§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1108201411340200
DOI 10.6846/TKU.2014.00298
論文名稱(中文) 以聚苯胺及三氧化鎢薄膜搭配丁二腈/聚乙二醇固態電解質組裝可撓式互補型電致色變元件及其性質研究與效能最佳化
論文名稱(英文) Fabrication, Characterization and Optimization of Flexible Complementary Electrochromic Device Based on Polyaniline and Tungsten Trioxide Thin Films with Succinonitrile/Polyethylene Glycol Solid-state Electrolyte
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 陳恩
研究生(英文) En Chen
學號 601400384
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-16
論文頁數 113頁
口試委員 指導教授 - 林正嵐(cllin@mail.tku.edu.tw)
委員 - 鄭廖平(lpcheng@mail.tku.edu.tw)
委員 - 陳志賢(chschen@fcu.edu.tw)
關鍵字(中) 電致色變元件
固態電解質
聚苯胺
三氧化鎢
丁二腈
聚乙二醇
關鍵字(英) Electrochromic device
Solid-state Electrolyte
Polyaniline
Tungsten Trioxide
Succinonitrile
Polyethylene Glycol
第三語言關鍵字
學科別分類
中文摘要
本研究使用聚苯胺(polyaniline, Pani)及三氧化鎢(tungsten trioxide, WO3)薄膜,搭配丁二腈/聚乙二醇(succinonitrile/polyethylene glycol, SN/PEG)混合物作為固態電解質,組裝可撓式互補型固態電致色變元件(electrochromic device, ECD),探討並最佳化其電致色變效能。
Pani與WO3薄膜以定電位法析鍍在indium tin oxide (ITO)導電玻璃或indium tin oxide-polyethylene naphthalate (ITO-PEN)導電塑膠上,作為ECD的工作電極,面積為2 × 2 cm2。本研究先以含有0.1 M LiClO4與1.0 mM HClO4之碳酸丙烯酯(propylene carbonate, PC)溶液為電解質,使用析鍍於ITO上之Pani與WO3薄膜為電極組裝液態電解質ECD (l-ECD),以循環伏安法與交流阻抗法分析元件之電化學行為,量測其電致色變性質(包含吸收光譜、穿透率調幅(ΔT%)、著色效率(coloration efficiency, CE)與著色/去色應答時間(tc/tb)),取得Pani與WO3薄膜的最適析鍍參數與電量比,決定元件安全操作電位範圍,並評估其循環使用穩定性。本研究提出新的實驗方法決定元件之安全操作電位範圍。取得最適之薄膜製備參數與ECD的操作條件後,接著使用含有0.1 M LiClO4與1.0 mM HClO4以及不同PEG(分子量=400)含量之SN為固態電解質,並分別以ITO或ITO/PEN為電極基材,組裝固態電解質ECD (s-ECD)與可撓式固態電解質ECD (fs-ECD)。SN中PEG的含量分別為2.5、5.0、7.5、10.0、12.5、15.0、25.0與35.0 wt%,量測其穿透率隨PEG含量之改變,並以光學顯微鏡觀察其表面型態。對所得之ECD進行電化學行為、電致色變性質與穩定性量測,並將所得結果與l-ECD比較。l-ECD在波長700 nm處之ΔT% = 56.66 %,tc/tb = 20.3/9.1秒,CE = 111.1 cm2/C,於1300次著色/去色循環操作ΔT%降至初始值之90%,其值為50.77 %。s-ECD在波長700 nm處之ΔT% = 51.25 %,tc/tb = 28.4/14.4秒,CE = 105.0 cm2/C,於4600次著色/去色循環操作ΔT%降至初始值之90%,其值為39.01 %。fs-ECD於700 nm處之ΔT% = 50.76 %,tc/tb = 26.6/16.3秒,CE = 100.4 cm2/C,於4400次著色/去色循環操作ΔT%降至初始值之90%,其值為41.25 %。
英文摘要
In this study, flexible complementary electrochromic devices (ECD) constructed using polyaniline (Pani) and tungsten trioxide (WO3) thin films with succinonitrile/polyethylene glycol (SN/PEG) composite solid-state electrolyte are fabricated and characterized. Pani and WO3 thin films are prepared by potentiostatic electrodeposition on indium tin oxide (ITO) conducting glass (at part 1 and part 2) or indium tin oxide-polyethylene naphthalate (ITO-PEN) conducting plastic (part 3) as the electrochromic layers. At part 1, liquid electrolyte contain 0.1 M LiClO4 and 1 mM HClO4 in propylene carbonate (PC) solution are prepared and are used to fabricate the ECD. The area of the ECD is 2 × 2 cm2. ECD constructed using stationarty deposition time of Pani thin film and different deposition time of WO3 thin film, then find the best deposition time ratio according to transmittance modulation ability (ΔT) and current density. Using the new method to find the best operation potential range of ECD. Composite solid-state electrolytes contain 0.1 M LiClO4 and 1 mM HClO4 with different SN/PEG ratios (from 95/5 to 65/35 (w/w)) are prepared and are used to fabricate the ECDs. The electrochromic performances of the ECDs using a liquid electrolyte (l-ECD) with ITO or solid-state electrolyte with ITO (s-ECD) or solid-state electrolyte with ITO-PEN (fs-ECD) are investigated and compared. Ion diffusion rate of liquid electrolyte and solid-state electrolyte are investigated by electrochemical impedance spectroscopy (EIS).
