§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1108201509515300
DOI 10.6846/TKU.2015.00272
論文名稱(中文) 製備顆粒型聚偏二氟乙烯薄膜及薄膜蒸餾之應用
論文名稱(英文) Preparation of particulate polyvinylidene fluoride membranes and their application in membrane distillation processes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 楊承道
研究生(英文) Cheng-Dau Yang
學號 602400441
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-22
論文頁數 82頁
口試委員 指導教授 - 鄭廖平(lpcheng@mail.tku.edu.tw)
委員 - 林達鎔(djlin@mail.tku.edu.tw)
委員 - 張旭賢(greenchanghh@gmail.com)
關鍵字(中) 顆粒型薄膜
直接接觸式薄膜蒸餾
聚偏二氟乙烯
關鍵字(英) particulate membrane
DCMD
PVDF
第三語言關鍵字
學科別分類
中文摘要
DMF/PVDF 製膜液融解在不同溫度(50、60、70 和80 oC),浸入正辛醇沉澱槽,製備出多孔型PVDF 薄膜,其代號分別為FO50、FO60、FO70 及FO80,薄膜結構對稱,結晶顆粒尺寸均一,孔洞與孔洞互通貫穿整張薄膜。當製膜液融解溫度為50 oC,顆粒尺寸只有1um,相對的當融解溫度為提高至80 oC,顆粒尺寸成長到2um。四種薄膜孔隙度為66%,結晶度55%,接觸角133o(上表面)、126o(下表面),抗張強度隨著顆粒尺寸增加而降低,因為顆粒間的連結減少所造成。薄膜測試直接接觸式薄膜蒸餾(DCMD),其阻隔率大於99%,操作條件:3.5 wt%NaCl(aq);Tfeed = 52 oC;Tproduct = 18 oC;進料與產物流速皆為0.7 L/min;FO60、FO70 及FO80 有較高的通量(12、14、16 LMH),然而FO50 通量只有2.7 LMH。當進料溫度或流速提升,通量也隨之提高。另一方面增加NaCl 氯化鈉水溶液濃度,通量下降。FO60 薄膜測試DCMD 48 小時,通量從11.6 降低至10.5 LMH,阻隔率仍維持在99%以上。DMF/PVDF 製膜液融解在不同溫度(50、60、70 和80 oC),浸入正辛醇沉澱槽,製備出多孔型PVDF 薄膜,其代號分別為FO50、FO60、FO70 及FO80,薄膜結構對稱,結晶顆粒尺寸均一,孔洞與孔洞互通貫穿整張薄膜。當製膜液融解溫度為50 oC,顆粒尺寸只有1um,相對的當融解溫度為提高至80 oC,顆粒尺寸成長到2um。四種薄膜孔隙度為66%,結晶度55%,接觸角133o(上表面)、126o(下表面),抗張強度隨著顆粒尺寸增加而降低,因為顆粒間的連結減少所造成。薄膜測試直接接觸式薄膜蒸餾(DCMD),其阻隔率大於99%,操作條件:3.5 wt%NaCl(aq);Tfeed = 52 oC;Tproduct = 18 oC;進料與產物流速皆為0.7 L/min;FO60、FO70 及FO80 有較高的通量(12、14、16 LMH),然而FO50 通量只有2.7 LMH。當進料溫度或流速提升,通量也隨之提高。另一方面增加NaCl 氯化鈉水溶液濃度,通量下降。FO60 薄膜測試DCMD 48 小時,通量從11.6 降低至10.5 LMH,阻隔率仍維持在99%以上。
英文摘要
Microporous PVDF membranes were prepared by immersion-precipitation
of DMF/PVDF solutions dissolved at different temperatures (50, 60, 70, and 80
oC) in 1-octanol bath. The membranes formed (termed FO50, FO60, FO70, and
FO80) exhibited a symmetric structure, consisting of nearly equal-sized
crystalline particles that interlinked into a continuous matrix, in which porous
channels dispersed. When the dope was dissolved at 50 oC, the particles were
only ~1 micron; in contrast, the particles expanded significantly to ~3 microns,
if dissolution was carried out at 80 oC. All membranes had a similar porosity of
~66%, crystallinity of ~55%, and water contact angles of 133o (top surface) and
126o (bottom surface). The tensile strength decreased with increasing particle
size, due to reduced and particle-particle interconnection. The membranes were
tested for performance in desalination via direct contact membrane distillation
(DCMD). High rejections (> 99%) were attained for all membranes operated
under the conditions: feed concentration = 3.5% NaCl(aq), Tfeed = 52 oC, Tproduct
= 18 oC, and circulation rates = 0.7 L/min for both feed and product streams.
