§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1108202113220800
DOI 10.6846/TKU.2021.00243
論文名稱(中文) 聚丙烯含纖維複合材料在射出成型製程中流動-纖維耦合效應與材料黏彈性交互作用對纖維排向及成品幾何變化之研究
論文名稱(英文) Study on the Interaction between Flow-Fiber Coupling Effect and Viscoelasticity on the Fiber Orientation and the Dimensional Variation for the Fiber Reinforced Polypropylene Injection Molding Parts
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 賴承鋐
研究生(英文) Cheng-Hong Lai
學號 608400155
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-07-15
論文頁數 123頁
口試委員 指導教授 - 黃招財
委員 - 鍾文仁
委員 - 董崇民
關鍵字(中) 射出成型
纖維排向分佈
纖維微結構
流動-纖維耦合
材料黏彈性
關鍵字(英) Injection molding
fiber orientation
fiber microstructure
flow-fiber coupling
Material viscoelasticity
第三語言關鍵字
學科別分類
中文摘要
近年來由於纖維強化塑膠(FRP)材料已成為主要的輕量化技術之一,並已廣泛地應用在工業上,尤其是在汽車及航太產業中。然而,纖維之所以能夠增強塑膠,是因為它們的微結構特性,而在這些微結構特性中,纖維排向是最主要影響之因素。然而,在FRP基質內部的纖維排向非常複雜,通常不易透視,故不易掌握。另外,在射出成型製程中,熔膠流動與纖維之間可能存在一些交互作用,此等交互作用可能還會進一步受到材料黏彈性的影響,此等複合交互作用如何影響製程與產品,目前尚未完全了解。因此,在本研究中,我們嘗試使用具有三個ASTM D638標準拉伸試片的幾何系統研究流動-纖維耦合效應與黏彈性之間的交互作用對FRP的影響。我們的研究方法主要是同時應用CAE模擬分析與實驗觀察兩種方式。結果顯示,透過觀察Moldex3D模擬分析之流場分布,在有/無流動-纖維耦合效應情況下,發現在有耦合效應下,流動波前會出現凸-平-凹的現象;但在無耦合效應下,流動波前會出現凸-平-平的現象;此等流動波前明顯變化為流動-纖維耦合效應之展示,其與文獻的結果一致。再者,透過微觀纖維排向進行深入探究,我們將模擬系統分成四組,分別為:(1) 基本組:沒有考慮耦合及黏彈性效應;(2) 耦合效應組:單純考慮耦合效應;(3) 黏彈性效應組:單純考慮黏彈性效應;(4) 耦合加黏彈性效應組:同時考慮耦合及黏彈性效應。期間,各組比較以組別(1)作為比較之基準組。結果顯示,耦合組在纖維排向預測上與實驗數據最為接近;耦合加黏彈性效應組差異最大;至於黏彈性效應組的部分模擬分析結果與實驗趨勢相近,但整體趨勢而言,仍以耦合效應組與實驗的結果吻合度最高,因此我們認定射出成品內之纖維排向變化,最主要仍以流場引導,再加上流動-纖維耦合效應所導致。另外,為了證明流動-纖維耦合效應,我們進一步從射出成品之區域幾何尺寸變化進行細部觀察與研究。在此部份,我們將射出成品Model I 及Model II個別分成(NGR、CR、EFR)三區,每一區再細分成五小區,同步利用模擬分析與實驗方式(利用電腦斷層掃描加上影像處理分析技術)完成纖維排向張量之驗證,再以驗證後之模擬分析纖維排向結果估算出五小區之平均纖維排向張量值及其整體變化量。再者,我們也針對射出成品Model I 及Model II個別分成(NGR、CR、EFR)三區進行幾何尺寸變化(稱之收縮率)量測,經過詳細比對幾何尺寸變化趨勢與射出成品內在之平均纖維排向張量變化行為相當一致。此等結果應該足以說明流動-纖維耦合效應的存在與其從內而外之影響。
英文摘要
In recent years, fiber reinforced plastic (FRP) materials have become one of the main lightweight technologies and have been widely used in industry, especially in the automotive and aerospace industries. However, the reason why fibers can reinforce plastics is because of their microstructural properties, and among these microstructural properties, the fiber orientation is the most important factor to influence the system. However, the fibers’ behavior inside the FRP matrix is very complicated, and it is usually not easy to be observed. In addition, during the injection molding process, there may be some interactions between the melt flow and the fibers. These interactions could be further affected by the viscoelastic effect of the materials. In addition, how these complex interactions will further affect the process and products is not yet fully understood. Therefore, in this study, we have tried to use a geometric system with three ASTM D638 standard tensile bars to conduct the influence of the interaction between the flow-fiber coupling effect and viscoelastic effect on FRP.  