淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1108201514373400
中文論文名稱 具筒型之鉑金屬盤形雙聚物、及一、二和三取代之炔吡啶基多炔苯基苯與具手性之環碳酸化筒型化合物的液晶及光學性質研究
英文論文名稱 The Mesogenic and Optical Properties of Platinated Discotic Dimers and Multi-phenylethylbenzenes with Mono-, Di-, and Tri-pyridylethynyl Groups and Cyclic Carbonate-based groups
校院名稱 淡江大學
系所名稱(中) 化學學系博士班
系所名稱(英) Department of Chemistry
學年度 103
學期 2
出版年 104
研究生中文姓名 廖竟婷
研究生英文姓名 Ching-Ting Liao
學號 897160023
學位類別 博士
語文別 英文
口試日期 2015-06-29
論文頁數 163頁
口試委員 指導教授-徐秀福
委員-賴重光
委員-山田徹
委員-施增廉
委員-梁蘭昌
委員-吳俊弘
中文關鍵字 盤形向列型  筒型液晶  熱致型  溶致型液晶  鉑金屬雙聚物  前鋒軌域理論  炔吡啶基  多炔苯基苯  環碳酸化反應  偏光顯微鏡  熱微差掃描分析儀  粉 末X 光繞射  圓二色光譜儀 
英文關鍵字 platinated-metallomesogenic dimers  nematogenic  pyridyl pyrazolate ligands  chromophores  thermotropic  lyotropic  pyridyl  titration  cyclic carbonated  negative cotton effect 
學科別分類
中文摘要 本論文分為四個章節,第一章以鉑金屬為中心金屬連接兩個pyridyl pyrazolate 配位基形成雙聚物,此系列以代號Ptdax 表示,x 代表不同碳鏈長度。利用偏光顯微鏡、熱微差掃描分析儀及粉末X 光繞射確認此系列化合物均具有筒型液晶相,液晶溫度範圍大於250 oC 且其熱烈解溫度均高達340 oC。第二章仍以鉑金屬為中心金屬,連接兩個五炔苯基苯盤形單元。此系列以代號Pt1cx 及Pt1ocx 表示,cx 代表不同烷鏈碳鏈長度,ocx 代表不同烷氧鏈碳鏈長度。以系列化合物皆具有盤形向列型液晶相,具烷鏈鉑金屬雙聚物熱性質穩定。此外,化合物Pt1oc4 單晶繞射結果顯示具烷氧鏈鉑金屬雙聚物整體分子平面性較好,因此粉末X 光繞射得到此類分子具有較大範圍排列的結果。第三章中分子設計以一個多炔苯基苯為主體,分別接上不同數量的炔吡啶基。利用推拉電子基效應使分子中具有拉電子基的官能基其電子密度分部落在前鋒軌域理論的LUMO,而具有推電子基的官能基其電子密度分部落在前鋒軌域理論的HOMO,利用此分子設計的差異在不同酸性、不同金屬及溶劑條件下研究液晶及光學性質。此系列以代號1N1,x、2N1,x、3N1,x 及3N2,x 表示,x代表不同碳鏈長度。結果顯示此系列化合物隨著碳鏈及炔吡啶數目不同而產生盤形向列型或筒型液晶相。此外,利用偏光顯微鏡及粉末X 光繞射結果證實化合物1N1,12 具有熱致型及溶致型液晶性質;此化合物溶於四氫伏喃(THF)溶劑中後再加入W6+及Pd2+金屬,造成強消光現象且Pd2+金屬還造成20 nm 的紅位移,證實化合物1N1,12 對此兩金屬有專一性。化合物1N1,12 及3N1,12 在2.0 當量的三氟乙酸中皆產生強消光現象,且兩化合物在具有相同當量的三氟乙酸中產生不同顏色,推測上述結果來自於分子設計造成不同的的電子密度分布而產生。第四章部分,利用日本慶應大學山田徹老師實驗室發展出的銀金屬催化系統利用添加二氧化碳進行環碳酸化反應而形成高純度旋光性化合物反應,在本實驗室發展出的五炔苯基苯盤形單元上進行Sonogashira 反應而形成具有室溫筒型液晶性質的化合物C2oc8。另一化合物EC2oc12 在圓二色光譜儀實驗中發現具有負型卡頓效應(Cotton effect)。
英文摘要 The thesis contains four chapters. In chapter one and two, we investigated the influence of the molecular packing of discotic platinated-metallomesogenic dimers on their mesogenic and optical properties, especially their photo-luminescent studies. In chater one, a platinum
chelated pyridyl pyrazolate ligands to form a square planar structure. The molecular design led the compounds possessed wide mesogenic temperature range (> 250°C) and achieved mesomorphically stable (Td > 340 °C). In chapter two, a spacer with platinum moiety bridged two discotic pentaynylethylbenzenes. The Pt1oc6 possessed wide nematogenic temperature range (> 130°C). Being compared with Pt1c4, the more planar structure of Pt1oc4 possessed longer molecular packing length found in the results of powder X-ray diffraction investigation. This indicated that the alkoxy chains potentially helps Pt1oc4 to achieve large
domain alignment. In chapter three, the molecular design concept based on adding donor and/or acceptor substituents to the chromophores at suitable positions resulted in separately electronic shifts in HOMO and LUMO into opposite directions. The discotic monopyridyl derivatives, 1N1,12 possessed both thermotropic and lyotropic properties. The 1N1,12 behaved as a enantiotropic liquid crystal and achieved room temperature Smactic C phase. Another tripyridyl derivative, 3N1,12 possessed columnar phase. The fluorescent investigation results showed
that 1N1,12 quenched almost all d8 metal ions and K+, Hg2+, Pd2+, V5+, and W6+. However, the 3N1,12 quenched only Cu2+, Hg2+, Pd2+, and W6+ metal ions. Besides, to titrate with tetrafluoric acid (TFA) from 0.5 to 2.0 equivalents, the emissive intensity decrease seriously. Both of the optical results indicated that the discotic-pyridyl derivatives could be tuned by the designed electronic distribution to bind individual metal ions and to manipulate the appeared colors in varied pH values. In the last chapter, a series of cyclic carbonated moiety attached on pentaphenylethylbenzene were synthesized. A room temperature (C2OC8) columnar mesogens were achieved. The CD investigatino of EC2OC12showed negative cotton effect.