Experimental results reveal that the deposition time ratio of Pani thin film and WO3 thin film as 100s:1200s have larger ΔT and current density than other ratio. The best operation potential of the ECD is determined to be 1.0 V for coloring and -0.3 V for bleaching process. Solid-state electrolyte of SN/PEG ratio (90/10) can be effectively inhibit crystallization of SN. l-ECD achieved ΔT of 56.66 % at 700 nm. The ΔT% of s-ECD at SN/PEG ratio of 90/10 is 51.25 % at 700 nm. The ΔT of fs-ECD at SN/PEG ratio of 90/10 is 50.76 % at 700 nm. The coloring/bleaching response times are 20.3 s/9.1 s for l-ECD and are 28.4 s/14.4 s for s-ECD (SN/PEG = 90/10), and fs-ECD (SN/PEG = 90/10) are 26.6 s/16.3 s.The coloration efficiency of l-ECD、s-ECD (SN/PEG = 90/10) and fs-ECD (SN/PEG = 90/10) are 97.0、105.0 and 100.4 cm2/C, respectively. The l-ECD after switching for 1300 cycles, ΔT% decline of 10% compared to the initial ΔT%. The s-ECD (SN/PEG = 90/10) after switching for 4600 cycles, ΔT% decline of 10% compared to the initial ΔT%. The fs-ECD (SN/PEG = 90/10) after switching for 4400 cycles, ΔT% decline of 10% compared to the initial ΔT%. The l-ECD less stable than s-ECD and fs-ECD because liquid electrolyte prone to leak.
第三語言摘要
論文目次
目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
第一章、簡介 1
第二章、實驗設備與方法 11
2-1、儀器設備 11
2-2、實驗藥品 12
2-3、實驗方法 14
2-3-1、系統架構 14
2-3-2、導電基材的前處理 15
2-3-3、聚苯胺(Pani)薄膜製備之程序 16
2-3-4、三氧化鎢(WO3)薄膜製備之程序 17
2-3-4-1、WO3薄膜之製備 17
2-3-4-2、白金黑之製備 18
2-3-5、液態電解質之製備 18
2-3-6、固態電解質之製備 18
2-3-7、互補式電致色變元件之組裝 19
2-4、實驗分析 20
2-4-1、電化學性質分析 20
2-4-2、光學特性分析 22
2-4-3、電解質表面結構之探討 23
第三章、結果與討論 24
3-1、電致色變薄膜之性質探討 24
3-1-1、Pani 薄膜之電致色變性質 24
3-1-1-1、Pani 薄膜之電化學行為 24
3-1-1-2、Pani 薄膜之吸收光譜特性 26
3-1-1-3、Pani 薄膜之應答時間及著色效率 28
3-1-2、WO3薄膜之電致色變性質 31
3-1-2-1、WO3薄膜之電化學行為 31
3-1-2-2、WO3薄膜之吸收光譜特性 33
3-1-2-3、WO3薄膜之應答時間及著色效率 34
3-2、使用液態電解質組裝ECD及其效能最佳化 36
3-2-1、Pani及WO3析鍍時間比之最佳化 36
3-2-2、決定ECD之最佳操作電位範圍 43
3-3、液態電解質ECD (l-ECD)之電致色變性質探討 52
3-3-1、l-ECD之電化學行為 52
3-3-2、l-ECD之吸收光譜特性 55
3-3-3、l-ECD之應答時間及著色效率 56
