§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1108201415443700
DOI 10.6846/TKU.2014.00302
論文名稱(中文) 鉑/二氧化矽-碳黑甲醇氧化電催化劑之製備與性質分析
論文名稱(英文) Preparation and Characterization of Platinum Nanoparticles Supported on Silica-Carbon Black Nanocomposites for Methanol Oxidation Reaction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 葉如玉
研究生(英文) Ju-Yu Yeh
學號 602400235
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-14
論文頁數 89頁
口試委員 指導教授 - 林正嵐
委員 - 陳林祈
委員 - 張裕祺
關鍵字(中) 直接甲醇燃料電池
電催化劑
甲醇氧化反應
二氧化矽
關鍵字(英) Direct methanol fuel cell
Electrocatalyst
Methanol oxidation reaction
Silica dioxide
Platinum
第三語言關鍵字
學科別分類
中文摘要
本研究為鉑/二氧化矽-碳黑電催化劑之製備及性質分析,其實驗架構主要分為兩部分,Part 1:將碳黑Vulcan XC-72(C)以HNO3或NaOH進行前處理,得到修飾的碳載體(Cn與Cs),並使用含浸法和多元醇還原法還原附載Pt奈米顆粒於碳載體(C、Cn與Cs)之上,得到由含浸法製成之Pt/C系列催化劑(Pt/C-I)和由多元純還原法製成之Pt/C系列電催化劑(Pt/C-P),以不同還原法製程之兩系列電催化劑進行比較,得到有良好甲醇氧化反應(Methanol Oxidation Reaction, MOR)效能與穩定性的最佳製程條件方法。Part 2:經由溶膠/凝膠法製備SiO2奈米顆粒,與碳黑混合成為具有不同SiO2與C比例之(SiO2)xCy奈米複合載體,然後使用Part 1中最佳之電催化劑製成條件,製備Pt/(SiO2)xCy系列電催化劑,並對所得電催化劑之MOR與氧氣還原反應(Oxygen Reduction Reaction, ORR)性能進行量測分析與比較,得到最佳化效能的Pt/(SiO2)xCy電催化劑。
對製程之電催化劑進X光繞射分析儀、穿透式電子顯微鏡、X光能譜分析儀、感應耦合電漿原子發射光譜分析儀、傅立葉轉換紅外線吸收光譜儀、化學影像能譜分析儀和動態光散射分析儀測量其表面形態與結構性質分析;並使用循環伏安法、計時安培法、線性掃描法和交流阻抗進行MOR效能、ORR效能、電化學活性表面積、CO脫附能力、穩定性及阻力等電化學特性分析。
Pt/C-I系列和Pt/C-P系列電催化劑,經由表面性質及電化學性質分析,可以知道使用多元純還原法為最佳製程之條件。使用最佳之方法合成Pt/(SiO2)xCy電催化劑,改變SiO2與C之重量比例製成一系列的Pt/(SiO2)xCy電催化劑,經由表
面性質及電化學性質測試,發現Pt/(SiO2)8C92電催化劑其Pt奈米顆粒均勻分散在載體表面上,且Pt粒徑為3奈米左右;電催化劑具有抗CO毒化能力,當添加適量SiO2不會影響其電子轉移阻力,且添加之SiO2具雙功模式,擁有最佳之MOR效能(821 A/g-Pt)為市售E-TEK Pt/C電催化劑(344 A/g-Pt)之2.4倍。
英文摘要
The main goal of this study is to develop the new synthesis procedure for Pt/SiO2-C nanocomposite electrocatalysts for methanol oxidation reaction (MOR) and evaluate the MOR efficiency of electrocatalysts. This study has two part experiments. Part one uses two methods (polyol method and impregnation method) and three carbon supports (C, Cs and Cn) to obtain Pt/C-I series and Pt/C-P series electrocatalysts. Using the analysis result of the part one to prepare the Pt/(SiO2)xCy electrocatalysts. Using sol-gel method prepare the silica (SiO2) nanoparticles. Then, SiO2 nanoparticles mix carbon black to obtain (SiO2)xCy nanocomposite materials as new supports of the electrocatalyst and adjusting different weight ratios of SiO2 and carbon black obtain the different Pt/(SiO2)xCy electrocatalysts.
