§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1108201511084300
DOI 10.6846/TKU.2015.00273
論文名稱(中文) 聚偏二氟乙烯複合薄膜應用於海水淡化之研究
論文名稱(英文) A study on performance of PVDF composite membrane in seawater desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 邱士恩
研究生(英文) Shin-En Chiu 邱士恩
學號 602400516
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-17
論文頁數 87頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 童國倫(kltung@ntu.edu.tw)
關鍵字(中) 直接接觸式薄膜蒸餾
聚偏二氟乙烯
平板薄膜
複合薄膜
關鍵字(英) Direct Contact Membrane Distillation
Poly(vinylidene fluoride)(PVDF)
Flat-sheet membrane
composite membrane
第三語言關鍵字
學科別分類
中文摘要
本研究以聚偏二氟乙烯(poly(vinylidene fluoride), PVDF)膜材,並使用親水支撐層合成一平板親-疏水複合薄膜,來組裝模組進行直接接觸式薄膜蒸餾(Direct Contact Membrane Distillation, DCMD)用於海水淡化之效能探討,進料之模擬海水為3.5 wt%的NaCl水溶液。合成薄膜的組成為PVDF、磷酸三乙酯(Triethyl phosphate, TEP)及Tween-20的混合溶液,其中共四種條件分別為10、20、40、60 wt%磷酸三乙酯(TEP)水溶液,藉由硬性沉澱槽換成軟性沉澱槽的方式來改善平板薄膜表面結構。從SEM解析得知隨著磷酸三乙酯(TEP)在沉澱槽的比例增加薄膜表面大孔洞數量,探討其薄膜結構對蒸餾操作之影響。
在實驗操作部分主要是探討不同的參數對薄膜蒸餾之滲透通量及鹽阻隔率之影響,DCMD中兩側流體流動是逆流方式,其它參數包括在進料溫度(50~70 oC)、進料速度(0.4~0.7 L/min)與不同進料濃度(純水~15wt%NaCl溶液)。
在DCMD中其結果顯示隨著沉澱槽TEP wt%的比例增加,所製成的薄膜之通量皆會高於沒改質的薄膜,是由於隨著TEP在沉澱槽的比例增加薄膜表面皮層結構不易形成,且大孔洞數變多。且提高進料溫度能明顯增加滲透通量,但極化現象也較嚴重,而增加進料流率則對於滲透通量之提升較不顯著,但對於高溫進料操作之溫度極化現象具有較明顯改善效果。
英文摘要
In this study, the flat-sheet composite membranes of polyvinylidene fluoride (PVDF) supported on hydrophilic cellulose were prepared, and their performances in direct contact membrane distillation (DCMD) for seawater desalination were also investigated.  
The simulated seawater of 3.5 wt% NaCl solution was adepted as the feed. The dope solution consisted of PVDF, Triethyl phosphate(TEP) and Tween-20, and four conditions, 10、20、40 and 60 wt% triethylphosphate (TEP) solution were applied in the coagulation bath. From the observation by SEM, the surface pore sizeof membrane increased with the increasing of TEP concentration in the coagulation bath.  
The experimental results of DCMD showed that the membrane prepared from higher TEP concentration had a larger permeate flux because of its larger pore size on the surface. And increasing the feed temperature of the feed can significantly increase the flux, but the polarization phenomena become more serious, but the effect of increasing feed flow rate the effect is not obvious on the flux.