3-3-4、l-ECD之交流阻抗分析 58
3-3-5、l-ECD之穩定性 63
3-4、固態電解質ECD (s-ECD)之組裝與其性質探討 69
3-4-1、固態電解質之製備及其性質探討 69
3-4-2、不同PEG比例之s-ECD 之電化學與光學特性分析 75
3-4-3、10 wt% PEG之s-ECD之電致色變性質分析 81
3-4-3-1、10 wt% PEG 之s-ECD之電化學行為 83
3-4-3-2、10 wt% PEG 之s-ECD之吸收光譜特性 85
3-4-3-3、10 wt% PEG 之s-ECD之應答時間及著色效率 87
3-4-3-4、10 wt% PEG之s-ECD之交流阻抗分析 88
3-4-3-5、10 wt% PEG 之s-ECD之穩定性 93
3-5、可撓式固態電解質ECD (fs-ECD)之性質探討與比較 95
第四章、結論 104
第五章、參考文獻 106

圖目錄
圖1-1、典型ECD示意圖。 2
圖1-2、聚苯胺結構圖。 4
圖1-3、丁二腈結構示意圖 8
圖2-1、導電玻璃前處理完成示意圖。 15
圖2-2、Pani實驗流程圖。 16
圖2-3、WO3實驗流程圖。 17
圖2-4、固態電解質製備流程圖。 19
圖2-5、組裝ECD示意圖。 20
圖2-6、三電極式電化學系統示意圖。 22
圖2-7、UV-Vis搭配電化學儀器示意圖。 23
圖3-1、Pani薄膜之循環伏安圖(掃描速率 = 50 mV/s)。 25
圖3-2、Pani薄膜之連續循環伏安圖(掃描速率 = 50 mV/s)。 25
圖3-3、Pani薄膜在不同施加電位下之可見光區吸收光譜圖。 27
圖3-4、在波長700 nm處,Pani薄膜之應答時間圖。 29
圖3-5、於波長700 nm處,Pani薄膜的著色反應電量與光學密度差之關係圖。 30
圖3-6、WO3薄膜之循環伏安圖(掃描速率 = 50 mV/s)。 32
圖3-7、WO3薄膜之連續循環伏安圖(掃描速率 = 50 mV/s)。 32
圖3-8、WO3薄膜在不同施加電位下之可見光區吸收光譜圖。 33
圖3-9、在波長700 nm處,WO3薄膜之吸收度變化圖。 35
圖3-10、於波長700 nm處,WO3薄膜的著色反應電量與光學密度差之關係圖。 35
圖3-11、不同析鍍時間比之ECD的吸收度變化圖,(a) 100s : 100s;(b) 100s : 200s;(c) 100s : 300s;(d) 100s : 600s;(e) 100s : 800s;(f) 100s : 1000s;(g) 100s : 1200s;(h) 100s : 1400s;(i) 100s : 1600s。 41
圖3-12、不同析鍍時間比之ECD之循環伏安圖(第10圈疊圖)。 42
圖3-13、決定操作電位測量方式示意圖。 45
圖3-14、ECD在不同電位下之吸收光譜圖。 45
圖3-15、Pani薄膜對應於ECD不同電位下之吸收光譜圖。 46
圖3-16、WO3薄膜對應於ECD不同電位下之吸收光譜圖。 46
圖3-17、Pani薄膜各電位對應之吸收度圖 (at 700 nm)。 48
圖3-18、WO3薄膜各電位對應之析收度圖 (at 700 nm)。 49
圖3-19、Pani薄膜及WO3薄膜換算之電位對應於ECD之電位比較圖。 51
圖3-20、Pani薄膜在不同著色電位下之可見光區吸收光譜圖。 51
圖3-21、l-ECD之循環伏安圖 (掃描速率 = 20 mV/s)。 54
圖3-22、l-ECD之吸收度隨循環伏安法變化圖。 54
圖3-23、l-ECD在不同施加電位下之可見光區吸收度光譜圖。 55
圖3-24、在波長 550、700及800 nm下,l-ECD之吸收度變化圖。 57
圖3-25、在波長550、700及800 nm 下,l-ECD的著色反應電量與光學密度差之關係圖。 57
圖3-26、ECD之等效電路圖。 59
圖3-27、l-ECD在不同施加電位下之交流阻抗分析圖。 59
圖3-28、l-ECD在不同施加電位下之交流阻抗分析圖(高頻區放大)。 60
圖3-29、l-ECD在電位-0.3 V下之交流阻抗擬合圖。 60
圖3-30、l-ECD在電位+0.65 V下之交流阻抗擬合圖。 61
圖3-31、l-ECD在電位+1.0 V下之交流阻抗擬合圖。 61
圖3-32、l-ECD在電位+1.3 V下之交流阻抗擬合圖。 62
圖3-33、l-ECD之穩定性圖(-0.3 V 至+1.3 V)。 65
圖3-34、l-ECD之穩定性圖(-0.3 V 至+1.0 V)。 65
圖3-35、不同比例(wt % PEG)之固態電解質圖。 71