論文目次 Chapter 1…………………………………….………………………………………..1
Investigation of Mesogenic and Optical Properties of Platinum(II) Complexes with Tris(alkoxy)phenyl-Functionalized Pyridyl Pyrazolate chelates…….......…..1
1-1 Introduction…………………………………………………………………..2
1-2 Experimental Section…………………………………….…………………4
1-3 Results and Discussion……………………………………………………..4
Solid state structure studies of Single Crystal X-ray investigation…………4
Thermal properties of series Ptdax…….....…………………………………5
Powder X-ray Diffraction study of series Ptda…………………………………..6
Optical Properties of series Ptdax………………………………………………11
1-4 Conclusions…………………………………………………………………….15
1-5 References………………………………………………………………………16

Chapter 2………………………………………………………………...………….23
Investigation of Mesogenic and Optical Properties of Discotic Nemetogens Dimers Bridged with Pt(PEt3)2 Moiety……………………….......………….23
2-1 Introduction…………………………………………………….……………….24
2-2 Experimental section………………………………………………………26
2-3 Results and Discussion………………………………………………………….40
Mesogenic Properties…………………….……………………..………………..40
Powder X-ray Diffraction (PXRD) Investigation……………….……………….46
Adsorption and emission properties in solution………………….………………53
2-4 Conclusions………………………………………………..…………………….59
2-5 References……………………………………………………………………….60

Chapter 3…………………………………………………………………………..58
Investigation of Mesogenic and Optical Properties of Multi-phenylethylbenzenes with Mono-, Di-, and Tri-pyridylethynyl Groups……………………………....58
3-1 Introduction…………………………………………………………..……….59
3-2 Experimental section…………………………………………………………..61
3-3 Results and Discussion…………………..…………………………………….86
Mesogenic Properties……………………………………………...……………..86
Investigation of Lyotropic Liquid Crystal Properties…………...………………101
Powder X-ray Diffraction (PXRD) Investigation…………….……...…………105
Optical Properties of 1N1,12……………………………………………...……...122
Optical Properties of 1N3,12……………………………………………...……...129
3-4 Conclusions…………………………………………………...………………..137
3-5 References…………………………………...……………...………………….138

Chapter 4……………………………………………………………………….….144
Room temperature chiral columnar liquid crystals by the generation cyclic carbonate moiety with a chiral center onto pentaphenylethy-lbenzene………………………..144
4-1 Introduction…………………………..………………………………………..145
4-2 Experimental Section………………………………………………….………150
4-3 Results and Discussion………………………………………………..……….154
Synthesis……………………………………………………………….………..154
Mesogenic Properties…………………………………………………...………157
4-4 Conclusions…………………………………………………………………….161
4-5 References…………………………………………..………………………….162
Powder X-ray Diffraction (PXRD) Investigation…………….……...…………105
Optical Properties of 1N1,12……………………………………………...……...122
Optical Properties of 1N3,12……………………………………………...……...129
3-4 Conclusions…………………………………………………...………………..137
3-5 References…………………………………...……………...………………….138
Chapter 4……………………………………………………………………….….144
Room temperature chiral columnar liquid crystals by the generation cyclic carbonate
moiety with a chiral center onto pentaphenylethy-lbenzene………………………..144
4-1 Introduction…………………………..………………………………………..145
4-2 Experimental Section………………………………………………….………150
4-3 Results and Discussion………………………………………………..……….154
Synthesis……………………………………………………………….………..154
Mesogenic Properties…………………………………………………...………157
4-4 Conclusions…………………………………………………………………….161
4-5 References…………………………………………..………………………….162


Chapter 1-Index of Figures, Tables, and Schemes