第三語言摘要
論文目次
目錄
誌謝…………………………………………………………………………………I
中文摘要……………………………………………………………………………II
英文摘要……………………………………………………………………………III
目錄…………………………………………………………………………………IV
圖目錄………………………………………………………………………………VI
表目錄………………………………………………………………………………VIII
第一章  緒論………………………………………………………………………1
1.1	前言……………………………………………………………………………1
1.2	薄膜分離程序…………………………………………………………………2
1.3	薄膜的應用……………………………………………………………………4
1.4	薄膜蒸餾………………………………………………………………………7
1.5	研究目標………………………………………………………………………9
第二章  文獻回顧…………………………………………………………………12
2.1	薄膜蒸餾研究…………………………………………………………………12
2.2	薄膜蒸餾法之種類……………………………………………………………16
2.2.1  直接接觸式薄膜蒸餾………………………………………………………16
2.2.2  空氣間隙式薄膜蒸餾………………………………………………………16
2.2.3  空氣掃掠式薄膜蒸餾………………………………………………………17
2.2.4  真空式薄膜蒸餾……………………………………………………………17
2.3	薄膜孔洞結構及性質…………………………………………………………17
2.4	影響滲透通量的因素…………………………………………………………19
2.5	薄膜製備………………………………………………………………………21
2.6	高分子成膜理論………………………………………………………………22
2.6.1   成膜理論: 熱力學…………………………………………………………22
2.6.2   成膜理論: 質傳動力學……………………………………………………24
第三章	實驗裝置與方法…………………………………………………………27
3.1	實驗裝置………………………………………………………………………27
3.2	薄膜製備………………………………………………………………………28
3.3	薄組編號………………………………………………………………………28
3.4	薄膜性質分析…………………………………………………………………29
3.4.1  薄膜型態和表面孔洞分析…………………………………………………29
3.4.2  薄膜膜厚及孔隙度測試……………………………………………………29
3.4.3  接觸角量測…………………………………………………………………29
3.5	DCMD實驗步驟………………………………………………………………30
3.6	DCMD操作條件………………………………………………………………32
3.7	分析方法………………………………………………………………………33
3.7.1  鹽類含量之分析方法與條件………………………………………………33
3.7.2  鹽類阻隔率之計算…………………………………………………………33
3.8	流量計校正……………………………………………………………………33
3.9	實驗設備及藥品………………………………………………………………34
第四章	結果與討論………………………………………………………………45
4.1	薄膜特性與結構分析…………………………………………………………45
4.1.1	薄膜(鑄膜於支撐層)結構…………………………………………………45
4.1.2	薄膜(鑄膜於玻璃板)結構…………………………………………………47
4.1.3	薄膜之孔隙度………………………………………………………………47
4.1.4	薄膜之接觸角………………………………………………………………47
4.2	DCMD薄膜蒸餾………………………………………………………………56
4.2.1	DCMD滲透通量…………………………………………………………56
4.2.2	不同刮膜厚度的影響………………………………………………………61
4.2.3	鑄膜於親水支撐層與玻璃板上之比較……………………………………63
4.2.4	鹽水濃度的影響……………………………………………………………67
4.2.5	複合薄膜回洗後回復性之探討……………………………………………69
4.3	薄膜阻隔率……………………………………………………………………72
4.4	DCMD系統與文獻之比較……………………………………………………74
第五章	結論………………………………………………………………………75
參考文獻……………………………………………………………………………79
附錄A………………………………………………………………………………87









圖目錄
圖1.1   薄膜分離程序之分類……………………………………………………10
圖1.2   薄膜蒸餾物流流動示意圖………………………………………………11
圖2.1	薄膜蒸餾膜組之型式……………………………………………………25
圖2.2	高分子(非結晶型)-溶劑-非溶劑成膜相圖………………………………26
圖2.3	Schematic representation of mass transfer occurring at the membrane/coagulant surface [Mulder, 1991;Lin and Wang , 1996]………26
圖3.1	DCMD 模組示意圖………………………………………………………36
圖3.2	DCMD 模組設計示意圖(進料側)………………………………………37
圖3.3	DCMD 模組設計示意圖(冷卻水側)……………………………………38
圖3.4	DCMD experiment set up………………………………………………39
圖3.5  親水支撐層之SEM結構圖………………………………………………40
圖3.6	進料流體流量計校正曲線………………………………………………41
圖3.7	冷卻水流體流量計校正曲線……………………………………………41
圖4.1	添加不同比例之TEP於沉澱槽500倍之薄膜截面……………………49
圖4.2	添加不同比例之TEP於沉澱槽10000倍之薄膜截面…………………50
圖4.3	添加不同比例之TEP於沉澱槽5000倍之薄膜上表面…………………51
圖4.4	添加不同比例之TEP於沉澱槽10000倍之薄膜上表面………………52
圖4.5	添加20wt%之TEP於沉澱槽5000倍之薄膜上表面……………………53
圖4.6	添加20wt%之TEP於沉澱槽10000倍之薄膜截面……………………54
圖4.7	T60於DCMD之滲透通量………………………………………………58
圖4.8	鹽水於50~70 oC & 0.7 L/min進料速率下DCMD之滲透通量………58
圖4.9	鹽水於50 oC 在不同進料速率下DCMD之滲透通量…………………59
圖4.10	鹽水於60 oC在不同進料速率下DCMD之滲透通量…………………59
圖4.11	鹽水於70 oC在不同進料速率下DCMD之滲透通量…………………60
圖4.12 不同刮刀厚度DCMD之滲透通量比較(T_f=50-70℃, u_f=0.7 L/min)…62
圖4.13	刮刀厚度200μm鑄膜於支撐層與玻璃板DCMD之滲透通量比較比較(T_f=50-70℃, u_f=0.7 L/min)…………………………………………………65
圖4.14	刮刀厚度300μm鑄膜於支撐層與玻璃板DCMD之滲透通量比較比較(T_f=50-70℃, u_f=0.7 L/min)…………………………………………………65
圖4.15	刮刀厚度400μm鑄膜於支撐層與玻璃板DCMD之滲透通量比較比較(T_f=50-70℃, u_f=0.7 L/min)…………………………………………………66
圖4.16 鹽水濃度對DCMD滲透通量的影響(T_f=50℃, u_f=0.5 L/min)……68
圖4.17	M-200-T20於70 oC在不同進料速率下不同鹽水濃度(3.5wt%、10wt%、15wt%)前後純水DCMD之滲透通量…………………………………………70
圖4.18	M-200-T40於70 oC在不同進料速率下不同鹽水濃度(3.5wt%、10wt%、15wt%)前後純水DCMD之滲透通量…………………………………………70
圖4.19	M-200-T60於70 oC在不同進料速率下不同鹽水濃度(3.5wt%、10wt%、15wt%)前後純水DCMD之滲透通量…………………………………………71
圖4.20	T20薄膜於50 oC進行兩天DCMD之通量及導電度…………………73