Both CAE simulation analysis and experimental observation were utilized as the study methods. The results show that with considering the flow-fiber coupling effect, it is found that with the coupling effect the flow melt front exhibits  the convex-flat-concave flow phenomenon; but without considering the coupling effect, it shows  the convex-flat-flat type. This significant difference is one of the evidences caused by the flow-fiber coupling effect. This result is consistent with that observation by the literature[17]. Furthermore, in order to understand how the flow-fiber coupling effect influence the fiber orientation in injection molding, there are four different group systems have been considered, namely: (1) Basic group: without considering flow-fiber coupling and viscoelastic effects; (2) Coupling effect group: considering the flow-fiber coupling effect only; (3) Viscoelastic effect group: considering the viscoelastic effect only; (4) Coupling plus viscoelastic effects group: considering both flow-fiber coupling and viscoelastic effects at the same time. The simulation results of injection molding processes based on those four groups have been further investigated. The results show that the simulation results of the Coupling effect group are closest to the experimental observation in fiber orientation distribution. Although the results of the Viscoelastic effect group are also consistent with that of experimental observation, but they are not as good as that of the Coupling group.  While the simulation results of the both flow-fiber coupling and viscoelastic effects group are not good enough.  Based on these results, the flow-fiber coupling effect is significantly verified.  Moreover, to realize how flow-fiber coupling effect can further influence the quality of the injected parts, the dimensions of the injected parts have been measured.  Specifically, the Model I and Model II (ASTM D638 specimens), each one has been divided into three regions, named near gate region (NGR), center region (CR), and end of filling region (EFR). For each region, the three directional side dimensions have been measured using five smaples each time. Then the average dimension for each side of each region has been recorded.  Moreover, the details of the average fiber orientation distribution have been discovered by divided each region into five sub-regions.  The correlation between the average fiber orientation distribution with considering the flow-fiber coupling effect and the three directional dimension variations of each region can be constructed.  For example, in the NGR of the Model I, from upstream to downstream, the A11 fiber orientation tension is getting larger, the A22 is smaller.  From the side dimension measurement of Model I, the dimension in the flow direction becomes larger, and the dimension in the cross-flow direction becomes smaller.  The results show that the fiber orientation variation is consistent with that of the dimensional change for Model I at NGR.  Similarly, the relation can also be observed in other regions in Model I, and regions in Model II.  Based on these results, the flow-fiber coupling effect can be further validated.