The electrocatalysts are analyzed the physical and electrochemical properties. Using the transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR) to know the morphologies, compositions and structures of electrocatalysts. The electrochemical activities and stabilities of MOR and ORR are evaluated by cyclic votammetry (CV), chronoamperometry (CA), CO-stripping and electrochemical impedance spectroscopy (EIS). The analysis results of electrocatalysts obtain the optimization Pt/(SiO2)xCy electrocatalyst.
For Pt/(SiO2)xCy series electroccatalysts, the Pt nanoparticles uniformly dispersed with sizes of 3 nm is obtained. The MOR efficiency and against CO-poisoning phenomena of Pt/(SiO2)xCy series electroccatalysts are sighificantly improve. The optimized of the weight ratios of SiO2 and carbon black as the support of electrocatalysts has the smallest electron transpot resistance. The Pt/(SiO2)8C92 electrocatalyst has the highest MOR efficiency (821 A/g-Pt), and which is about 2.4 times higher than the commercial E-TEK Pt/C electrocatalyst (344 A/g-Pt).
第三語言摘要
論文目次
中文摘要I
AbstractIII
目錄V
圖目錄VIII
表目錄XI
第一章 簡介1
第二章 實驗6
2.1 實驗目的與架構6
2.2 實驗藥品與材料7
2.3 實驗儀器與設備9
2.4 實驗步驟10
2.4.1 碳載體前處理10
2.4.2 SiO2奈米粒子之製備步驟10
2.4.2 (SiO2)xCy奈米複合載體之製備10
2.4.3於碳黑載體上製備Pt奈米顆粒11
2.5 表面性質分析及其樣品製備15
2.5.1 X光繞射分析儀 (X-ray diffractometer, XRD)15
2.5.2 表面能量散射X光光譜儀 (energy dispersive X-ray spectroscopy, EDS)15
2.5.3 感應耦合電漿原子發射光譜分析儀 (Inductively Coupled Plasma-Optical Emission Spectrometer, ICP-OES)15
2.5.4 穿透式電子顯微鏡 (transmission electron microscope, TEM)	16
2.5.5 傅立葉轉換紅外線吸收光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR)16
2.5.6 動態光散射粒徑分析儀 (Dynamic Light Scatting, DLS)17
2.5.7 化學影像分析能譜儀 (Electron Spectroscopy for Chemical Analysis System, ESCA)17
2.6 電化學分析18
2.6.1 電化學分析前置準備18
2.6.2 循環伏安法 (cycle voltammetry, CV)20
2.6.2-1 甲醇氧化效能 (MOR efficiency)21
2.6.2-2 一氧化碳脫附曲線 (CO-stripping voltammetry)21
2.6.2-3 電化學活性表面積 (electrochemical active surface area, ECSA)22
2.6.3 計時安培法 (chronoamperometry, CA)24
2.6.4 交流阻抗 (A.C. impedance)25