Figure 1. 1 left) the structure of GaQ2L, right) the spectrum of emission GaQ2Lfilm spin coated onto quartz. Solid line: emission ( ex= 370 nm; on the right) and excitation ( em= 515 nm; on the left)spectra of GaQ2Lin dichloromethane solution. Dotted line: emission ( ex= 370 nm)……………………………3
Figure 1. 2 Diagram showing the selective atomic labeling of PtIIcomplex Ptda4 and the inter-molecular stacking interaction; selected bond lengths: Pt-N1 = 2.026(3), Pt-N2 = 1.955(3), Pt-N4 = 2.028(3), Pt-N5 = 1.994(3), Pt‧‧‧Pt = 3.258 Å; boangles: N1-Pt-N2 = 79.18(13), N1-Pt-N4 = 178.75(12), N2-Pt-N5 = 177.15(13), and N4-Pt-N5 = 79.08(13)…………..………………5
Figure 1. 3 Optical textures of Colr amd Colh mesophases from Ptda4. Micrographs from heating process: left) Colr at 180 ˚C, (right) Colh at 264 ˚C. Samples were sandwiched between glass slides and viewed through crossed polarizer…………………………………………………………………..6
Figure 1. 4 Powder X-ray diffraction pattern of Ptda4 at 200 ˚C showed a Colr
mesophas…………………………………………………………………..9
Figure 1. 5Powder X-ray diffraction pattern of Ptda4 at 300 ˚C showed a Colh
mesophase………………………………………………………………….....9
Figure 1.6 Powder X-ray diffraction pattern of Ptda6 at 200 ˚C showed a Colh
mesophase……………………..……………………………………………..10
Figure 1. 7 Powder X-ray diffraction pattern of Ptda8 at 250 ˚C showed a Colh
mesophase……………………………………………………………………10
Figure 1.8Powder X-ray diffraction pattern of Ptda12 at 200 ˚C showed a Colh
mesophase……………………………………………………………..…….11
Figure 1. 9a) UV/Vis absorption (> 430 nm) and emission spectra (< 450 nm) of
complexes Ptda4(■), Ptda6(○), Ptda8(▲), and Ptda12(◇) in CH2Cl2. Note that the normalized emission spectra were acquired in degassed CH2Cl2 and were found to be superimposable…………………………………………..…12
Figure 1. 10 UV/Vis absorption (< 650 nm) and emission spectra (< 525 nm) of
complexes Ptda4(■), Ptda6(○), Ptda8(▲), and Ptda12(◇) in neat film at RT……………………………………………………………………..….13
Figure 1. 11 The core structure of the antisymmetric chainlike architecture of a Ptda4
complexes after casting into a thin film; nitrogen atoms are omitted for clarity…………………………………………………………………..….14
Figure 1. 12 Temperature-dependent emission spectra of a neat thin film of Ptda12....14

Table 1. 1 The mesophases formed by compounds with 3,4,5-tris(hexadecyloxy
benzoyloxy ligands depending on the number and the distribution of chains. [7b]…………………………………………………………………………3
Table 1. 2 Phase behaviors of Ptdax complexes………………………………5
Table 1. 3 X-ray diffraction data of Pt(II) metal complexes……………………..7

Chapter 3-Index of Figures, Schemes, and Tables
Figure 3. 1 The phase transition chart of series 1N1,x with different mesogenic properties at cooling process……………………………………………….86

Figure 3. 2 Optical micrographs of compound 1N1,4 at cooling process, 193 ºC, black part presented homeotropic result, nematic texture. Scale bar: 50 m……87
Figure 3. 3 Optical micrographs of compound 1N1,4 at cooling process, 165 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m.87
Figure 3. 4 Optical micrograph of compound 1N1,6 at cooling process, 143 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m..88
Figure 3. 5 Optical micrograph of compound 1N1,12 at cooling process, 48 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m..88
Figure 3. 6 The phase transition chart of 1N2,x and 1EN2,x with columnar mesogenic properties………………....…………………………………………………..90
Figure 3. 7 Optical micrograph of compound 1N2,6 at cooling process, 148 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m..88
Figure 3. 8 Optical micrograph of 1N2,8 at cooling process, 100 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m………………………91