圖3-36、固態電解質之穿透度量測示意圖。 72
圖3-37、不同PEG比例之固態電解質之OM圖(放大倍率50倍)。 73
圖3-38、不同 PEG 比例之固態電解質之OM圖(放大倍率100倍)。 74
圖3-39、不同PEG比例之s-ECD之循環伏安圖 (掃描速率 = 20 mV/s,-0.3 V至+1.0 V)。 78
圖3-40、在波長700 nm下,不同PEG比例之s-ECD之應答時間圖(-0.3 V至+1.0 V)。 79
圖3-41、在波長700 nm下,不同PEG比例之s-ECD 之穿透度調幅圖。 80
圖3-42、在波長700 nm下,不同PEG比例之s-ECD之應答時間比較圖。 80
圖3-43、10 wt% PEG之固態電解質在不同固化時間下之影像圖。 82
圖3-44、10 wt% PEG 之s-ECD之循環伏安圖 (掃描速率20 mV/s)。 84
圖3-45、10 wt% PEG 之s-ECD之吸收度隨循環伏安法變化圖。 84
圖3-46、10 wt% PEG 之s-ECD在不同施加電位下之可見光區吸收度光譜圖。 86
圖3-47、波長 550、700及800 nm下,10 wt% PEG之s-ECD之吸收變化圖。 87
圖3-48、在波長550、700及800 nm 下,10 wt% PEG 之s-ECD之著色效率圖。	88
圖3-49、10 wt% PEG 之s-ECD在不同施加電位下之交流阻抗分析圖。 89
圖3-50、10 wt% PEG 之s-ECD在不同施加電位下之交流阻抗分析圖(高頻區)。	90
圖3-51、10 wt% PEG 之s-ECD在電位-0.3 V下之交流阻抗擬合圖。 90
圖3-52、10 wt% PEG 之s-ECD在電位+0.65 V下之交流阻抗擬合圖。 91
圖3-53、10 wt% PEG 之s-ECD在電位+1.0 V下之交流阻抗擬合圖。 91
圖3-54、10 wt% PEG 之s-ECD之穩定性圖(-0.3 V至+1.0 V)。 93
圖3-55、三種ECD(液態電解質、固態電解質、可撓式)之循環伏安圖(掃描速率 = 20 mV/s)。 97
圖3-56、三種ECD(液態電解質、固態電解質、可撓式)之吸收度變化圖(-0.3至+1.0 V)。 97
圖3-57、fs-ECD之穩定性圖(-0.3 V至+1.0 V)。 98

表目錄
表1-1、SN+PEG之電解質。 8
表1-2、Pani-WO3互補式ECD文獻回顧。 9
表3-1、Pani薄膜、WO3薄膜及ECD對應於ECD各電位之吸收度比較表。 47
表3-2、Pani薄膜及WO3薄膜換算之電位加總與ECD各電位比較表。 50
表3-3、l-ECD在不同施加電位下之各電阻及電容表。 62
表3-4、l-ECD之穩定性表(-0.3 V至+1.3 V)。 66
表3-5、l-ECD之穩定性表(-0.3 V至+1.0 V)。 67
表3-6、不同PEG比例之固態電解質之穿透度。 72
表3-7、不同 PEG 比例之s-ECD之穿透度調幅與應答時間數據表。 79
表3-8、s-ECD在不同施加電位下之各電阻及電容表。 92
表3-9、l-ECD及s-ECD離子擴散速率之結果比較表。 92
表3-10、10 wt% PEG之s-ECD之穩定性表(- 0.3 V 至 + 1.0 V)。 94
表3-11、可撓式膠態ECD 之穩定性表 (- 0.3 V 至 + 1.0 V)。 99
表3-12、三種 ECD (liquid、gel、flexible) 之電致色變性質表。 101
表3-13、過去三年內之各種互補式電致色變元件參考文獻。 102
參考文獻
1.S. K. Deb,” A Novel Electrophotographic System”, Appl. Opt. Suppl. 3 (1969) 192.
2.F.G.K. Baucke,”Electrochromic applications”, Mater. Sci. Eng., B 10 (1991) 285.
3.J. Nagai,”Characterization of evaporated nickel oxide and its application to electrochromic glazing”, Sol. Energy Mater. Sol. Cells 31 (1993) 291.
4.K. Boufker,” Lithiation study of molybdenum oxide thin films: application to an electrochromic system”, J. Appl. Electrochem. 25 (1995) 797.