The permeation fluxes for the membranes FO60, FO70, and FO80 reached high
IV
values of 12, 14, and 16 LMH, respectively; however, that for FO50 was only
2.7 LMH, consistent with the morphologies of these membranes. As the feed
temperature or the circulation rate was raised, the permeation flux increases as
well. On the other hand, raising the salt concentration in the feed caused
decrement of the permeation flux. For the membrane FO60 operated over the
period of 48 h., the flux decreased slightly from 11.6 to 10.5 LMH, rejection
>99%.
第三語言摘要
論文目次
目錄
致謝..................................................................................................................Ⅰ
中文摘要...........................................................................................................Ⅱ
Abstract...........................................................................................................Ⅲ
目錄..................................................................................................................Ⅴ
圖目錄..............................................................................................................Ⅶ
表目錄...............................................................................................................XI
第一章序論...............................................1
1.1前言和研究目的........................................1
1.2參考文獻.............................................2
第二章顆粒型聚偏二氟乙烯薄膜製備及薄膜蒸餾之應用.............3
2.1前言.................................................3
2.2實驗.................................................5
2.2.1實驗材料............................................5
2.2.2實驗儀器............................................5
2.2.3薄膜製備............................................7
2.2.4孔隙度測試..........................................8
2.2.5薄膜結構和孔隙影像分析...............................8
2.2.6接觸角測試..........................................8
2.2.7水通量之測試........................................9
2.2.8紅外線光譜儀分析 (FTIR-ATR).........................11
2.2.9拉力測試...........................................11
2.2.10微分掃描式熱分析 (DSC).............................11
2.2.11 X光繞射分析 (XRD)................................11
2.2.12 Bubble point測量................................12
2.2.13 NaCl氯化鈉水溶液檢量線............................12
2.2.14薄膜蒸餾..........................................13
2.3結果與討論...........................................16
2.3.1薄膜結構...........................................16
2.3.2孔隙度、孔隙影像分析與接觸角.........................23
2.3.3水通量............................................27
2.3.4 XRD、DSC、FTIR分析................................29
2.3.4.1 XRD............................................29
2.3.4.2 DSC............................................32
2.3.4.3 FTIR...........................................33
2.3.5薄膜蒸餾...........................................35
2.3.5.1薄膜通量之結果...................................35
2.3.5.2溫度差對薄膜蒸餾之影響............................37
2.3.5.3流量對薄膜蒸餾之影響..............................40
2.3.5.4鹽水濃度對薄膜蒸餾之影響..........................43
2.3.5.5長時間操作薄膜蒸餾系統之穩定性.....................45
2.4結論................................................47
2.5參考文獻.............................................48
附錄A..................................................54
附錄B..................................................74
附錄C..................................................82

圖目錄
Fig 2.1 Instrument for measuring contact angles of the membranes...................9
Fig 2.2 Membrane module for water flux measurement...................................10
Fig 2.3 Apparatus for measuring water flux...................................................10
Fig 2.4 Calibration curve of NaCl(aq)..................12
Fig 2.5 Membrane distillation apparatus................14
Fig 2.6 Membrane module for DCMD experiments...........15
Fig 2.7 Schematic representation of the stages of crystallization. (a) rod-like structure; (b) sheaf-like structure; (c) full-globular structure [24]............16
Fig 2.8 SEM micrographs of the membranes top surfaces: (a)FO50;(b)FO60; (c)FO70; (d)FO80; (1) 5000x; (2) 30000x.................................................18
Fig 2.9 High magnification SEM images of (a) lamella between spherulites in FO50; (b) surface of spherulite.............................................19
Fig 2.10 SEM micrographs of the membranes bottom surfaces: (a) FO50; (b) FO60; (c) FO70; (d) FO80...................................................20
Fig 2.11 SEM micrographs of the membranes cross sections: (a) FO50; (b) FO60; (c) FO70; (d) FO80; (1) 500x; (2) 2000x...............................................21