Figure 3. 9 Optical micrograph of compound 1EN2,4 at cooling process, 210 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m. (Heated to 230 ºC then cooled down to 195 ºC for 5 times.)………………..92
Figure 3. 10 Optical micrograph of compound 1EN2,8 at cooling process 155 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m. (Heated to 190 ºC then cooled down to 100 ºC for 6 times.)…………………92
Figure 3. 11 Optical micrograph of compound 1EN2,12 at cooling process, 155 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m.90
Figure 3. 12 The phase transition chart of XN1,6, XMN1,6 and 3N1,12 with different mesogenic properties…………………………………………………………94
Figure 3. 13 Optical micrograph of compound 2MN1,6 at cooling process, 100 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m..95
Figure 3. 14 Optical micrograph of compound 3N1,6 at cooling process, 110 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m95
Figure 3. 15 Optical micrograph of 3N1,12 at cooling process, 165 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m……………..96
Figure 3. 16 The phase transition chart of 1N1,12 and 3N1,12 with columnar mesogenic properties………………………………………………………..98
Figure 3. 17 Optical micrograph of compound 2PN2,6 at cooling process, 210 ºC sandwiched between glass slides between cross polarizers. Black part presented thermal decomposed result. Scale bar: 50 m. (Heated to 225 ºC then cooled down to 200 ºC for 1 time. 70% of area has been decomposed)..98
Figure 3. 18 Optical micrograph of compound 3N2,12 at cooling process, 121 ºC sandwiched between glass slides between cross polarizers. Scale bar: 50 m..99
Figure 3. 19 contact preparation of 1N1,12 and deionized water at 48 °C, 50 m. A) heating process. B) cooling process………………………………………101
Figure 3. 20 50% deionized water and compound 1N1,12 at 48 °C, Scale bar: 50 m cooling proces……………………………………………………………..103
Figure 3. 21 75% deionized water and compound 1N1,12 at 48 °C, Scale bar: 50 m cooling process…………………………………………………..…………103
Figure 3. 22 PXRD results of 1N1,4 in nematic mesogenic phase……………..…105
Figure 3. 23 PXRD results of 1N1,4 in columnar mesogenic phase………………….106
Figure 3. 24 Representation of lattice rectangular columnar……………………….107
Figure 3. 25 PXRD stacking patterns of 1N1,12 with 0% deionized H2O at 45, 50 and 53 ºC at second cooling run………………………………………………..109
Figure 3. 26 PXRD stacking patterns of 2MN1,6 at second cooling run………111
Figure 3. 27 PXRD stacked pattern of 2PN2,6 at second cooling run………………113
Figure 3. 28 PXRD stacking patterns of 3N1,6 at second cooling run……………116
Figure 3. 29 PXRD stacking patterns of 3N2,12 at second cooling run……………119
Figure 3. 29 PXRD stacking patterns of 3N2,12 at second cooling run…………..116
Figure 3. 30 Proposed energy levels in polar and non-polar solvents………………122
Figure 3. 31 The UV-vis and fluorescence spectra of 1N1,12 with varied solvents…123
Figure 3. 32 Fluorescence results of compound 1N1,12 with varied metal ions. Zoom in part showed the spectra of 1N1,12 with W6+ and Pd2+ metal ions…124
Figure 3. 33 Fluorescence results of 1N1,12 with varied equivalents of Hg2+ metal ion………………………………………………………………………….125
Figure 3. 34 Fluorescence results of 1N1,12 with varied equivalents of Zn2+ metal ion……………………………………………………………………..…126
Figure 3. 35 Fluorescence results of 1N1,12 with varied acids. The inset colors showed the 1N1,12 in differnet acids under UV light, = 365 nm……………………127
Figure 3. 36 Fluorescence results of 3N1,12 with varied solvents………….129
Figure 3. 37 Fluorescence results of 3N1,12 with varied metal ions. The zoom in part showed the highest emission signals of 478 nm………………..130