5.Akira Watanabe, Kunio Mori, Yasunori Iwasaki, and Yoshiro Nakamura, Shigeya Niizuma,”Electrochromism of Polyaniline Film Prepared by ElectrochemicalPolymerization”, Macromolecules 20(1987) 1793.
6.R. V. Pole, G. T. Sincerbox, M. D. Shattuck,” Photo-induced Electrochromic Effect and Its Applications to Displays”, Appl. Phys. Lett. 28 (1976) 494.
7.G. Pistoia, A. Antonini, G. Wang,”Impedance study on the reactivity of gel polymer electrolytes towards a lithium electrode”, J. Power Sources 58 (1996) 139.
8.H. Y. Sung, Y. Y. Wang, C. C. Wan,” Preparation and Characterization of Poly(vinyl chloride‐co‐vinyl acetate)‐Based Gel Electrolytes for Li‐Ion Batteries“, J. Electrochem. Soc. 145 (1998) 1207.
9.G. B. Appetecchi, F. Croce, B. Scrosati,”Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes”, Electrochim. Acta 40 (1995) 991.
10.X. Liu, T. Osaka,” Properties of Electric Double‐Layer Capacitors with Various Polymer Gel Electrolytes“, J. Electrochem. Soc. 144 (1997) 3066.
11.O. Bohnke, C. Rousselot, P. A. Gillet, C. Truche,” Gel Electrolyte for Solid‐State Electrochromic Cell“, J. Electrochem. Soc. 139 (1992)1862.
12.N. H. Idris, Md. M. Rahman, J.-Z.Wang, H.-K.Liu,”Microporous gel polymer electrolytes for lithium rechargeable batteryapplication”, J. Power Sourses 201 (2012) 294.
13.H. S. Choe, B. G. Carroll, D. M. Pasquariello, K. M. Abraham,”Characterization of Some Polyacrylonitrile-BasedElectrolytes”, Chem. Mater.9(1997) 369.
14.Z. Wang, B. Huang, H. Huang, R. Xue, L. Chen, F. Wang,” Tungsten Oxide Thin Films Chemically Vapor Deposited at Low Pressure by  W(CO)6Pyrolysis”, J. Electrochem. Soc. 143(1996) 1510.
15.B. W. Faughnan, R. S. Crandall, P. M. Heyman, RCA Review 36 (1975) 177.
16.J. Zhang, X. L. Wang, X. H. Xia, C. D. Gu, Z. J. Zhao, J. P. Tu,”Enhanced electrochromic performance of macroporous WO3films formed by anodic oxidation of DC-sputtered tungsten layers” Electrochim.Acta 55 (2010) 6953.
17.H. Demiryont, K. E. Nietering,”Tungsten oxide films by reactive and conventionalevaporation techniques”, Appl. Optics.28(1989) 1494.
18.R. Sivakumar, A. M. E. Raj, B. Subramanian, M. Jayachandran, D. C. Trivedi, C. Sanjeeviraja,” Preparation and characterization of spray deposited n-typeWO3 thin films for electrochromic devices”, Mater. Res. Bull. 39 (2004) 1479.
19.B. Reichman, A. J. Bard,” The Electrochromic Process at  WO 3Electrodes Prepared by Vacuum Evaporation and Anodic Oxidation of W”, J. Electrochem. Soc. 126 (1979) 583.
20.D. Davazoglou, A. Donnadieu,” Study on the optical and electrochromic properties of polycrystalline WO3thin films prepared by CVD”, Sol. Energy Mater. 17 (1988) 379.
21.D. Davazoglou, A. Moutsakis, V. Valamontes, V. Psykaris, D. Tsamakis,” Tungsten Oxide Thin Films Chemically Vapor Deposited at Low Pressure byW(CO)6Pyrolysis”, J.Electrochem. Soc. 144 (1997) 595.
22.J. Wang, E. Khoo, P. S. Lee, J. Ma,”Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods”, J. Phys Chem C 112 (2008) 14306.
23.J. Zhang, J. P. Tu, X. H. Xia, X. L. W ang, C. D. Gu,”Hydrothermally synthesized WO3 nanowire arrays with highly improvedelectrochromic performance”, J. Mater. Chem. 21 (2011) 5492.
24.O. Pyper, R. Schollhorn, J. J. T. M. Donkers, L. H. M. Krings,”Nanocrystalline structure of WO3thin films prepared by the sol-gel technique”, Mater. Res. Bull. 33 (1998) 1095.
25.P. K. Biswasa, N. C. Pramanika, M. K. Mahapatraa, D. Gangulia, J. Livage,”Optical and electrochromic properties of sol–gel WO3films on conducting glass”, Mater.Lett.57 (2003) 4429.
