§ 瀏覽學位論文書目資料
系統識別號 U0002-1108202013125300
DOI 10.6846/TKU.2020.00283
論文名稱(中文) 不鏽鋼網再生器之熱流特性研究
論文名稱(英文) Study of thermal fluidic characteristics of stainless steel mesh regenerator
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 2
出版年 109
研究生(中文) 林哲綸
研究生(英文) Che-Lun Lin
學號 607370177
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2020-07-02
論文頁數 67頁
口試委員 指導教授 - 康尚文
委員 - 楊龍杰
委員 - 蔡孟昌
關鍵字(中) 史特靈冷凍機
再生器
雷諾數
摩擦係數
有效度
多孔結構
關鍵字(英) Stirling Refrigerator
Regenerator
Friction Factor
Reynolds Number
Effectiveness
Porous structure
第三語言關鍵字
學科別分類
中文摘要
藉由參考多篇文獻設計出的史特靈冷凍機之再生器量測機,量測再生器在震盪流下相關特性,工作流體在壓縮、膨脹過程中會通過再生器,因孔質材料會產生壓力差,進而達到預熱預冷之效果。
   實驗首先以200目、300目、400目三種不鏽鋼網目,製成直徑5 mm與長45 mm之再生器。在不同轉速、溫度及填充壓力6bar情況下,共21組實驗,求出再生器最大雷諾數與摩擦係數之關係式及有效度。
   由實驗結果得知400目有最小的雷諾數、最低的摩擦係數及均衡的有效度,故在本實驗中最適合運用在史特靈冷凍機中。
英文摘要
The regenerator measuring machine of Stirling refrigerating machine designed to measure the relevant and important characteristics of the regenerator under the oscillating flow with reference to previous studies. The working fluid will pass through the regenerator during the compression and expansion process and the porous material will produce the pressure drop that can achieve the effect of preheating and precooling.
  In the experiment, three stainless steel meshes of 200 Mesh, 300 Mesh, and 400 Mesh were used to make a regenerator with a diameter of 5 mm and a length of 45 mm. The experiments were performed at different speeds, temperatures and constant filling pressures of 6 bar. Thus a total of 21 sets of experiments were performed to find the relationship between the maximum Reynolds number of the regenerator, the coefficient of friction and effectiveness of regenerator.
  According to the experimental results, 400 mesh has the smallest Reynolds number, the lowest friction coefficient and the effective degree of balance. So it is most suitable to use in the Stirling refrigerator for this experiment.
第三語言摘要
論文目次
目錄
致謝I
摘要II
Abstract III
目錄 V
表目錄 VII
圖目錄 X
符號索引 XII
第一章前言 1