Figure 3. 38 Fluorescence results of titrated a) 1N1,12 and b) 3N1,12 with W6+ metal ion in DMSO, respectively……………………………………..131
Figure 3. 39 Fluorescence results of titrated a) 1N1,12 and b) 3N1,12 with W6+ metal ion in DMF, respectively…………………………………………132
Figure 3. 40 Fluorescence results of 1N1,12 and 3N1,12 titrated with TFA results, respectively……………………………………………………………….133
Figure 3. 41 The sorts of net dipole moment of 11N1,12 and 3N1,12. Red narrow composed of pyridyl and phenyl groups and blue narrow composed of two phenyl groups……………………………………………………………..134
Figure 3. 42 Molecular orbital plots of simplified structure of 11N1,12 and 3N1,12. Caculated by Spartan (B3LYP/6-31G*). For compound 11N1,12, the LUMO located on the pyridyl group…………………………………………..135

Chapter 4-Index of Figures, Schemes, and Tables
Figure 4. 1 The single X-ray diffraction structure of the CO2-incorporated product. 6a…………….……………………………………………………………..142
Figure 4. 2 Optical micrograph of C2OC8, sandwiched between glass slides between cross polarizers, on cooling at 57 ºC. Scale bar: 50 m……..…155
Figure 4. 3 Optical micrograph of EC2OC12, sandwiched between glass slides between cross polarizers, on cooling at 99 ºC. Scale bar: 100 m…….155
Figure 4. 4 CD spectra of neat EC2OC12 showing the negative Cotton effect. The neat sample was sandwiched between glass slides and spectra of 8 different spots of the slide were taken……………………………………………..156
Scheme 4. 1Reaction mechanism of propargylic alcohol with CO2.6………………142
Scheme 4. 2 Discotic mesogens with secondary alcohol moiety…………….……...150
Scheme 4. 3 Intended synthetic route to achieve inducing a chiral center onto a discogen……………………………………………………………………..151
Scheme 4. 4 The chiral moiety obtained from propargylic alcohol by thesilver-catalysed CO2 incorporation………………………………….…………151
Scheme 4. 5 The final structure generating from Sonogashira reaction with the chiral moiety and penta(phenylethyl)benzene………………………………..…152
Table 4. 1 The examination of various conditins of silver acetate and a chiral Schiff base ligand.6b……………………………………………………..…..143
Table 4. 2 Thermal behavior of cyclic carbonates derivatives and their precursors…………………………………..……………………………....154
參考文獻 1. (a) Vorlander, D. Z., Phys. Chem. 1923, 105, 211-254; (b) Ebert, M.; Jungbauer, D. A.; Lleppinger, R.; Wendorff, J. H.; Kohne, B.; Praefcke, K., Liq. Cryst. 1989, 4, 53-67.
2. (a) Krigbaum, W. R.; Poiroer, J. C.; Costello, J. M., Mol. Cryst. Liq. Cryst. 1973, 20, 133-135; (b) Chandrasekhar, S., Curr. Sci. 1978, 47, 523-563; (c) Omenat, A.; Ghedini, M., Chem. Commun. 1994, 1309-1395.
3. Serrano, J. L. 1996.
4. (a) Kaharu, T.; Matsubura, H.; Takahashi, S., J. Mater. Chem. 1991, 1, 145-146; (b) Kaharu, T.; Matsubura, H.; Takahashi, S., J. Mater. Chem. 1992, 2, 43-47.
5. Yoshio, M.; Mukai, T.; Kanie, K.; Yoshizawa, M.; Ohno, H.; Kato, T., Chem. Lett. 2002, 320-321.
6. (a) Kaharu, T.; Tanaka, T.; Sawada, M.; Takahashi, S., J. Mater. Chem. 1994, 4, 859-865; (b) Takahashi, S.; Kaharu, T., Chem. Lett. 1992, 1515-1516.
7. (a) Galerne, Y., Mol. Cryst. Liq. Cryst. 1988, 165, 180-184; (b) Ghedimi, M.; Pucci, D., J. Organomet. Chem. 1990, 395, 105-112.
8. Kumar, S.; Varshney, S. K., Liq. Cryst. 2001, 28, 161-163.
9. Mori, H.; Itoh, Y.; Nishiura, Y.; Nakamura, T.; Shinagara, Y., Jpn. J. Appl. Phys. 1997, 36, 143-147.
10. (a) Kohne, B.; Praefcke, K., Chimia 1987, 41, 196-198; (b) Marguet, S.;
Markovitsi, D.; Goldmann, D.; Janietz, D.; Praefcke, K.; Singer, D., J. Phys. Chem. 1993, 97, 1358-1361; (c) Praefcke, K.; Kohne, B.; Gutbier, K.; Johnen, N.; Singer, D., Liq. Cryst. 1989, 5, 233-249; (d) Praefcke, K.; Kohne, B.; Gutbier, K.; Johnen, N.; Singer, D., Liq. Cryst. 1990, 29, 177-179.