圖4.21	T60薄膜於50 oC進行兩天DCMD之通量及導電度…………………73
圖4.22	T60於DCMD與其他論文滲透通量之比較…………………………75
圖A   NaCl檢量線………………………………………………………………87


表目錄
表1.1 	不同操作程序之驅動力分類[Cheryan, 1998]…………………………10
表3.1	製膜液組成與製備條件…………………………………………………42
表3.2	親水支撐層性質說明……………………………………………………43
表3.3	Characteristics of membrane module…………………………………44
表4.1	PVDF薄膜基本結構與物性分析………………………………………55
表4.2	Comparison of DCMD results between literatures……………………76
參考文獻
參考文獻
1.	Altena, F. W, Smolders, C. A., “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of solvent  and a nonsolvent”, Macromolecules, 15, 1491(1982)
2.	Bonyadi, S.,Chung, T., “Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach”, Journal of Membrane Science, 331, 66-74, (2009).
3.	Boom, R. M. and BoomgaardT.V., Smolders, C. A., “Mass transfer and thermodynamics during immersion precipitation for two-polymer system: Evaluation with the system PES-PVP-NMP-water”, Journal of Membrane Science, 90, 231 (1994)
4.	Bonyadi, S., Chung, T. S., “Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membrane”, Journal of Membrane Science, 306, 134-146, (2007)
5.	Bonyadi, S., Chung, T. S., “ Highly porous and macrovoid-free PVDF hollow fiber membrane for membrane distillation by solvent-dope solution co-extrusion approach”, Journal of Membrane Science, 331, 66-74, (2009)
6.	Cath, T. Y., Adams, V. D.,Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: A new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004).
7.	Cerneaux, S., Strużyńska, I., Kujawski, W. M., Persin, M., Larbot, A., “Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes”, Journal of Membrane Science, 337, 55-60, (2009).
8.	Cheng, T., Yeh, H., Wu, J., “Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module”, Journal of Membrane Science, 158, 223-234, (1999). 
9.	Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998).
10.	Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985).
11.	Criscuoli, A., Carnevale, M. C., Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008). 
12.	De Souza, N. P., Basu, O. D., “Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment”, Journal of Membrane Science, 436, 28-35, (2013).
13.	Devi, S., Ray, P., Singh, K., Singh, P. S., “Preparation and characterization of highly micro-porous PVDF membranes for desalination of saline water through vacuum membrane distillation”, Desalination, 346, 9-18, (2014).
14.	Deyin, C., Guohua, D., Jun, W., Hua, F., Lin, Z., Zhaokun, L., “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation”, Separation Purification and Technology, 101, 1-10, (2012).
15.	Di Profio, G., Ji, X., Curcio, E., Drioli, E., “Submerged hollow fiber ultrafiltration as seawater pretreatment in the logic of integrated membrane desalination systems”, Desalination, 269, 128-135, (2011). 
16.	El-Abbassi, A., Hafidi, A., Khayet, M., Garcia-Payo, M. C., “Integrated direct contact membrane distillation for olive mill wastewater treatment”, Desalination, 323, 31-38, (2013). 
17.	Feng, C., Shi, B., Li, G., Wu, Y., “Preliminary research on microporous membrane from F2.4 for membrane distillation”, Separation and Purification Technology, 39, 221-228, (2004). 
18.	Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969).
19.	Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967).
20.	Gryta, M., Tomaszewska, M., Grzechulska, J., Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001). 
21.	Hausmann, A., Sanciolo, P., Vasiljevic, T., Weeks, M., Duke, M., “Integration of membrane distillation into heat paths of industrial processes”, Chemical Engineering Journal, 211–212, 378-387, (2012). 
22.	He, F., Sirkar, K. K., Gilron, J., “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science, 345, 53-58, (2009). 
23.	He, K., Hwang, H. J., Woo, M. W., Moon, I. S., “Production of drinking water from saline water by direct contact membrane distillation (DCMD)”, Journal of Industrial and Engineering Chemistry, 17, 41-48, (2011). 