26.C.-K. Lin, S.-C.Tseng, C.-H.Cheng, C.-Y.Chen, C.-C.Chen,”Electrochromic performance of hybrid tungsten oxide films withmultiwalled-CNT additions”, Thin Solid Films 520 (2011) 1375.
27.P. K.Shen, A. C. C. Tseung,”Study of Electrodeposited Tungsten Trioxide Thin Films”,J. Mater. Chem. 2 (1992) 1141.
28.L. Y. Su, L. G. Zhang, J. H. Fang,”Electrochromic and photoelectrochemicalbehavior of electrodeposited tungsten trioxide films”, Sol. Energy Mater. Sol. Cells 58 (1999) 133.
29.A. Watanabe, K. Mori, Y. Iwasaki, Y. Nakamura,”Electrochromism of Polyaniline Film Prepared by Electrochemical Polymerization”, Macromol.20 (1987) 1793.
30.X. Y. Peng, F. Luan, X. X. Liu, D. Diamond, K. T. Lau,”pH-controlledmorphological structure of polyaniline duringelectrochemical deposition”, Electrochim.Acta 54 (2009) 6172.
31.P. R. Somani, S. Radhakrishnan,”Electrochromic materials and devices: present and future”,Mater.Chem. Phys. 77 (2002) 117.
32.R. Murugesan, E. Subramanian,”Effect of organic dopants on electrodeposition andcharacteristics of polyaniline under the varyinginfluence of H2SO4 and HClO4 electrolyte media”,Mater.Chem. Phys. 80 (2003) 731.
33.B. Wang, J. Tang,” The effect of anions of supporting electrolyte on the electrochemical polymerization of aniline and the properties of polyaniline”, Synth. met. 13 (1986) 329.
34.K. Koziel, M. Lapkowski and S. Lefrant,”Spectroelectrochemical investigations of the memory effect in polyaniline”, Synth. met. 69 (1995) 217.
35.P. Rannou, M. Nechtschein,”Aging studies on polyaniline: conductivity and thermal stability”, Synth. met. 84 (1997) 755.
36.M. Kaneko, H. Nakarmura, T. Shimomura,” Multicolour electrochromism of polyaniline film”, Macromol.Rapid.Commun.8 (1987) 179.
37.S.-X.Xiong, S.-L.Phua,B. S. Dunn, J. Ma, X.-H. Lu,”Covalently Bonded Polyaniline-TiO2 Hybrids: A Facile Approach toHighly Stable Anodic Electrochromic Materials with Low OxidationPotentials”, Chem. Mater. 22 (2010) 255.
38.R. V. Salvatierra,M. M. Oliveira,A. J. G. Zarbin,”One-Pot Synthesis and Processing of Transparent, Conducting, andFreestanding CarbonNanotubes/Polyaniline Composite Films”,Chem.Mater.22 (2010) 5222.
39.S.-X.Xiong, J. Wei, P.-T.Jia, L.-I.Yang, J. Ma, X.-H. Lu,”Water-Processable Polyaniline with Covalently Bonded Single-WalledCarbon Nanotubes: Enhanced Electrochromic Properties andImpedance Analysis”, ACS Appl. Mater. Interfaces 3 (2011) 782.
40.J. Wei,S.-X.Xiong, Y. Bai, P.-T.Jia, J. Ma, X.-H.Lu,”Polyaniline nanoparticles doped with star-like poly(styrene sulfonate):Synthesis and electrochromic properties”, Sol. Energy Mater. Sol. Cells 99 (2012) 141.
41.J. Bacon,R. N. Adams ,” Anodic Oxidations of Aromatic Amines. 111. SubstitutedAnilines in Aqueous Media”, J. Am.,Chem. Soc. 90 (1968) 6596.
42.S. Wawzonekand,T. W. MacIntyre,” Electrolytic Oxidation of Aromatic Amines”, J. Electrochem. Soc.114 (1967) 1025.
43.M. C. Bernard, A. H. L. Goff, V. T. Bich, W. Zeng,”Study by optical multichannel analysis of the electrochromic phenomena in polyaniline doped with camphorsulfonic acid”,Synth.Met.81 (1996) 215.
44.D. R. MacFarlane, J. Huang, M. Forsyth,” Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries”, Nature402 (1999) 792.
45.D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth,”Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic CrystalPhases”, J. Phys. Chem. B 103 (1999) 4164.
46.A. Abouimrane, P.S. Whitfield, S. Niketic, I.J. Davidson,”Investigation of Li salt doped succinonitrile aspotential solid electrolytes for lithium batteries”, J. Power Sources 174 (2007) 883.