Fig 2.12 SEM micrographs of the membranes cross sections: (a) FO50; (b) FO60; (c) FO70; (d) FO80...................................................22
Fig 2.13 Image J analysis of SEM microscope bottom surface: (a) FO50; (b) FO60; (c) FO70; (d) FO80;(1)original SEM microscope;(2)image J analysis.24
Fig 2.14 Image J analysis of SEM microscope top surface: (a) FO50; (b) FO60; 
(c) FO70; (d) FO80; (1) original SEM microscope; (2) image J analysis.........26
Fig 2.15 Pure water flux of membranes..................28
Fig 2.16 X-ray diffractograms of various PVDF membranes...........................29
Fig 2.17 GRAMS/AITM  peak fitting for PVDF membranes: (a) FO50; (b) FO60; (c) FO70; (d) FO80...................................................30
Fig 2.18 DSC thermograms of various PVDF membranes...............................33
Fig 2.19 FTIR-ATR spectra of PVDF membranes............................................34
Fig 2.20 Membrane distillation permeation flux for different membrane.........36
Fig 2.21 Membrane distillation permeation flux of FO60 membrane at different hot stream temperatures.....................................................................................39
Fig 2.22 Membrane distillation permeation flux of FO60 membrane at different circulation rates................42
Fig 2.23 Membrane distillation permeation flux of FO60 membrane at different hot stream salinity...............................................44
Fig 2.24 Long-term membrane distillation...........................................46
Fig A1 SEM micrographs of the membranes top surfaces: (a) D2W1; (b) D2W3; (c) D2W5; (d) D2W10; (e) D2W30; 0.5kx..................................................56
Fig A2 SEM micrographs of the membranes top surfaces: (a) D2W1; (b) D2W3; (c) D2W5; (d) D2W10; (e) D2W30; 2kx....................................................57
Fig A3 SEM micrographs of the membranes bottom surfaces: (a) D2W1; (b) D2W3; (c) D2W5; (d) D2W10; (e) D2W30; 2kx..............................................58
Fig A4 SEM micrographs of the membranes cross section: (a) D2W1; (b) D2W3; (c) D2W5; (d) D2W10; (e) D2W30; 0.5kx...........................................59
Fig A5 SEM micrographs of the membranes cross section: (a) D2W1; (b) D2W3; (c) D2W5; (d) D2W10; (e) D2W30; 2kx..............................................60
Fig A6 SEM micrographs of the membranes top surfaces: (a) D7W1; (b) D7W3; (c) D7W5; (d) D7W10; (e) D7W30; 0.5kx..................................................61
Fig A7 SEM micrographs of the membranes top surfaces: (a) D7W1; (b) D7W3; (c) D7W5; (d) D7W10; (e) D7W30; 2kx....................................................62
Fig A8 SEM micrographs of the membranes bottom surfaces: (a) D7W1; (b) D7W3; (c) D7W5; (d) D7W10; (e) D7W30; 2kx..............................................63
Fig A9 SEM micrographs of the membranes cross section: (a) D7W1; (b) D7W3; (c) D7W5; (d) D7W10; (e) D7W30; 0.5kx...........................................64
Fig A10 SEM micrographs of the membranes cross section: (a) D7W1; (b) D7W3; (c) D7W5; (d) D7W10; (e) D7W30; 2kx..............................................65
Fig A11 SEM micrographs of the membranes top surfaces: (a) D2D1; (b) D2D3; (c) D2D5; (d) D2D10; (e) D2D30; 2kx.................................................66
Fig A12 SEM micrographs of the membranes bottom surfaces: (a) D2D1; (b) D2D3; (c) D2D5; (d) D2D10; (e) D2D30; 2kx.................................................67
Fig A13 SEM micrographs of the membranes cross section: (a) D2D1; (b) D2D3; (c) D2D5; (d) D2D10; (e) D2D30; 0.5kx..............................................68
Fig A14 SEM micrographs of the membranes cross section: (a) D2D1; (b) D2D3; (c) D2D5; (d) D2D10; (e) D2D30; 2kx.................................................69
Fig A15 SEM micrographs of the membranes top surfaces: (a) D7D1; (b) D7D3; (c) D7D5; (d) D7D10; (e) D7D30; 2kx.................................................70
Fig A16 SEM micrographs of the membranes bottom surfaces: (a) D7D1; (b) D7D3; (c) D7D5; (d) D7D10; (e) D7D30; 2kx.................................................71
Fig A17 SEM micrographs of the membranes cross section: (a) D7D1; (b) D7D3; (c) D7D5; (d) D7D10; (e) D7D30; 0.5kx..............................................72
Fig A18 SEM micrographs of the membranes cross section: (a) D7D1; (b) D7D3; (c) D7D5; (d) D7D10; (e) D7D30; 2kx.................................................73
Fig B1 SEM micrographs of the membranes top surface: (a) B0; (b) B40; (c) B80; (d) B90......................................................................................................75