24.	Hou, D., Dai, G., Wang, J., Fan, H., Zhang, L., Luan, Z., “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation”, Separation and Purification Technology, 101, 1-10, (2012). 
25.	Hsu, S. T., Cheng, K. T., Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002). 
26.	Ji, Z., Wang, J., Hou, D., Yin, Z., Luan, Z., “Effect of microwave irradiation on vacuum membrane distillation”, Journal of Membrane Science, 429, 473-479, (2013). 
27.	Kamide, K., “ Thermodynamics of polymer solutions phase equilibria and critical phenomena”, Elsevier, (1990).
28.	Krivorot, M., Kushmaro, A., Oren, Y., Gilron, J., “Factors affecting biofilm formation and biofouling in membrane distillation of seawater”, Journal of Membrane Science, 376, 15-24, (2011). 
29.	Lawson, K. W., Lloyd, D. R., “Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997). 
30.	Lin, F. C., Wang, D. M., Lai, J. Y., “Asymmetric TPX Membranes with High Gas Flux”, Journal of Membrane Science, 110, 25, (1996)
31.	Mercier-Bonin, M., Lagane, C., Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: Case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000). 
32.	Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968).
33.	Mulder, M., Basic Principles of Membrane Technology, 2nd edn, Kluwer Academic Publishers, London, (1991)
34.	Peng, W., May May, T., Tai-Shung, C., “Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance”, Water Research, 45, 5489-5500, (2011)
35.	Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75-85, (2003).
36.	Phattaranawik, J., Jiraratananon, R., Fane, A. G., “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, Journal of Membrane Science, 212, 177-193, (2003). 
37.	Prince, J. A., Anbharasi, V., Shanmugasundaram, T. S., Singh, G., “Preparation and characterization of novel triple layer hydrophilic–hydrophobic composite membrane for desalination using air gap membrane distillation”, Separation and Purification Technology, 118, 598-603, (2013). 
38.	Prince, J. A., Singh, G., Rana, D., Matsuura, T., Anbharasi, V., Shanmugasundaram, T. S., “Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation”, Journal of Membrane Science, 397–398, 80-86, (2012). 
39.	Safavi, M., Mohammadi, T., “High-salinity water desalination using VMD”, Chemical Engineering Journal, 149, 191-195, (2009). 
40.	Schofield, R. W., Fane, A. G., Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987). 
41.	Simone, S., Figoli, A., Criscuoli, A., Carnevale, M. C., Rosselli, A., Drioli, E., “Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD” Journal of Membrane Science, 364, 219-232, (2010). 
42.	Smolders, K., Franken, A. C. M., “Terminology for membrane distillation”, Desalination, 72, 249-262, (1989). 
43.	Tao, Z,. Yongyi, Y., Ruili, X., Yurong, W., “Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation”, Journal of Membrane Science, 453, 402-408, (2014)
44.	Tomaszewska, M., “Preparation and properties of flat-sheet membranes from poly(vinylidene fluoride) for membrane distillation”, Desalination, 104, 1-11, (1996). 
45.	Tomaszewska, M., Gryta, M., Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994). 
46.	Tompa, H., “Polymer solutions”, Butterworths, (1956).
47.	Van der Waal, M. J., Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989). 
48.	Yang, X., Wang, R., Fane, A. G., “Novel designs for improving the performance of hollow fiber membrane distillation modules”, Journal of Membrane Science, 384, 52-62, (2011). 
49.	Zeman, L., Tkacik, G., “Thermodynamic analysis of a membrane-forming system water/n-methyl-2-pyrrolidone/polysulfone”, Journal of Membrane Science, 36, 119-140, (1988).
50.	Zsirai, T., Aerts, P., Judd, S., “Reproducibility and applicability of the flux step test for a hollow fibre membrane bioreactor”, Separation and Purification Technology, 107, 144-149, (2013).
51.	張旭賢, “多孔型聚偏二氟乙烯薄膜固定離胺酸與己二胺”, 淡江大學化學工程與材料工程研究所碩士論文, (2005).
52.	陳勝昌, “以非溶劑誘導相轉移法製備多孔型薄膜”, 淡江大學化學工程與材料工程研究所碩士論文, (2013).
53.	葉國麟, “真空式與直接接觸式薄膜蒸餾於海水淡化之比較”, 淡江大學化學工程與材料工程研究所碩士論文, (2012).
54.	歐陽興, “薄膜蒸餾用平板型聚偏二氟乙烯薄膜之製備”, 淡江大學化學工程與材料工程研究所碩士論文, (2014).
55.	林智偉, “聚偏二氟乙烯中空纖維膜應用於海水淡化之研究”, 淡江大學化學工程與材料工程研究所碩士論文, (2014)
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信