47.J. Chen, T. Peng, K. Fan, R. Li, J. Xia,”Optimization of plastic crystal ionic liquid electrolyte for solid-statedye-sensitized solar cell”, Electrochim.Acta 94 (2013) 1
48.T.-H. Kuo, C.-Y.Hsu, K.-M. Lee, K.-C. Ho,” All-solid-state electrochromic device based on poly(butyl viologen), Prussian blue, and succinonitrile”, Sol. Energy Mater. Sol. Cells93 (2009) 1755
49.C.-W. Hu, K.-M.Lee, K.-C.Chen, L.-C.Chang, K.-Y.Shen, S.-C.Lai,T.-H.Kuo, C.-Y.Hsu, L.-M. Huang, R. Vittal, K.-C. Ho,”High contrast all-solid-state electrochromic device with2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen,and succinonitrile”, Sol. Energy Mater. Sol. Cells 99 (2012) 135.
50.P. Jelle, G. Hagen, R. OdegArd,”Enhanced electrochromic performance of macroporous WO3 films formed byanodic oxidation of DC-sputtered tungsten layers”, Electrochim.Acta37 (1992) 1377.
51.M.-C. Bernard, A. H.-L. Gaff, W. Zeng,” Characterization and stability tests of an all solid state electrochromic cell using polyaniline”, Synthetic Metals 85 (1997) 1347.
52.L. Z. Fan, J. Maier,”Composite effects in poly(ethylene oxide)–succinonitrile basedall-solid electrolytes”,Electrochem. Commun. 8 (2006) 1753.
53.Li-Z. Fan, Y.-S. Hu, A. J. Bhattacharyya, J. Maier,”Succinonitrile as a Versatile Additive for Polymer Electrolytes”, Adv. Funct. Mater. 17(2007) 2800.
54.L.-Z. Fan, X.-L. Wang, F. Long, X. Wang,”Enhanced ionic conductivities in composite polymer electrolytesby using succinonitrile as a plasticizer”, Solid State Ionics 179 (2008) 1772.
55.R. Yue, Y. Niu, Z. Wang , J. F. Douglas, X. Zhu, E. Chen,”Suppression of crystallization in a plastic crystal electrolyte (SN/LiClO4)by a polymeric additive (polyethylene oxide) for battery applications”, Polymer 50 (2009) 1288.
56.M. Patel, K. G. Chandrappa, A. J. Bhattacharyya,”Increasing ionic conductivity of polymer–sodium salt complex by addition of anon-ionic plastic crystal”, Solid State Ionics 181 (2010) 844.
57.R. K. Gupta, H.-M. Kim, H.-W. Rhee,”Poly(ethylene oxide) : succinonitrile—a polymeric matrix for fast-ion conducting redox-couplesolid electrolytes”, J. Phys. D: Appl. Phys. 44 (2011) 205106.
58.X.-L. Wu, S. Xin, H.-H. Seo, J. Kim, Y.-G. Guo, J.-S. Lee,”Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes byusing succinonitrile as a plasticizer”,Solid State Ionics 186 (2011) 1.
59.M. Echeverri, N. Kim, T. Kyu,”Ionic Conductivity in Relation to Ternary Phase Diagram ofPoly(ethylene oxide), Succinonitrile, and LithiumBis(trifluoromethane)sulfonimide Blends”, Macromol. 45 (2012) 6068.
60.R. K. Gupta, H.-W. Rhee,”Enhanced electrochromic performance of macroporous WO3 films formed byanodic oxidation of DC-sputtered tungsten layers”,Electrochim. Acta 76 (2012) 159.
61.R. Yang, S. Zhang, L. Zhang, W. Liu,”Electrical properties of composite polymer electrolytes based on PEO-SN-LiCF3SO3”,Int. J. Electrochem. Sci. 8 (2013) 10163.
62.J. Sharma, S. A. Hashmi,”Magnesium ion transport in poly(ethylene oxide)-basedpolymer electrolyte containing plastic-crystallinesuccinonitrile”, J. Solid State Electrochem. 17 (2013) 2283.
63.X.-L. Wu, Y.-H. Li, N. Wu, S. Xin, J.-H. Kim, Y. Yan,J.-S. Lee, Y.-G. Guo,”Enhanced working temperature of PEO-based polymer electrolyte viaporous PTFE film as an efficient heat resister”, Solid State Ionics 245-246 (2013) 1.
64.Y.-H. Li, X.-L. Wu, J.-H. Kim, S. Xin, J. Su, Y. Yan,J.-S. Lee, Y.-G. Guo,”A novel polymer electrolyte with improved high-temperature-tolerance up to 170 °C for high-temperature lithium-ion batteries”, J. Power Sources 244 (2013) 234.