1.1研究背景 1
1.2史特靈冷凍機介紹 1
1.3史特靈冷凍機構造與原理 2
1.4史特靈冷凍機結構分類 4
1.5實際應用 4
1.6研究方向 5
1.7論文架構 6
第二章再生器實驗理論 8
2.1理論分析 8
2.2再生器流力性質 8
2.3再生器熱力性質 12
2.3.1單個子再生器 12
2.3.2數個子再生器 13
第三章設計與實驗 18
3.1設計概念 18
3.2實驗設備 18
3.2.1工作流體 18
3.2.2再生器 19
3.2.3壓力傳感器 21
3.2.4熱電偶 22
3.2.5加熱器 23
3.2.6冷卻器 23
3.2.7馬達 24
3.2.8壓力資料擷取器 25
3.2.9溫度資料擷取器 26
3.2.10馬達轉速擷取器 27
3.2.11氦氣測漏儀 27
3.3.12再生器固定塊 28
3.2.13波紋管 29
3.2.14平衡艙 31
3.2.15曲軸傳動機構 32
3.3實驗量測 32
第四章實驗結果與討論 37
4.1再生器目數與最大雷諾數探討 37
4.2最大雷諾數對摩擦係數之關係 39
4.3轉速對有效度探討 41
4.4溫度對有效度探討 43
4.5再生器對有效度之探討 43
第五章結論與未來改進 46
5.1結論 46
5.2未來改進 47
參考文獻 48
表 52
表目錄 
表3.1 200目再生器加熱溫度40℃氦氣流力特性參數 52
表3.2 200目再生器加熱溫度50℃氦氣流力特性參數 52
表3.3 200目再生器加熱溫度60℃氦氣流力特性參數 52
表3.4 200目再生器加熱溫度70℃氦氣流力特性參數 53
表3.5 200目再生器加熱溫度80℃氦氣流力特性參數 53
表3.6 200目再生器加熱溫度90℃氦氣流力特性參數 53
表3.7 200目再生器加熱溫度100℃氦氣流力特性參數 53
表3.8 300目再生器加熱溫度40℃氦氣流力特性參數 54
表3.9 300目再生器加熱溫度50℃氦氣流力特性參數 54
表3.10 300目再生器加熱溫度60℃氦氣流力特性參數 54
表3.11 300目再生器加熱溫度70℃氦氣流力特性參數 54
表3.12 300目再生器加熱溫度80℃氦氣流力特性參數 55
表3.13 300目再生器加熱溫度90℃氦氣流力特性參數 55
表3.14 300目再生器加熱溫度100℃氦氣流力特性參數 55
表3.15 400目再生器加熱溫度40℃氦氣流力特性參數 55
表3.16 400目再生器加熱溫度50℃氦氣流力特性參數 56
表3.17 400目再生器加熱溫度60℃氦氣流力特性參數 56
表3.18 400目再生器加熱溫度70℃氦氣流力特性參數 56
表3.19 400目再生器加熱溫度80℃氦氣流力特性參數 56
表3.20 400目再生器加熱溫度90℃氦氣流力特性參數 57
表3.21 400目再生器加熱溫度100℃氦氣流力特性參數 57
表3.22 再生器相關參數 20
表3.23 實驗參數 35
表3.24 200目再生器加熱溫度40℃流力特性參數 57
表3.25 200目再生器加熱溫度50℃流力特性參數 57
表3.26 200目再生器加熱溫度60℃流力特性參數 58
表3.27 200目再生器加熱溫度70℃流力特性參數 58
表3.28 200目再生器加熱溫度80℃流力特性參數 58
表3.29 200目再生器加熱溫度90℃流力特性參數 58
表3.30 200目再生器加熱溫度100℃流力特性參數 59
表3.31 300目再生器加熱溫度40℃流力特性參數 59
表3.32 300目再生器加熱溫度50℃流力特性參數 59
表3.33 300目再生器加熱溫度60℃流力特性參數 59
表3.34 300目再生器加熱溫度70℃流力特性參數 60
表3.35 300目再生器加熱溫度80℃流力特性參數 60
表3.36 300目再生器加熱溫度90℃流力特性參數 60
表3.37 300目再生器加熱溫度100℃流力特性參數 60
表3.38 400目再生器加熱溫度40℃流力特性參數 61
表3.39 400目再生器加熱溫度50℃流力特性參數 61
表3.40 400目再生器加熱溫度60℃流力特性參數 61
表3.41 400目再生器加熱溫度70℃流力特性參數 61
表3.42 400目再生器加熱溫度80℃流力特性參數 62
表3.43 400目再生器加熱溫度90℃流力特性參數 62
表3.44 400目再生器加熱溫度100℃流力特性參數 62
表3.45 200目再生器加熱溫度40℃溫度數據 62
表3.46 200目再生器加熱溫度50℃溫度數據 63
表3.47 200目再生器加熱溫度60℃溫度數據 63