2.6.5 線性掃描伏安法 (linear sweep voltammetry, LSV)26
第三章 Pt/C-I和Pt/C-P系列電催化劑之比較28
3.1 FTIR表面官能基分析28
3.2 XRD晶型結構分析29
3.3 SEM-EDS和ICP-OES元素分析31
3.4 TEM表面型態與結構之分析33
3.5 MOR效能38
3.6 CO脫附能力41
3.7 MOR穩定性43
第四章 Pt/(SiO2)xCy系列電催化劑之製備與性質鑑定45
4.1 SiO2奈米顆粒之DLS粒徑分析45
4.2 XRD晶型結構分析47
4.3 TEM表面型態與結構之分析48
4.4 ICP-OES元素分析53
4.5 ESCA表面元素分析54
4.6 MOR效能63
4.7 CO脫附能力65
4.8 EIS電化學阻抗分析67
4.9 MOR穩定性68
4.10 ORR效能70
第五章 結論73
參考文獻75
附錄81
A. (SiO2)xCy奈米複合載體之FTIR分析81
B. 含有高比例SiO2之Pt/(SiO2)xCy電催化劑83
C. Pt/(SiO2)xCsy系列電催化劑85
D. Pt/(SiO2)8C92與市售E-TEK Pt/C電催化劑之持久性測試88

圖目錄
圖1-1、DMFC之構造示意圖。2
圖1-2、雙功效應作用機制的示意圖。3
圖2-1、實驗架構及流程圖。6
圖2-2、(SiO2)xCy奈米複合載體之實驗步驟。11
圖2-3、含浸法之實驗步驟流程圖。12
圖2-4、多元醇還原法之實驗步驟流程圖。14
圖2-5、三電極式電化學系統簡示圖。19
圖2-6、RDE三電極式電化學系統簡示圖。20
圖2-7、市售E-TEK Pt/C電催化劑在1 M CH3OH + 0.5 M H2SO4電解液中的MOR效能圖。23
圖2-8、市售E-TEK Pt/C電催化劑在0.5 M H2SO4進行CO脫附之CV圖。23
圖2-9、市售E-TEK Pt/C電催化劑在0.5 M H2SO4下的CV圖。24
圖2-11、市售E-TEK PtRu/C電催化劑在1 M CH3OH + 0.5 M H2SO4電解液中之EIS圖。26
圖2-12、市售E-TEK Pt/C電催化劑在0.5 M H2SO4 (O2 saturated)電解液之LSV圖。	27
圖3-1、碳黑和Cs、Cn的FTIR分析圖譜。29
圖3-2、Pt/C-I和Pt/C-P系列電催化劑之XRD分析圖譜。30
圖3-3、碳載體之XRD分析圖譜。	31
圖3-4、(A)120K (B)500K放大倍率下Pt/Cs-P之TEM影像。35
圖3-5、碳黑在30K倍率下之TEM影像。35
圖3-6、(A) Pt/C-P、(B) Pt/Cs-P與(C) Pt/Cn-P電催化劑之TEM影像及粒徑分析。36
圖3-7、(A) Pt/C-I、(B) Pt/Cs-I與(C) Pt/Cn-I電催化劑之TEM影像及粒徑分析。 (D) 500K放大倍率下Pt/Cn-I之TEM影像。38
圖3-8、Pt/C-I和Pt/C-P系列之電催化劑於(A)0.5 M H2SO4水溶液 (B)1 M CH3OH + 0.5 M H2SO4水溶液中之CV圖。40
圖3-9、(A)-0.2 V ~ 1.0 V、(B)0.58 V ~ 0.76 V之Pt/C-I和Pt/C-P系列電催化劑之CO脫附圖。42
圖3-10、(A)0~1000秒 (B)950~1000秒之Pt/C-I和Pt/C-P系列電催化劑CA曲線圖。44
圖4-1、水解縮合反應3小時SiO2奈米顆粒之DLS分析圖。46
圖4-2、攪拌14小時SiO2顆粒之DLS分析圖。46
圖4-3、Pt/(SiO2)xCy電催化劑之XRD分析圖譜。47
圖4-4、80K倍率下之TEM影像圖 (A)碳黑 (B) (SiO2)8C92奈米複合載體。49
圖4-5、(A)Pt/(SiO2)4C96、(B)Pt/(SiO2)6C94、(C)Pt/(SiO2)8C92、(D)Pt/(SiO2)10C90與(E)Pt/(SiO2)12C88電催化劑於80K放大倍率下TEM影像圖與粒徑分布圖。51
圖4-6、Pt/(SiO2)8C92電催化劑之元素分析 (A)TEM影像圖 (B)Pt元素分布 (C)Si元素分布。52
圖4-7、Pt/(SiO2)xCy電催化劑之ESCA能譜(A)C元素(B)O元素(C)Pt元素(D)Si元素。56
圖4-8、Pt/(SiO2)4C94電催化劑之ESCA能譜 (A)Pt元素 (B)Si元素。57
圖4-9、Pt/(SiO2)6C94電催化劑之ESCA能譜 (A)Pt元素 (B)Si元素。58
圖4-10、Pt/(SiO2)8C92電催化劑之ESCA能譜 (A)Pt元素 (B)Si元素。	59