11. (a) Kato, T.; Mizoshita, N.; Kishimito, K., Angew. Chem. Int. Ed. 2006, 45, 38-68; (b) Sawamura, M.; Kawai, K.; Matsuo, Y.; K., K.; Kato, T.; Nakamura, E., Nature 61 2002, 419, 702-705; (c) Gin, D.; Smith, R.; Deng, H.; Leising, G., Synth. Met. 1999,101, 52-55; (d) Kosonen, H.; RuoKolainen, J.; Knaapila, M.; Torkkeli, M.; Jokela, R.; Serimaa, G.; Bras, W.; Monkman, A. P.; Ikkala, O., Macromolecules 2000, 33, 8671-8675; (e) Mindyuk, O. Y.; DStetzer, M. R.; Heiney, P. A.; Nelson, J. C.; Moore, J. S.,
Adv. Mater. 1998, 10, 1363-1366; (f) Kishimoto, K.; Yoshio, M.; Mukai, T.;
Yoshizawa, M.; Ohno, H.; Kato, T., J. Am. Chem. Soc. 2003, 125, 3196-3197; (g)Yoshio, M.; Kato, T.; Mukai, T.; Yoshizawa, M.; Ohno, H., Mol. Cryst. Liq. Cryst. 2004, 413, 2235-2244; (h) Lee, H.-K.; Lee, H.; Ko, Y. H.; Chang, Y. J.; Oh, W.-C.;Zin, W.-C.; Kim, K., Angew. Chem. Int. Ed. 2001, 40, 2669-2671; (i) Hoshino, K.;Yoshio, M.; Mukai, T.; Kishimoto, K.; Ohno, H.; Kato, T., J. Polym. Sci. Part A2003, 41, 3486-3492; (j) Mukai, T.; Yoshio, M.; Kato, T.; Ohno, H., Chem. Lett.2004, 33, 320-321; (k) Mukai, T.; Yoshio, M.; Kato, T.; Ohno, H., Chem. Lett. 2005, 34, 442-443.1. Wilson, J. N.; Bunz, U. H. F., J. Am. Chem. Soc. 2005, 127, 4124-4125.
2. (a) Marsden, J. A.; Miller, J. J.; Shirtcliff, L. D.; Haley, M. M., J. Am. Chem. Soc. 2005, 127, 2464-2476; (b) Marsden, J. A.; O'Connor, M. J.; Haley, M. M., Org. Lett. 2004,6, 2385-2388.
3. Pak, J. J.; Weakley, T. J. R.; Haley, M. M., J. Am. Chem. Soc. 1999, 121, 8182-8192.
4. (a) Tykwinski, R. R.; Diederich, F., Liebigs. Ann. Recl. 1997, 649-661; (b) Zhao, Y. M.; Tykwinski, R. R., J. Am. Chem. Soc. 1999, 121, 458-459; (c) Eisler, S.; Tykwinski, R. R., J. Am. Chem. Soc. 2000, 122, 10736-10737; (d) Zhao, Y. M.; Ciulei, S. C.; Tykwinski, R. R., Tetrahedron Lett. 2001, 42, 7721-7723; (e) Gisselbrecht, J. P.; Moonen, N. P.; Boudon, C.; Nielsen, M. B.; Diederich, F.; Gross, M., Eur. J. Org. Chem. 2004, 2959-2972.
5. (a) Wilson, J. N.; Josowicz, M.; Wang, Y. Q.; Bunz, U. H. F., Chem. Commun. 2003, 2962-2963; (b) Wilson, J. N.; Windscheif, P. M.; Evans, U.; Myrick, M. L.; Bunz, U. H. F., Macromolecules 2002, 35, 8681-8683; (c) Wilson, J. N.; Smith, M. D.; Enkelmann, V.; Bunz, U. H. F., Chem. Commun. 2004, 1700-1701; (d) Wilson, J. N.; Hardcastle, K. I.; Josowicz, M.; Bunz, U. H. F., Tetrahedron Lett. 2004, 60, 7157-7167.
6. Woo, H. Y.; Hong, J. W.; Liu, B.; Mikhailovsky, A.; Korystov, D.; Bazan, G. C., J. Am. Chem. Soc. 2005, 127, 820-821.
7. (a) Tolosa, J.; Solntsev, K. M.; Tolbert, L. M.; Bunz, U. H. F., J. Org. Chem. 2010, 75, 523-534; (b) Wagner, S.; Brodner, K.; Coombs, B. A.; F., B. U. H., Eur. J. Org. Chem. 2012, 2237-2242; (c) Seehafer, K.; Bender, M.; Bunz, U. H. F., Macromolecules 2014, 47, 922-927; (d) Seehafer, K.; Bender, M.; Schwaebel, S. T.; Bunz, U. H. F., Macromolecules 2014,
47, 7014-7020.