第三語言摘要
論文目次
致謝	I
中文摘要	II
英文摘要	IV
目錄	VII
圖目錄	X
表目錄	XVII
符號說明	XVIII
第一章	緒論	1
1.1	前言	1
1.2	文獻回顧	2
1.2.1纖維強化塑膠	2
1.2.2文獻總結	5
1.3	研究動機與目的	5
1.4	論文架構	6
第二章	射出成型纖維複合材料之維結構特性及熔膠流動-纖維耦合效應介紹	9
2.1	塑膠射出成型製程之流程介紹	9
2.2	高分子材料介紹	12
2.2.1 聚丙烯	13
2.2.2纖維複合材料之纖維強化塑膠	13
2.3纖維之微結構介紹	14
2.3.1纖維排向	14
2.3.2纖維長度	16
2.3.3纖維濃度	16
2.4熔膠流動-纖維耦合效應介紹	17
第三章	研究方法與流程	19
3.1	研究方法與流程	19
3.2	CAE模擬分析與系統資訊	22
3.2.1 基本理論	22
3.2.2 射出成品幾何與模具設計	30
3.2.3 模擬分析之網格模型建構	32
3.2.4 材料選擇	37
3.2.5 CAE模擬分析之成型條件設定	41
3.2.6 CAE模擬分析之量測節點位置設計	42
3.2.7 CAE模擬分析使用之硬體及系統	44
3.2.8 CAE模擬分析使用之軟體	44
3.2.9 CAE模擬分析之專案建立	44
3.2.10 CAE模擬分析之參數設定	45
3.3	實驗研究與相關資訊	46
3.3.1 射出機台系統與相關設備	46
3.3.2 射出成品之幾何尺寸(收縮率)變化量測定義與方法	49
3.3.3 Model I至Model III 機械特性初步探討	52
3.3.4 射出成品之電腦斷層掃描(CT scan)	55
第四章	結果與討論	58
4.1 CAE模擬分析之流動行為探討	58
4.1.1有/無考慮流動-纖維耦合效應影響下的流動行為	58
4.1.2有/無考慮流動-纖維耦合效應影響下的流場分布行為比較	59
4.2熔膠流動-纖維耦合效應與材料黏彈性交互作用對微觀纖維排向影響之探討	61
4.2.1流動-纖維耦合效應對纖維排向之影響	61
4.2.2材料黏彈性效應對纖維排向之影響	70
4.2.3流動-纖維耦合效應與材料黏彈性效應對纖維排向之影響	78
4.3微觀纖維排向與射出成品局部尺寸變化(收縮率)之關聯性探討		86
4.3.1單一區域之微觀纖維排向變化	87
4.3.2纖維排向變化與尺寸變化(收縮率)之關聯性探討	103
第五章	結論	114
第六章	未來研究方向	116
第七章	參考文獻	117
第八章 附錄	123
作者簡歷	123
 
圖目錄
圖2-1. 射出成型週期[27]	11
圖2-2. 模穴內厚度方向之纖維排向分布圖[32]	15
圖2-3. 模擬纖維排向示意圖[33]	16
圖2-4. CAE模擬有/無考慮流動-纖維耦合效應下流場之比較[17]	18
圖3-1. 研究流程	21
圖3-2 單根纖維排向向量P之定義圖[11]	25
圖3-3. 成品幾何模型(單位: mm)	31
圖3-4. 拉伸試片尺寸(單位: mm)	31
圖3-5. 模座及冷卻水路配置(單位: mm)	32
圖3-6. 網格種類[43]	32
圖3-7. 網格元素解析度與溫度場分布[42]	33
圖3-8. 不同層數網格之進澆口壓力曲線	35
圖3-9. 本研究之實體網格內部構造示意圖	36
圖3-10. 網格品質探討	37
圖3-11. SF材料黏度對剪切率之關係圖[44]	39
圖3-12. SF材料比容對溫度在不同壓力之關係圖[44]	39
圖3-13. SF材料比熱對溫度之關係圖[44]	40
圖3-14. SF材料熱傳導係數對溫度之關係圖[44]	40
圖3-15. 微觀結構量測節點	43
圖3-16. 針對單一區域觀察之微觀結構量測節點	43
圖3-17. CLF-180TXL射出機台	47
圖3-18. 實驗之模具(a)公模,(b)母模	47
圖3-19. NGR、CR、EFR區域之量測長度定義	49
圖3-20. 電子式游標尺	50
圖3-21. 實際射出成品幾何尺寸(收縮率)量測示意圖(a)量測X方向量,(b)量測Y方向,(c)量測Z方向	51
圖3-22. HT-9102M拉伸機台[46]	52
圖3-23. 拉伸試片尺寸示意圖[46]	53
圖3-24. 射出成品機械強度比較(本次進行的拉伸實驗)	54
圖3-25. 射出成品機械強度比較(文獻資料)[46]	54
圖3-26. Model I電腦斷層掃描實驗結果圖[47]:(a) NGR區域,(b) CR區域,(c) EFR區域	57
圖4-1. CAE模擬分析:沒有考慮跟有考慮流動-纖維耦合的流動波前比較圖	58
圖4-2. CAE模擬流場分布結果比較:(a)沒有考慮流動-纖維耦合情況,(b)有考慮流動-纖維耦合	60
圖4-3. Model I在NGR之纖維排向:(a)基本組模擬結果,(b)耦合效應組模擬結果,(c)實驗結果	63
圖4-4. Model I在CR之纖維排向:(a) 基本組模擬結果,(b) 耦合效應組模擬結果,(c)實驗結果	64
圖4-5:Model I在EFR之纖維排向:(a)基本組模擬結果,(b)耦合效應組模擬結果,(c)實驗結果	65
圖4-6. Model II在NGR之纖維排向:(a)基本組模擬結果,(b)耦合效應組模擬結果,(c)實驗結果	66
圖4-7. Model II在CR之纖維排向:(a)基本組模擬結果,(b)耦合效應組模擬結果,(c)實驗結果	67
圖4-8. Model II在EFR之纖維排向:(a)基本組模擬結果,(b)耦合效應組模擬結果,(c)實驗結果	69
圖4-9. Model I在NGR之纖維排向:(a)基本組模擬結果,(b)黏彈性效應組模擬結果,(c)實驗結果	71