圖4-11、Pt/(SiO2)10C90電催化劑之ESCA能譜 (A)Pt元素 (B)Si元素。60
圖4-12、Pt/(SiO2)12C88電催化劑之ESCA能譜 (A)Pt元素 (B)Si元素。61
圖4-13、Pt/(SiO2)xCy電催化劑於(A)0.5 M H2SO4水溶液 (B)1 M CH3OH + 0.5 M H2SO4水溶液中之CV圖。64
圖4-14、Pt/(SiO2)xCy電催化劑之CO脫附曲線。66
圖4-15、Pt/(SiO2)xCy電催化劑之EIS圖譜。68
圖4-16、(A)0~3600秒 (B)3500~3600秒 Pt/(SiO2)xCy電催化劑之CA-3600秒圖。69
圖4-17、(A)ORR onset pontial (B)Pt/(SiO2)xCy電催化劑之LSV圖。71
圖A-1、SiO2奈米顆粒之FTIR分析圖譜。82
圖A-2、(SiO2)xCy奈米複合載體之FTIR分析圖譜。82
圖B-1、含有高比例SiO2之Pt/(SiO2)xCy電催化劑於(A)0.5 M H2SO4水溶液 (B)1 M CH3OH + 0.5 M H2SO4水溶液中之CV圖。84
圖C-1、Pt/(SiO2)xCy-A系列電催化劑於(A)0.5 M H2SO4水溶液 (B)1 M CH3OH + 0.5 M H2SO4水溶液中之CV圖。86
圖C-2、Pt/(SiO2)xCy-B系列電催化劑於(A)0.5 M H2SO4水溶液 (B)1 M CH3OH + 0.5 M H2SO4水溶液中之CV圖。87
圖D-1、Pt/(SiO2)8C92電催化劑於1 M CH3OH + 0.5 M H2SO4水溶液中之CV圖。88
圖D-2、市售E-TEK Pt/C電催化劑於1 M CH3OH + 0.5 M H2SO4水溶液中之CV圖。89

表目錄
表1-1、含有SiO2的催化劑相關文獻。5
表3-1、Pt/C-I和Pt/C-P系列電催化劑之XRD分析結果。31
表3-2、Pt/C-I和Pt/C-P系列電催化劑之EDS元素分析表。32
表3-3、Pt/C-I和Pt/C-P系列電催化劑之ICP元素分析表。32
表3-4、Pt/C-I和Pt/C-P系列電催化劑中Pt顆粒之平均粒徑。	34
表3-5、Pt/C-I和Pt/C-P系列之電催化劑與市售E-TEK Pt/C電催化劑之MOR性質參數。40
表3-6、Pt/C-I和Pt/C-P系列之電催化劑與市售E-TEK Pt/C電催化劑之CO和CA測試結果比較表。44
表4-1、Pt/(SiO2)xCy電催化劑之Pt奈米顆粒的平均粒徑。51
表4-2、Pt/(SiO2)xCy電催化劑之ICP元素分析表。53
表4-3、Pt/(SiO2)xCy電催化劑之ESCA能譜數據比較表。62
表4-4、Pt/(SiO2)xCy電催化劑之MOR性質參數表。65
表4-5、Pt/(SiO2)xCy系列之電催化劑Pt/(SiO2)xCy電催化劑之CO和CA測試結果比較表。70
表4-6、Pt/(SiO2)xCy電催化劑於0.55 V (vs. Ag/AgCl) 之ORR電流密度。72
表B-1、含有高比例SiO2之Pt/(SiO2)xCy電催化劑之MOR性質參數表。84
表C-1、Pt/(SiO2)xCy-A系列與Pt/(SiO2)xCy-B系列電催化劑之MOR性質參數表。87
表D-1、Pt/(SiO2)8C92電催化劑與市售E-TEK Pt/C電催化劑之MOR性質參數表。89
參考文獻
[1] H. Li, Z. Shi, J.W. Van Zee, S. Knights, J. Zhang, “Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategies”, CRC Press, 2010, p. 151.
[2] M. Perry, T. Fuller, “A historical perspective of fuel cell technology in the 20th century”, J. Electrochem. Soc. 149(7), 2002, S59-S67.
[3] G.S. Chai, S.B. Yoon, J.H. Kim, J.S. Yu, “Spherical carbon capsules with hollowmacroporous core and mesoporous shell structures as a highly efficient cata-lyst support in the direct methanol fuel cell”, Chem. Commun. 2004, 2766–2767.