8. (a) Martınez, R.; Espinosa, A.; Tarraga, A.; Molina, P., Tetrahedron Lett. 2008, 64, 2184-2191; (b) Devaraj, S.; Saravanakumar, D.; Kandaswamy, M., Sens. Actuator. B 2009, 136, 13-19; (c) Elanchezhian, V. S.; Kandaswamy, M., Inorg. Chem. Commun. 2009, 12,161-165.
9. (a) Goze, C.; Ulrich, G.; Charbonniere, L.; Cesario, M.; Prangae, T.; Ziessel, R., Chem. Eur. J. 2003, 9, 3748-3755; (b) Cao, Y.-D.; Chen, C.-F.; Huang, Z.-T., Tetrahedron Lett. 2003, 44, 4751-4754; (c) Jiang, W.; Fu, Q.; Fan, H.; Wang, W., Chem. Commun. 2008, 259-267; (d) Hung, C.-H.; Chang, G.-F.; Kumar, A.; Lin, G.-F.; Luo, L.-Y.; Ching, W.-M.; Diau,
139E. W.-G., Chem. Commun. 2008, 978-980.
10. (a) Nolan, E. M.; Lippard, S. J., Acc. Chem. Res. 2009, 42, 193-203; (b) Tyrala, E. E.;
Brodsky, E. L.; Auerbach, V., Am. J. Clin. Nutr. 1982, 35, 542-552; (c) Narli., I.; Kiralp, S.; Toppare, L., Anal. Chim. Acta. 2006, 572, 25-31.
11. (a) Bull, P. C.; Cox, D. W., Trends Genet. 1994, 10, 246-252; (b) Schaefer, M.; Gitlin, G. D., Am. J. Physiol. 1999, 276, 311-314; (c) Frederickson, C. J.; Koh, J.-Y.; Bush, A. I., Nat. Rev. Neurosci. 2005, 6, 449-462; (d) Harris, H. H.; Pickering, I. J.; George, G. N., Science 2003, 301, 1203-1205.
12. (a) Vallee, B. L.; Falchuk, K. H., Psychol. Rep. 1993, 73, 79-84; (b) Sensi, S. L.; Canzoniero, L. M.; Yu, S. P.; Ying, H. S.; Koh, J. Y.; Kershner, G. A.; Choi, D. W., J. Neurosci. 1997, 17, 9554-9564; (c) Coleman, E., Curr. Opin. Chem. Biol. 1998, 2, 222-234;
(d) Lim, N. C.; Freake, H. C.; Brukner, C., Chem. Eur. J. 2005, 11, 38-49.
13. (a) Xu, Z.; Yoon, J.; Spring, R. D., Chem. Soc. Rev. 2010, 39, 1996-2006; (b) Lee, H. G.; Lee, J. H.; Jang, S. P.; Park, H. M.; Kim, S.; Kim, Y.; Kim, C.; Harrison, R. G., Tetrahedron Lett. 2011, 67, 8073-8088; (c) Kimura, E.; Koike, T., Chem. Soc. Rev. 1998, 27, 179-184.
14. (a) Renzoni, A.; Zino, F.; Franchi, E., Environ. Res. 1998, 77, 68-72; (b) Boening, D. W., Chemosphere 2000, 40, 1335-1351.
15. Harada, M., Crit. Rev. Toxicol. 1995, 25, 1-24.
16. Metivier, R.; Leray, I.; Valeur, B., Chem. Commun. 2003, 20, 996-997.
17. Battistuzzi, G.; Borsari, M.; Menabue, L.; Saladini, M.; Sola, M., Inorg. Chem. Commun. 1996, 35, 4329-4347.
18. Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A., Pramana 1977, 9, 471-480.
19. Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H.-W.; Vill, V.; Boden, N.; Movaghar, B. Handbook of Liquid Crystals. Wiley-VCH, Weinheim: 1998; Vol. 2B.
20. Nelson, J., Science 2001, 293, 1059-1060.
21. Percec, V.; Glodde, M.; Bera, K. T.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spies, H.-W.; Hudson, S. D.; Duan, H., Nature 2002, 419, 384-387.
22. Mende, L.; Fechtenkctter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Science 2001, 293, 1119-1122.
140
23. (a) Kim, J. Y.; Bard, A., J. Chem. Phys. Lett. 2004, 383, 11-15; (b) Fox, M. A.; Grant, J. V.; Melamed, D.; Torimoto, T.; Liu, C.; Bard, A., J. Chem. Mater. 1998, 10, 1771-1776; (c) Gregg, B. A.; Fox, M. A.; Bard, A. J., J. Phys. Chem. 1990, 94, 1586-1598.