圖4-10. Model I在CR之纖維排向:(a)基本組模擬結果,(b)黏彈性效應組模擬結果,(c)實驗結果	72
圖4-11. Model I在EFR之纖維排向:(a)基本組模擬結果,(b)黏彈性效應組模擬結果,(c)實驗結果	73
圖4-12. Model II在NGR之纖維排向:(a)基本組模擬結果,(b)黏彈性效應組模擬結果,(c)實驗結果	74
圖4-13. Model II在NGR之纖維排向:(a)基本組模擬結果,(b)黏彈性效應組模擬結果,(c)實驗結果	76
圖4-14. Model II在NGR之纖維排向:(a)基本組模擬結果,(b)黏彈性效應組模擬結果,(c)實驗結果	77
圖4-15. Model I在NGR之纖維排向:(a)基本組模擬結果,(b)耦合加黏彈性效應組模擬結果,(c)實驗結果	79
圖4-16. Model I在CR之纖維排向:(a)基本組模擬結果,(b)耦合加黏彈性效應組模擬結果,(c)實驗結果	80
圖4-17. Model I在EFR之纖維排向:(a)基本組模擬結果,(b)耦合加黏彈性效應組模擬結果,(c)實驗結果	81
圖4-18. Model II在NGR之纖維排向:(a)基本組模擬結果,(b)耦合加黏彈性效應組模擬結果,(c)實驗結果	82
圖4-19. Model II在CR之纖維排向:(a)基本組模擬結果,(b)耦合加黏彈性效應組模擬結果,(c)實驗結果	84
圖4-20. Model II在EFR之纖維排向:(a)基本組模擬結果,(b)耦合加黏彈性效應組模擬結果,(c)實驗結果	85
圖4-21. Model I NGR(在B1量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	88
圖4-22. Model I NGR(在B2量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	88
圖4-23. Model I NGR(在B3量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	89
圖4-24. Model I NGR(在B4量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	89
圖4-25. Model I NGR(在B5量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	89
圖4-26. Model I CR(在E1量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	91
圖4-27. Model I CR(在E2量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	91
圖4-28. Model I CR(在E3量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	91
圖4-29. Model I CR(在E4量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	92
圖4-30. Model I CR(在E5量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	92
圖4-31. Model I EFR(在H1量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	94
圖4-32. Model I EFR(在H2量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	94
圖4-33. Model I EFR(在H3量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	94
圖4-34. Model I EFR(在H4量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	95
圖4-35. Model I EFR(在H5量測點)之纖維排向:(a)耦合效應組模擬結果,(b)實驗結果	95
圖4-36. Model II NGR(在B1量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	96
圖4-37. Model II NGR(在B2量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	97
圖4-38. Model II NGR(在B3量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	97
圖4-39. Model II NGR(在B4量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	97
圖4-40. Model II NGR(在B5量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	98
圖4-41. Model II CR(在E1量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	99
圖4-42. Model II CR(在E2量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	99
圖4-43. Model II CR(在E3量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	100