[4] X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, “Recent advancesin catalysts for direct methanol fuel cells”, Energy Environ. Sci. 4, 2011, 2736–2753.
[5] S. Wasmus, A. Kuver, “Methanol oxidation and direct methanol fuel cells: a selective review”, J. Electroanal. Chem. 461, 1999, 14–31.
[6] S.K. Kamarudin, W.R.W. Daud, S.L. Ho, U.A. Hasran, “Overview on the challengesand developments of micro-direct methanol fuel cells (DMFC)”, J. Power Sources 163, 2007, 743–754.
[7] J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C.W. Wong, “Preparation and charac-terization of a PtRu/C nanocatalyst for direct methanol fuel cells”, Electrochim. Acta 51, 2005, 754–763.
[8] A. S. Aricoa, S. Srinivasanb, V. Antonuccia, “DMFCs: From Fundamental Aspects to Technology Development”, Fuel Cells 2001, 1, No. 2, 133-161.
[9] S. Mylswamy, C.Y. Wang, R.S. Liu, J.-F. Lee, M.-J. Tang,J.-J. Lee, B.-J. Weng, “Anode catalysts for enhanced methanol oxidation: An in situ XANES study of PtRu/C and PtMo/C catalysts”, Chem. Phys. Lett 412, 2005, 444-448
[10] T. Iwasita, “Electrocatalysis of methanol oxidation”, Electrochim. Acta 47, 2002, 3663-3674
[11] H.A. Gasteiger, N.M. Markovic, P.N. Ross, “Electrooxidation of CO and H2/CO Mixtures on a Well-Characterized Pt3Sn Electrode Surface”, J. Phys. Chem. 99, 1995, 8945-8949
[12] E. S. Smotkin, A. Wieckowski, “Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes”, J. Phys. Chem. B 104, 2000, 3518-3531
[13] K. Park, J. Choi, S. Lee, C. Pak, H. Chang, Y. Sung, “PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell”, J. Catal. 224, 2004, 236–242
[14] M.atthew A. Rigsby, W.-P. Zhou, A. Lewera, H.T. Duong, P.S. Bagus, W. Jaegermann, R. Hunger, A. Wieckowski, “Experiment and Theory of Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru”, J. Phys. Chem. C 112, 2008, 15595–15601
[15] C. Chen, F. Pan, “Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation”, Appl. Catal. B Environ. 91, 2009, 663-669
[16] J. Xi, J. Wang, L. Yu, X. Qiu, L. Chen, “Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles”, Chem. Commun. 2007, 1656–1658
[17] Z. Hou, B. Yi, H. Yu, Z. Lin, H. Zhang, “CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method”, J. Power Sources 123, 2003, 116–125
[18] L. Calvillo, V. Celorrio, R. Moliner, A.B. Garcia, I. Camean, M.J. Lazaro, “Comparative study of Pt catalysts supported on different high conductive carbon materials for methanol and ethanol oxidation”, Electrochim. Acta 102, 2013, 19–27
[19] Y. Zhao, F. Wang, J. Tian, X. Yang, L. Zhan, “Preparation of Pt/CeO2/HCSs anode electrocatalysts for direct methanol fuel cells”, Electrochim. Acta 55, 2010, 8998–9003
[20] J. Qi, L. Jiang, S. Wang, G. Sun, “Synthesis of graphitic mesoporous carbons with high surface areas and their applications in direct methanol fuel cells”, Appl. Catal. B Environ. 107, 2011, 95– 103
[21] Z. Yan, M. Zhang, J. Xie , H. Wang, W. Wei, “Smaller Pt particles supported on mesoporous bowl-like carbon for highly efficient and stable methanol oxidation and oxygen reduction reaction”, J. Phys. Chem. 243, 2013, 48e53
[22] J. Salgado, J.J. Quintana, L. Calvillo, M. J. La’ zaro, P. L. Cabot, I. Esparbe’, E. Pastor, “Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: the influence of functionalization of the support”. Phys. Chem. Chem. Phys. 10, 2008, 6796–6806