24. (a) Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, S. C.; Manz, A., Science
1993, 261, 895-897; (b) Christopher, A. H.; Sanders, K. M. J., J. Am. Chem. Soc. 1990, 112, 5525-5534.
25. (a) Engelhart, U.; Lindner, J. D.; Tverskoy, B. O.; Rominger, F.; Bunz, U. H. F., J. Org. Chem. 2013, 78, 10832-10839; (b) Spitler, L. E.; Laura, D. S.; Michael, M. H., J. Org. Chem. 2007, 72, 86-96.
1. Choi, T. S. J.-C.; Yasuda, H., Chem. Rev. 2007, 107, 2365-2387.
2. (a) Yeung, C. S.; Dong, V. M., J. Am. Chem. Soc. 2008, 130, 7826-7827; (b) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K., Org. Lett. 2008, 10, 2681-2683; (c) Boogaerts, I. F.; Nolan, S. P., Chem. Commun. 2011, 47, 3021-3023.
3. (a) Fujihara, T.; Xu, T.; emba, K. S.; Terao, J.; Tsuji, Y., Angew. Chem. Int. Ed. 2011, 50, 523-527; (b) Zhang, W.-Z.; Li, W.-J.; Zhang, X.; Zhou, H.; Lu, X.-B., Org. Lett. 2010, 12, 4748-4751.
4. (a) Shi, M.; Nicholas, K. M., J. Am. Chem. Soc. 1997, 119, 5057-5058; (b) Correa, A.; Martin, R., J. Am. Chem. Soc. 2009, 131, 15974-15975; (c) Aoki, M.; Kaneko, M.; Izumi, S.; Ukai, K.; Iwasawa, N., Chem. Commun. 2004, 2568-2569.
5. Uka, K.; Aoki, M.; Takaya, J.; Iwasawa, N., J. Am. Chem. Soc. 2006, 128, 8706-8707.
6. (a) Yamada, W.; Sugawara, Y.; Cheng, H. M.; Ikeno, T.; Yamada, T., Eur. J. Org. Chem. 2007, 2604-2067; (b) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T., J. Am. Chem. Soc. 2010, 132, 4072-4073; (c) Kikuchi, S.; Yoshida, S.; Sugawara, Y.; Yamada, W.; Cheng, H.-M.; Fukui, K.; Sekine, K.; Iwakura, I.; Ikeno, T.; Yamada, T., Bull. Chem. Soc. Jpn. 2011, 84, 698-717; (d) Kikuchi, S.; Sekine, K.; Ishida, T.; Yamada, T., Angew. Chem. Int. Ed. 2012, 51, 6989-6992.
7. (a) Kato, T.; Mizoshita, N.; Kishimoto, K., Angew. Chem. Int. Ed. 2006, 45, 38-68; (b) M.Saez, I.; Goodby, J. W., J. Mater. Chem. 2005, 15, 26-40; (c) Tschierske, C.; Annu., R., Prog. Chem. Sect. C 2001, 97, 191-267.
8. (a) Praefcke, K.; Kohne, B.; Singer, D., Angew. Chem. Int. Ed. 29, 1990, 177-179; (b) Praecfcke, K.; Singer, D.; Gundogan, B.; Gutbier, K.; Langner, M., Ber. Bunsenges. Phys. Chem. 1993, 97, 1358-1361; (c) Marguet, S.; Markovitsi, D.; Goldmann, D.; 163 Janietz, D.; Praefcke, K.; Singer, D., J. Chem. Soc. Faraday Trans. 1997 93, 147-155.
9. (a) Kumar, S.; Varshney, K., Angew. Chem. Int. Ed. 2000, 39, 3140-3142; (b) Kumar, S.; Varshney, S. K.; Chauhan, D., Mol. Cryst. Liq. Cryst. 2003, 396, 241-250.
10. (a) Xu, Y.; Jiang, H.; Zhang, Q.; Wang, F.; Zou, G., Chem. Commun. 2014, 50, 365-367; (b) Varshneya, S. K.; Nagayamab, H.; Takezoeb, H.; Prasada, V., Liq. Cryst. 2009, 36, 1409-1415; (c) Varshney, S. K.; Prasad, V.; Takezoe, H., Liq. Cryst. 2011, 38, 53-60; (d) M., H., Chem. Soc. Rev. 2007, 36, 2070-2095.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-08-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-08-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信