圖4-44. Model II CR(在E4量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	100
圖4-45. Model II CR(在E5量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	100
圖4-46. Model II EFR(在H1量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	102
圖4-47. Model II EFR(在H2量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	102
圖4-48. Model II EFR(在H3量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	102
圖4-49. Model II EFR(在H4量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	103
圖4-50. Model II EFR(在H5量測點)之纖維排向: (a)耦合效應組模擬結果,(b)實驗結果	103
圖4-51. Model I NGR區域(從B1至B5區域)模擬分析之A11、A22、A33纖維排向平均值	104
圖4-52. Model I NGR區域射出成品之幾何尺寸變化示意圖	105
圖4-53. Model I CR區域(從E1至E5區域)模擬分析之A11、A22、A33纖維排向平均值	106
圖4-54. Model I CR區域射出成品之幾何尺寸變化示意圖	106
圖4-55. Model I EFR區域(從H1至H5區域)模擬分析之A11、A22、A33纖維排向平均值	108
圖4-56. Model I EFR區域射出成品之幾何尺寸變化示意圖	108
圖4-57. Model II NGR區域(從B1至B5區域)模擬分析之A11、A22、A33纖維排向平均值	109
圖4-58. Model II NGR區域射出成品之幾何尺寸變化示意圖	110
圖4-59. Model II CR區域(從E1至E5區域)模擬分析之A11、A22、A33纖維排向平均值	111
圖4-60. Model II CR區域射出成品之幾何尺寸變化示意圖	111
圖4-61. Model II EFR區域(從H1至H5區域)模擬分析之A11、A22、A33纖維排向平均值	113
圖4-62. Model II EFR區域射出成品之幾何尺寸變化示意圖	113
 
表目錄
表3-1. 本研究之網格系統資訊	35
表3-2. 材料資訊	38
表3-3. 材料性質資訊[45]	38
表3-4. CAE模擬分析成型條件之參數設定	41
表3-5. iARD-RPR model之參數設定	46
表3-6. 修正IISO viscosity model之參數設定	46
表3-7. 射出機台相關資訊	47
表3-8. NGR、CR、EFR區域之原始設計長度	50
表3-9. Mitutoyo電子式游標尺規格及相關資訊	50
表3-10. 拉伸試片相關尺寸[46]	53
表4-1. 實驗量測Model I NGR收縮值	105
表4-2. 實驗量測Model I CR收縮值表	107
表4-3. 實驗量測Model I EFR收縮值	108
表4-4. 實驗量測Model II NGR收縮值	110
表4-5. 實驗量測Model II CR收縮值	112
表4-6. 實驗量測Model II EFR收縮值	113
參考文獻
[1] Roser, M. “Two Centuries of Rapid Global Population Growth Will Come to an End”,  available online :https://ourworldindata.org/world-population-growth-past-future (2020).
[2] Schmidt, C.; Li,W.; Thiede, S.; Kara, S.; Herrmann, C. “A methodology for customized prediction of energy consumption in manufacturing industries”, Int. J. Precis. Eng. Manuf.-Green Technol, 2, pp.163–172 (2015).
[3] Ritchie, H.; Roser, M. “CO2 and Greenhouse Gas Emissions”, available online :https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (2020).
[4] EPA of USA. “Sources of Greenhouse Gas Emissions.sources-greenhouse-gas-emissions”, available online :https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (2020).
[5] U. S. Department of Energy Report, Lightweight Materials R & D Program ; Vehicle Technologies Office:Washington, DC, USA, pp.161-173 (2013).