[23] L. Calvilloa, M.J. Lazaro’, E. Garc’ıa-Bordeje’, R. Moliner, P.L. Cabotb, I. Esparbe’, E. Pastor, J.J. Quintana, “Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells”, J. Power Sources 169, 2007, 59–64
[24] M. Carmoa, M. Linardi, J. Poco, “Characterization of nitric acid functionalized carbon black and its evaluation as electrocatalyst support for direct methanol fuel cell applications”, Appl. Catal. A-Gen. 355, 2009, 132–138
[25] S. Lee, B. Kim, S. Park, “Influence of KOH-activated graphite nanofibers on the electrochemical behavior of Pt–Ru nanoparticle catalysts for fuel cells”, J. Solid State Chem. 199, 2013, 258–263
[26] Z.X. Liang, T.S. Zhao, J.B. Xu, ” Stabilization of the platinum–ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold”, J. Power Sources 185, 2008, 166–170
[27] B. Liu, J.H. Chen, X.X. Zhong, K.Z. Cui, H.H. Zhou, Y.F. Kuang, “Preparation and electrocatalytic properties of Pt–SiO2 nanocatalysts for ethanol electrooxidation”, J. Colloid Interface Sci. 307, 2007, 139–144
[28] S. Takenaka, H. Matsumori, H. Matsune, M. Kishida, “Highly durable Pt cathode catalysts for polymer electrolyte fuel cells; coverage of carbon black-supported Pt catalysts with silica layers”, Appl. Catal. A-Gen. 409–410, 2011, 248–256
[29] T. Zhu, C. Dua, C. Liu, G. Yin, P. Shi, “SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells”, Appl. Surf. Sci. 257, 2011, 2371–2376
[30] B. Seger, A. Kongkanand, K. Vinodgopal, PV. Kamat, “Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell”, J. Electroanal. Chem. 621, 2008, 198–204
[31] R. Wang, X. Li, H. Li, Q. Wang, H. Wang, W. Wang, J. Kang, Y. Chang, Z. Lei, “Highly stable and effective Pt/carbon nitride (CNx) modified SiO2 electrocatalyst for oxygen reduction reaction”, Int J. Hydrogen Energy 36, 2011, 5775-5781
[32] K. Nam, S. Lim, S. Kim, S. Yoon, D. Jung, “Application of silica as a catalyst support at high concentrations of methanol for direct methanol fuel cells”, Int J. Hydrogen Energy. 37, 2012, 4619-4626
[33] N. An, W. Zhang, X. Yuan, B. Pan, G. Liu a, M. Jia, W. Yan, W. Zhang, “Catalytic oxidation of formaldehyde over different silica supported platinum catalysts”, Chem. Eng. J. 215–216, 2013, 1–6
[34] D. Kaplan, M. Alon, L. Burstein, Yu. Rosenberg, E. Peled, “Study of core–shell platinum-based catalyst for methanol and ethylene glycol oxidation”, J. Power Sources 196, 2011, 1078–1083
[35] A. Nassr, I. Sinev, W. Grunert, M. Bron, “PtNi supported on oxygen functionalized carbon nanotubes: In depthstructural characterization and activity for methanol electrooxidation”, Appl. Catal.s B: Environ. 142– 143, 2013. 849– 860
[36] F. Huang, C. Chang, T. Oyang, C. Chen, L. Cheng, “Preparation of almost dispersant-free colloidal silica with superb dispersiblility in organic solvents and monomers”, J Nanopart Res, 2011, 13:3885–3897
[37] QL Jiang, ZD Peng, XF Xie, K Du, GR Hu,YX Liu, “Preparation of high active Pt/C cathode electrocatalyst for direct methanol fuel cell by citrate-stabilized method”, Trans. Nonferrous Met. Soc. China 21, 2011, 127-132
[38] H. Song, X. Qiu, F. Li, “Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electro-oxidation”, Electrochim. Acta 53, 2008, 3708–3713
[39] J. Tian, G. Sun, L. Jiang, S. Yan, Q. Mao, Q. Xin, “Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells”, Electrochem. Commun. 9, 2007, 563–568