表3.48 200目再生器加熱溫度70℃溫度數據 63
表3.49 200目再生器加熱溫度80℃溫度數據 63
表3.50 200目再生器加熱溫度90℃溫度數據 64
表3.51 200目再生器加熱溫度100℃溫度數據 64
表3.52 300目再生器加熱溫度40℃溫度數據 64
表3.53 300目再生器加熱溫度50℃溫度數據 64
表3.54 300目再生器加熱溫度60℃溫度數據 65
表3.55 300目再生器加熱溫度70℃溫度數據 65
表3.56 300目再生器加熱溫度80℃溫度數據 65
表3.57 300目再生器加熱溫度90℃溫度數據 65
表3.58 300目再生器加熱溫度100℃溫度數據 66
表3.59 400目再生器加熱溫度40℃溫度數據 66
表3.60 400目再生器加熱溫度50℃溫度數據 66
表3.61 400目再生器加熱溫度60℃溫度數據 66
表3.62 400目再生器加熱溫度70℃溫度數據 67
表3.63 400目再生器加熱溫度80℃溫度數據 67
表3.64 400目再生器加熱溫度90℃溫度數據 67
表3.65 400目再生器加熱溫度100℃溫度數據 67
圖目錄 
圖1.1 理想史特靈冷凍循環 3
圖1.2 為史特靈冷凍機四個工作階段循環示意圖 4
圖1.3 加熱器 6
圖1.4 冷卻器 6
圖2.1 不鏽鋼網目示意圖 9
圖2.2 三個子再生器在系統穩定時理想史特靈冷凍機溫度循環 16
圖3.1 再生器材料與選擇範圍[13] 20
圖3.2 壓力傳感器 21
圖3.3 K-Type熱電偶 22
圖3.4 加熱器 23
圖3.5 水循環系統 24
圖3.6 馬達 25
圖3.7 聯軸器連接至曲軸 25
圖3.8 溫度資料擷取器 26
圖3.9 氦氣測漏儀 28
圖3.10 再生器固定塊固定再生器 29
圖3.11 再生器固定塊左右連接法蘭件 29
圖3.12 波紋管 30
圖3.13 波紋管工作示意圖 31
圖3.14 平衡艙 31
圖3.15 曲軸聯接曲軸聯軸器及馬達 32
圖3.16 設備架設 33
圖3.17 設備示意圖 34
圖3.18 測試洩漏 34
圖3.19 抽真空 34
圖3.20 將數個點畫成曲線 36
圖4.1 不同再生器及不同加熱溫度下,最大雷諾數對轉速比較:(a)加熱器溫度為40℃;(b)加熱器溫度為50℃;(c)加熱器溫度為60℃;(d)加熱器溫度為70℃;(e)加熱器溫度為80℃;(f)加熱器溫度為90℃;(g)加熱器溫度為100℃。 39
圖4.2 不同再生器之最大雷諾數與摩擦係數比較  40
圖4.3 本實驗與其他論文之最大雷諾數與摩擦係數比較 41
圖4.4 相同再生器在不同加熱器溫度下,兩個有效度對轉速比較:(a)200 Mesh hot to cold;(b)200 Mesh cold to hot;(c)300 Mesh hot to cold;(d)300 Mesh cold to hot;(e)400 Mesh hot to cold;(f)400 Mesh cold to hot。 42
圖4.5 在相同轉速及不同再生器下,有效度與不同加熱器溫度比較:(a)100RPM;(b)200RPM;(c)300RPM;(d)400RPM;(e)500RPM;(f)600RPM;(g)700RPM。 45
參考文獻
[1]A. J. Organ, "The Regenerator and the Stirling Engine," Mechanical Engineering Press, UK, 1997.
[2]R. F. Barron, Cryogenic Systems, Monographs on Cryogenics, New York: Oxford University Press, 2nd edition, vol. 1, 1985.
[3]N. Chen, X. Chen, Y. Wu, C. Yang, and L. Xu, "Spiral profile design and parameter analysis of flexure spring," Cryogenics, vol. 46, pp. 409-419, 2006.
[4]G. Swift, "Thermoacoustics: A unifying perspective for some engines and refrigerators," The Journal of the Acoustical society of America, vol. 113(5), 2002. 
[5]黃振軒, 「分置式史特靈冷凍機之性能增進」, 國立成功大學航空太空工程學系碩士論文, 2014.