[6] Othman, R.; Ismail, N.I.; Pahmi, M.A.A.H.; Basri, M.H.M.; Sharudin, H.; Hemdi, A.R. “Application of Carbon fiber reinforced plastics in automotive industry:A review”, J. Mech. Manuf. 1, pp.144–154 (2018).
[7] G. Gardiner “The Markets:Automotive”, CompositesWorld Report, available online: https://www.compositesworld.com/articles/the-markets-automotive. (2020).
[8] S. Bland, L. Nickels, “BMW i3 makes its world premiere”, Reinforced plastics, p.7 Sep/Oct (2013).
[9] A. Roch, A. Menrath, T. Huber, T. Henning, and P. Elsner, “Lightweight Potential of Fiber-Reinforced Foams”, Cellular Polymers, 32(4), pp.213-228 (2013).
[10] F. Folgar & C.L. Tucker, “Orientation Behavior of Fibers in Concentrated Suspensions”, Journal of Reinforced Plastics and Composites, 3(2), pp.98-119 (1984).
[11] S.G. Advani & C.L. Tucker, “The Use of Tensors to Describeand Predict Fiber Orientation in Short Fiber Composites”, Journal of Rheology, 31(8), pp.751-84 (1987).
[12] L. Cilleruelo,E. Lafranche,P. Krawczak,P. Pardo, and P. Lucas, “Injection moulding of long glass fibre reinforced poly(ethylene terephtalate): Influence of carbon black and nucleating agents on impact properties”, Express Polymer Letters, 6(9), pp.706-718 (2012).
[13] H.-C.Tseng, R.-Y. Chang, and C.-H. Hsu, “Method and computer readable media for determining orientation of fibers in a fluid”,U.S. Patent No. 8571828 (2013).
[14] H.-C.Tseng,T.-C. Wang, Y.-J. Chang, C.-H. Hsuand R.-Y. Chang, “Progress on Fiber Concentration for Injection Molding Simulation of Fiber Reinforced Thermoplastics”, SPE Technical Papers, ANTEC2014, 3(2), 8 (2014)
[15] Favaloro, A. J., “Rheological behavior and manufacturing simulation of prepreg platelet molding systems”, Ph.D. thesis, Purdue University, West Lafayette, IN, (2017).
[16] Favaloro, A. J., H.-C. Tseng, and R. B., “A new anisotropic viscous constitutive model for composites molding simulation”, Compos. Part A: Appl. Sci. Manuf. 115, pp.112-122 (2018).
[17] Tseng, H.C.; Favaloro, A.J., “The use of informed isotropic constitutive equation to simulate anisotropic rheological behaviors in fiber suspensions”, J. Rheol, 63, pp.263–274. (2019).
[18] J.L. Thomason,M.A.Vlug, “Influence of fiber length and concentration on the properties of glass fiber-reinforced polypropylene: Part 1.Tensile and flexural modulus”, Compost. Part A: Appl. Sci. Manuf , 27A, pp.477-484 (1996).
[19] J.L. Thomason,“The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: Interface strength and fibre strain in injection moulded long fibre PP at high fibre content,” Compost. Part A: Appl. Sci. Manuf, 38(1), pp.210–216 (2007).
[20] C. Wang, and S. Yang,“Thermal, Tensile and Dynamic Mechanical Properties of Short Carbon Fibre Reinforced Polypropylene Composites”, Polymer & Polymer Composites, 21(2), pp.65-71. (2013).
[21] S. Goris, U. Gandhi, Y. Y. Song, & T. A. Osswald. “Analysis of the process-induced microstructure in injection molding of long glass fiber-reinforced thermoplastics” SPE Technical Papers, ANTEC2016, pp.348-356 (2016).
[22] H.-C. Tseng, R.-Y. Chang, & C.-H. Hsu. “Numerical prediction of fiber orientation and mechanical performance for short/long glass and carbon fiber-reinforced composites”, Composites Science and Technology, 144, pp.51-56 (2017).
[23] H.-C. Tseng, T.-H Su “Coupled flow and fiber orientation analysis for 3D injection molding simulations of fiber composites” Proceedings of PPS-34. AIP Conf. Proc, 2065, 030021 (2019).