Fig B2 SEM micrographs of the membranes bottom surface: (a) B0; (b) B40; (c) B80; (d) B90......................................................................................................76
Fig B3 SEM micrographs of the membranes cross section: (a) B0; (b) B40; (c) B80; (d) B90; 0.5k.............................................................................................77
Fig B4 SEM micrographs of the membranes near top surface cross section: (a) B0; (b) B40; (c) B80; (d) B90; 5k.....................................................................78
Fig B5 SEM micrographs of the membranes middle surface cross section: (a) B0; (b) B40; (c) B80; (d) B90; 5k.....................................................................79
Fig B6 FTIR-ATR spectra of PVDF membranes top surface............................80
Fig B7 FTIR-ATR spectra of PVDF membranes bottom surface......................81
Fig C1 Comparison of long-term membrane distillation...................................82

表目錄
Table1.1 Applications of membranes [2].............................................................2
Table2.1 Formation conditions of PVDF membranes.........................................7
Table2.2 Operating conditions for membrane distillation.................................14
Table2.3 Properties of PVDF membranes.........................................................23
Table2.4 Image J analysis of PVDF membranes...............................................24
Table2.5 Pure water flux of membranes............................................................28
Table2.6 Crystallinity and crystal type of PVDF membranes...........................29
Table2.7 Crystallinity and melting point of PVDF membranes........................32
Table2.8 Membrane distillation permeation flux and rejection for different membrane..........................................................................................................36
Table2.9 Vapor pressures of pure water and 3.5 wt% NaCl(aq) at different temperatures......................................................................................................38
Table2.10 Membrane distillation permeation flux of FO60 membrane at different hot stream temperatures......................................................................39
Table2.11 Membrane distillation permeation fluxes of FO60 membrane at different circulation rates...................................................................................41
Table2.12 Comparison of properties of PVDF membrane with literature data.42
Table2.13 Membrane distillation permeation flux of FO60 membrane at different hot stream salinity...............................................................................44
Table2.14 Comparison with properties of PVDF membrane............................46
Table A1 Formation conditions of PVDF membranes......................................55
Table B1 Formation conditions of PVDF membranes......................................74
參考文獻
1. M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci. 164 (2011) 56–88.
2. G.Q. Guan, R. Wang, F. Wicaksana, X. Yang, A.G. Fane, Analysis of membrane distillation crystallization system for high salinity brine treatment with zero discharge using Aspen flowsheet simulation, Ind. Eng. Chem. Res. 51 (41) (2012) 13405-13413
3. Lucy Mar Camacho, Ludovic Dumee, Jianhua Zhang, Jun-de Li, Mikel Duke, Juan Gomez, Stephen Gray, Advances in membrane distillation for water desalination and purification applications, Water 5 (2013) 94-196.
4. Jing Zhang, Zhenyu Song, Baoan Li, Qin Wang, Shichang Wang, Fabrication and characterization of superhydrophobic poly(vinylidene fluoride) membrane for direct contact membrane distillation, Desalination 324 (2013) 1-9.
5. A.S. Kim, A two-interface transport model with pore-size distribution for predicting the performance of direct contact membrane distillation (DCMD), J. Memre. Sci. 428 (2013) 410-424.
6. X. Yang, A.G. Fane, R. Wang, Membrane distillation: now and future, in: Jane Kucera (Ed.), Desalination: Water from Water, Scrivener/Wiley, 978-1-118-20852-6, 2014, pp.373-424.
7. Sina Bonyadi, T.S. Chuung, Highly porous and macrovoid-free PVDF hollow fiber membrane for membrane distillation by a solvent-dope solution co-extrusion approach, J. Membr. Sci. 331 (2009) 66-74.
8. P. Wang, M.M. Teoh, T.S. Chung, Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalibation performance, Water Res. 45 (17) (2011) 5489-5500.
9. M.G. Buonomenna, P. Macchi, M. Davoli, E. Drioli, Poly(vinylidene fluoride) membrane by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties, Eur. Polym. J. 43 (2007) 1557-1572.