[6]Ercan Ataer and H.Karabulut, "Thermodynamic analysis of the V-type stirling-cycle refrigerator," International Journal of Refrigeration, vol.28, pp. 183-189, 2005.
[7]Ter Brake, H. J. M., and G. F. M. Wiegerinck. "Low-power cryocooler survey," Cryogenics, vol. 42, pp. 705-718, 2002.
[8]A. J. Organ, "The miniature, resversed Stirling cycle cryo-cooler: integrated simulation of performance," cryogenics, vol. 39, pp.253-266, 1999.
[9]張濬麟, 「史特靈製冷機再生器之之研製」, 私立淡江大學機械與機電工程學系碩士論文, 2019.
[10]Chin-Tsau Hsu, Huili Fu and Ping Cheng. "On Pressure-Velocity Correlation of Steady and Oscillating Flows in Regenerators Made of Wire Screens," Journal of Fluids Engineering, vol. 121(1), March 1999.
[11]Gang Xiao, Hao Peng, Haoting Fan, Umair Sultan, " Characteristics of steady and oscillating flows through regenerator," J  International Journal of Heat and Mass Transfer, vol. 108, pp.309-321, December 2016.
[12]Ackermann, R. A. "Cryogenic regenerative heat exchangers," Springer Science & Business Media, 2013.
[13]W.Sobieski1, A. Trykozko, "Darcy’s and Forchheimer’s laws in practice. Part 1. The experiment," Technical Sciences, vol. 17(4), pp.321–335, 2014.
[14]R. S. Wakeland, R, M. Keolian, "Measurements of Resistance of Individual Square-Mesh Screens to Oscillating Flow at Low and Intermediate Reynolds Numbers, " J. Fluids Eng, vol. 125(5), pp.851-862 ,Oct 2003.   
[15]N. Kwanwoo, J. Sangknow. "Novel flow analysis of regenerator under oscillating flow with pulsating pressure, " Cryogenics, vol. 45(5), pp.368-379, May 2005. 
[16]Anders S. Nielsen, Brayden T. York, Brendan D. MacDonald, "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Faculty of Engineering and Applied Science, Ontario Tech University (UOIT), vol.253, Nov 2019.
[17]H. Miyabe, K. Hamaguchi, K. Takahashi, "An approach to the design of  Stirling engine regenerator matrix using packs of wire gauzes," Proc., Intersoc. Energy Convers. Eng. Conf. (United States), 1982.
[18]M. Tanaka, I. Yamashita, F. Chisaka, "Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow," JSME Int. J. Ser. 2, Fluids Eng., Heat Transf., Power, Combust., Thermophys. Propert, vol. 33(2), pp. 283–289 ,1990.
[19]D. Gedeon, J.G. Wood, "Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts," 1996..
[20]G. Xiao, H. Peng, H. Fan, U. Sultan, M. Ni, "Characteristics of steady and oscillating flows through regenerator," Int. J. Heat and Mass Transfer, vol.108, pp.309–321, 2017.
[21]S.C. Costa, Harritz Barrutia, Jon Ander Esnaola. "Numerical study of the pressure phenomena in wound matrix of regenerator," Energy conversion and management, 2013.
[22]Sungryel Choi, Kwanwoo Nam, Sangkwon Jeong. "Investigation on the pressure drop characteristics of cryocooler regenerators under oscillating flow and pulsating pressure condition," 2003. 
[23]P.V. Trevizoli, Y. Liu, A. Tura, A. Rowe, J.R. Barbosa Jr., "Experimental assessment of the thermal-hydraulic performance of packed-sphere oscillating-flow regenerators using water, " Exp. Therm. Fluid. Sci. vol. 57, pp.324–334, 2014.
[24]Bergman TL, Incropera FP, DeWitt DP, Lavine AS, "Fundamentals of heat and mass transfer," John Wiley & Sons; 2011.
論文全文使用權限
校內
校內紙本論文延後至2025-08-11公開
同意電子論文全文授權校園內公開
校內電子論文延後至2025-08-11公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2025-08-11公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信