[24] 周宗華 高分子材料 (初版). 新文京開發出版有限公司. (2002).
[25] 陳夏宗 射出成型原理與製程 Principle and process of injection molding (初版). 五南圖書出版股份有限公司. (2014).
[26] 陳昌泉 塑膠成型技術與實務 (初版). 弘揚圖書公司. (2006).
[27] 魏綸群 塑膠射出成型製程時間最佳化設計,(碩士論文), 元智大學 (2008).
[28] 張榮語 射出成型模具設計-材料特性 (初版). 高立圖書有限公司(1986).
[29] 張志純 纖維混成複合材料之應用 (初版). 徐氏基金會 (1986).
[30] 唐見茂 高性能纖維及複合材料 (初版). 化學工業出版社 (2013).
[31] S. Kenig, “Fiber orientation development in molding of polymer composites”, Polymer composites, Polymer & Polymer Composites, 7(1), pp.50-55. (1986).
[32] H Sadabadi,M GhasemI, “Effects of some injection molding process parameters on fiber orientation tensor of short glass fiber polystyrene composites (SGF/PS)”, Journal of Reinforced Plastics and Composites (2007).
[33] Moldex3D R17 online help
[34] J. Thomason, M. Vlug, G. Schipper, & H. Krikor., “Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: Part 3. Strength and strain at failure”, Composites Part A: Applied Science and Manufacturing, 27(11), pp.1075-1084 (1996).
[35] L. A. Mondy, H. Brenner, S. A. Altobelli, J. R. Abbott, A. L. Graham, “Shear‐induced particle migration in suspensions of rods”, Journal of Rheology, 38(2), pp.444-452 (1994)
[36] G. B. Jeffery. “The motion of ellipsoidal particles immersed in a viscous fluid”, Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 102(715), pp.161-179. (1922).
[37] H.-C. Tseng, R.-Y. Chang, C.-H. Hsu, “Numerical investigations of fiber orientation models for injection molded long fiber composites”, International Polymer Processing, 4, pp.543-552 (2018).
[38] J. Wang, J. F. O’gara, & C. L. Tucker. “An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence”, Journal of Rheology, 52(5), pp.1179-1200. (2008).
[39] J. H. Phelps, & C. L. Tucker.,. “An anisotropic rotary diffusion model for fiber orientation in short-and long-fiber thermoplastics”, Journal of Non-Newtonian Fluid Mechanics, 156(3), pp.165-176. (2009).
[40] H.-C. Tseng, R.-Y. Chang, & C.-H. Hsu, “Phenomenological improvements to predictive models of fiber orientation in concentrated suspensions”, Journal of Rheology, 57(6), pp.1597-1631. (2013).
[41] J. H. Phelps, A. I. A. El-Rahman, V. Kunc, & C. L. Tucker, “A model for fiber length attrition in injection-molded long-fiber composites”, Compost. Part A: Appl. Sci. Manuf, 51, pp.11-21. (2013).
[42] 彭軼暉 Moldex3D/Solid真實三維模流分析理論與應用(初版) 科盛科技股份有限公司 (2009)
[43] 吳春儀 Moldex3D模流分析技術與應用(初版) 科盛科技股份有限公司 (2007).
[44] Moldex3D R17 材料庫資訊
[45] 李長榮化工之複合材料之介紹,available online :https://lcycic.com/lcy/tc/product-info.php?cid=1&cid2=4&cid3=18. 
[46] 朱家豪. (2020). 在纖維強化塑膠射出製程中不同纖維長度引導其微結構變化與巨觀特性變異相關性之研究. (碩士論文), 淡江大學. 
[47] 傅韋文. (2020). 應用電腦斷層掃描與影像處理技術進行纖維強化塑膠射出成型產品之微結構特性研究. (碩士論文), 淡江大學.
論文全文使用權限
校內
校內紙本論文延後至2023-09-01公開
同意電子論文全文授權校園內公開
校內電子論文延後至2023-09-01公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2023-09-01公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信