	Xie, T. & Rousseau, I. A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50, 1852-1856 (2009).
51	Bai, Y., Liu, Y. & Wang, Q. Cellulose acetate for shape memory polymer: natural, simple, high performance, and recyclable. Advances in Polymer Technology 37, 869-877 (2018).
52	Santo, L., Quadrini, F., Accettura, A. & Villadei, W. Shape memory composites for self-deployable structures in aerospace applications. Procedia Engineering 88, 42-47 (2014).
53	Wen, X., Lu, X., Peng, Q., Zhu, F. & Zheng, N. Crystallization behaviors and morphology of biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Journal of thermal analysis and calorimetry 109, 959-966 (2012).
54	Gao, Z., Su, T., Li, P. & Wang, Z. Biodegradation of P (3HB-co-4HB) powder by Pseudomonas mendocina for preparation low-molecular-mass P (3HB-co-4HB). 3 Biotech 7, 1-7 (2017).
55	Wojciechowska, P., Heimowska, A., Foltynowicz, Z. & Rutkowska, M. Degradability of organic-inorganic cellulose acetate butyrate hybrids in sea water. Polish Journal of Chemical Technology 13, 29-34 (2011).
56	Furukawa, T. et al. Structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (L-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Macromolecules 38, 6445-6454 (2005).
57	Suttiwijitpukdee, N., Sato, H., Zhang, J. & Hashimoto, T. Effects of intermolecular hydrogen bondings on isothermal crystallization behavior of polymer blends of cellulose acetate butyrate and poly (3-hydroxybutyrate). Macromolecules 44, 3467-3477 (2011).
58	Sudhakar, Y. N., Selvakumar, M. & D Krishna, B. Enhancement and Investigation of Biodegradability of Poly (Methyl Methacrylate) and Poly (vinyl chloride) by Blending with Cellulose Derivatives.  (2021).
59	Kecskemeti, G. et al. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser. Applied Surface Science 253, 1185-1189 (2006).
論文全文使用權限
校內
校內紙本論文延後至2026-08-19公開
同意電子論文全文授權校園內公開
校內電子論文延後至2026-08-19公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2026-08-19公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信