[40] H. Du, B. Li, F. Kang, R. Fu, Y. Zeng, “Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells”, Carbon 45, 2007, 429–435
[41] D. Gu, Y. Chu, Z. Wang, Z. Jiang, G. Yin, Y. Liu, “Methanol oxidation on Pt/CeO2–C electrocatalyst prepared by microwave-assisted ethylene glycol process”, Appl. Catal. B Environ 102, 2011, 9–18
[42] 柯以侃,儀器分析,新北市新文京開發出版股份有限公司,2008
[43] CK Poha, S H Lim, H. Pan, J. Lina, J.Y. Lee, “Citric acid functionalized carbon materials for fuel cell applications”, J. Power Sources 176, 2008, 70–75
[44] B.K. Pradhan, N.K. Sandle, “Effect of different oxidizing agent treatments on the surface properties of activated carbons”, Carbon 37, 1999, 1323–1332
[45] J. Shim, S. Park, S. Ryu, “Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers”, Carbon 39, 2001, 1635–1642
[46] P. Justin, P.H.K Charan, G.R. Rao, “High performance Pt–Nb2O5/C electrocatalysts for methanol electrooxidation in acidic media”, Appl. Catal. B Environ 100, 2010, 510–515
[47] R. Ahmadi, M.K. Amini, J.C. Bennett, ” Pt–Co alloy nanoparticles synthesized on sulfur-modified carbon nanotubes as electrocatalysts for methanol electrooxidation reaction”, J. Catal. 292, 2012, 81–89
[48] R. Lu, J.B. Zang, Y.H. Wang, Y.L. Zhao, “Microwave synthesis and properties of nanodiamond supported PtRu electrocatalyst for methanol oxidation”, Electrochim. Acta 60, 2012, 329– 333
[49] 王志仲,”Preparation and Characterization of Tungsten Hexachloride Derived Pt-WO3/C Electrocatalysts for Methanol Oxidation Reaction”,淡江大學化學工程與材料工程系碩士論文,民國101年
[50] 陳俞安,”Preparation and Optimizing of Pt-TiO2/C Electrocatalysts for Methanol Oxidation Reaction”,淡江大學化學工程與材料工程系碩士論文,民國101年
[51] 李盈層,”Preparation and Characterization of Pt-CeO2/C Electrocatalyst for Methanol Oxidation Reaction”,淡江大學化學工程與材料工程系碩士論文,民國101年
[52] J.S. Hammond, N. Winograd, “XPS Spectroscopic study of Potentiostatic and Galvanostatic Oxidation of Pt Electrodes in H2SO4 and HClO4”, J. Electroanal. Chem. 78, 1977, 55-69
[53] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer, Eden Prairie, MN, 1992.
[54] 葉祐齊,”Preparation and Optimizing of Pt-ZrO2/C Electrocatalysts for Methanol Oxidation Reaction”,淡江大學化學工程與材料工程系碩士論文,民國102年
[55] X. Gao, S.R. Bare, J.L.G. Fierro, M.A. Banares, I.E. Wachs, “Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica”, J. Phys. Chem. B 102, 1998, 5653-5666
[56] S.P. Chenakin, G. Melaet, R. Szukiewicz, N. Kruse, “XPS study of the surface chemical state of a Pd/(SiO2 + TiO2) catalyst after methane oxidation and SO2 treatment”, J. Catal. 312, 2014, 1–11
[57] P. Liu, D. Yang, H. Chen, Y. Gao, H. Li, “Discrete and dispersible hollow carbon spheres for PtRuelectrocatalyst support in DMFCs”, Electrochim. Acta 109, 2013, 238– 244
[58] J. Zhang, M. Vukmirovic, K. Sasaki, A. Nilekar, M. Mavrikakis, R. Adzic, “Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics”, J. AM. CHEM. SOC. 127, 2005, 12480-12481
[59] C. Chang, C. Chen, F. Hwang, C. Chen, L. Cheng, “Preparation of polymer/silica composite antiglare coatings on poly(ethylene terphathalate) (PET) substrates”, J. Coat. Technol. Res., 9 (5), 2012,561–568
[60] Y. Wan, S. Yu, “Polyelectrolyte Controlled Large-Scale Synthesis of Hollow Silica Spheres with Tunable Sizes and Wall Thicknesses”, J. Phys. Chem. C 112 2008, 3641-3647
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信