10. S.S Madaeni, M.K. Yeganeh, Microfiltration of emulsified oil wastewater, J. Porous. Mater. 10 (2003) 131-138.
11. M.R. Moghareh Abed, S.C. Kumbarkar, Anderew M. Groth, K. Li, Ultrafiltration PVDF hollow fibre membrane with interconnected bicontinuous structures produced via a single-step phase inversion technique, J. Membr. Sci 407 (2012) 145-543.
12. M.L. Yeow, Y.T. Liu, K. Li, Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature, J. Appl. Polym. Sci. 92 (2004) 1782-1789.
13. L. Lin, H. Geng, Y. An, P. Li, H. Cheng, Preparation and properties of PVDF hollow fiber membrane for desalination using air gap membrane distillation, Desalination 367 (2015) 145-153.
14. C. Yang, M. Tian, Y. Xie, X.M. Li, B. Zhao, T. He, Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation, J. Membr. Sci. 482 (2015) 25-32.
15. W.T. Xu, Z.P. Zhao, M. Liu, K.C. Chen, Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plama flow for VMD of ethanol-water mixture, J. Membr. Sci. 491 (2015) 110-120.
16. S. Nejati, C. Boo, C.O. Osuji, M. Elimelech, Engineering flat sheet microporous PVDF films for membrane distillation, J. Membr. Sci. 492 (2015) 355-363.
17. D. Sun, M.Q. Liu, J.H. Guo, J.Y. Zhang, B.B. Li, D.Y. Li, Preparation and characterization of PDMS-PVDF hydrophobic microporous membrane for membrane distillation, Desalination 370 (2015) 63-71.
18. M. Baghbanzadeh, D. Rana, T. Matsuura, C.Q. Lan, Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes, Desalination 369 (2015) 75-84.
19. T.L.S. Silva, S.M. Torres, J.L. Figueiredo, A.M.T. Silva, Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation, Desalination 357 (2015) 233-245.
20. T. Xiao, P. Wang, X. Yang, X. Cai, J.Lu, Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications, J. Membr. Sci. 489 (2015) 160-174.
21. H.A.Tsai, R.C.Ruaan, D.M. Wang, J.Y. Lai, Effect of Temperature and Span Series Surfactant on the Structure of Polysulfone Membranes, J. Appl. Polym. Sci. 86 (2002) 166-173.
22. C.Y. Kuo, H.N. Lin, H.A. Tsai, D.M. Wang, J.Y. Lai, Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation, Desalination, 233 (2008) 40.
23. B. Wunderlich, "Macromolecular Physics Vol.2 Crystal nucleation, growth, annealing," Academic Press, New York (1973).
24. L.P. Cheng, A.W. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide-formic acid-water systems Ⅱ. Precipitation Dynamics, J. Polym. Sci.: Part B: Polym. Phys., 33, 223 (1995).
25. D.J. Lin, K. Beltsios, C.L. Chang, L.P. Cheng, Fine Structure and Formation Mechanism of Particulate Phase-Inversion Poly(vinylidene fluoride) Membranes, J. Polym. Sci. Polym. Phys., 41 (2003) 1578.
26. L.P. Cheng, Effect of temperature on the formation of microporous PVDF membranes by precipitation from 1-octanol/DMF/PVDF and Water/DMF/PVDF systems, Macromolecules. 1999, 32, 6668-6674.
27. L.P. Cheng, T.H. Young, L. Fang, J.J. Gau, Formation of particulate microporous poly(vinylidene fluoride) membranes by isothermal immersion precipitation from the 1-octanol/dimethylformamide/poly(vinylidene fluoride) system, Polym. 40 (1999) 2395-2403.
28. R.J.R. Gregorio, E.M. Ueno, Effect of crystalline phase, orientation on the dielectric properties of poly(vinylidene fluoride)(PVDF), J. Mater. Sci., 34 (1999) 4489.
29. S. Shoval, M. Boudeulle, G. Panczer, Identification of the thermal phases in firing of kaolinite to mullite by using micro-Raman spectroscopy and curve-fitting, Optical Materials. 34 (2) (2011) 404-409.
30. D.J. Lin, H.H. Chang, T.C. Chen, Y.C. Lee, L.P. Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in water/TEP/PVDF system, Eur. Polym. J., 42 (2006) 1581.
31. C. Marega, A. Marigo, Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride), Eur. Polym. J., 39 (2003) 1713.
32. W.M. Prest, D.J. Luca, The formation of the
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信