65.K. Karuppasamy, R. Antony, S. Thanikaikarasan, S. Balakumar, X. S. Shajan,”Combined effect of nanochitosan and succinonitrileon structural, mechanical, thermal, and electrochemicalproperties of plasticized nanocomposite polymerelectrolytes (PNCPE) for lithium batteries”, Ionics 19 (2013) 747.
66.B.P. Jelle, G. Hagen, R. O. Ard,”Transmission spectra of an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte”, Electrochim. Acta 37 (1992) 1377.
67.B. P. Jelle, G. Hagen, S. Nodland,”Transmission spectra of an electrochromic window consisting of polyaniline, prussian blue and tungsten oxide”, Electrochim. Acta 38 (1993) 1497.
68.M.-C. Bernard, A. H.-L. Gaff, W. Zeng,”Elaboration and study of a PANI/PAMPS/WO3all solid-state electrochromic device”, Electrochim. Acta 44 (1998) 781.
69.B. P. Jelle, G. Hagen,”Electrochemical multilayer deposition of polyanilineand Prussian Blue and their applicationin solid state electrochromic windows”, J. Appl. Electrochem. 28 (1998) 1061.
70.B. P. Jelle, G. Hagen,”Correlation between light absorption and electric charge in solid state electrochromicWindows”, J. Appl. Electrochem. 29 (1999) 1103.
71.B. P. Jelle, G. Hagen,”Performance of an electrochromic window basedon polyaniline, prussian blue and tungsten oxide”, Sol. Energy Mater Sol. Cells 58 (1999) 277.
72.C. Marcel, J. M. Tarascon,”An all-plastic WO3-H2O/polyaniline electrochromic device”, Solid State Ionics 143 (2001) 89.
73.L. M. Huang, T.-C. Wen, A. Gopalan, Mater.”Poly(2,5-dimethoxyaniline) based electrochromic device”, Chem. Phys. 77 (2002) 26.
74.D. S. Lin,”Absorbance Behavior of Polyaniline-poly(styrenesulfonic acid)Complexes and Tungsten Oxide”, J. Chin. Chem. Soc. 51 (2004) 1279.
75.C. H. Yang, L. W. Chong, L. M. Huang, Y. L. Lee, T. C. Wen,”Novel electrochromic devices based on composite films ofpoly(2,5-dimethoxyaniline)-waterborne polyurethane”, Mater. Chem. Phys. 91 (2005) 154.
76.L. Zhang, S. Xiong, J. Ma, X. H. Lu,”A complementary electrochromic device based on polyaniline-tetheredpolyhedral oligomeric silsesquioxane and tungsten oxide”, Sol. Energy Mater. Sol. Cells 93 (2009) 625.
77.D. Schawaller, M. Voss, V. Bauch, E. Frank, M. R. Buchmeiser,”Flexible,Switchable Electrochromic Textiles”,Macromol. Mater. Eng. 299 (2014) 330.
78.M. Deepa, A. Awadhia, S. Bhandari,” Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/Prussian blue electrochromicdevices containing an ionic liquid based gelelectrolyte film”, Phys. Chem. Chem. Phys.11(2009) 5674.
79.R. Vergaza, D. Barrios, J.M.S. Pena, C. Marcosa,C. Pozob, J. A. Pomposo,” Electro-optical analysis of PEDOT symmetrical electrochromic devices”, Sol. Energy Mater Sol. Cells 92 (2008) 107.
80.P. Camurlu, C Gultekin,” A comprehensive study on utilization of N-substituted poly(2,5-dithienylpyrrole) derivatives in electrochromic devices”, Sol. Energy Mater.Sol. Cells 107 (2012) 142.
81.S.-Y. Lin, Y.-C. Chen, C.-M. Wang, C.-Y. Wen, T.-Y. Shih,” Study of MoO3- NiO complementary electrochromic devices using a gelpolymer electrolyte”, Solid State Ionics 212 (2012) 81.
82.K.-Y. Shen, C.-W. Hu, L.-C. Chang, K.-C. Ho,” A complementary electrochromic device based on carbon nanotubes/conducting polymers”,Sol. Energy Mater.Sol. Cells 98 (2012) 294.
83.Z. Jiao a, J. Wang, L. Ke, X.-W. Liu, H. V. Demir, M.-F. Yang,X.-W. Sun,” Electrochromic properties of nanostructured tungsten trioxide (hydrate) filmsand their applications in a complementary electrochromic device”, Electrochim. Acta 63 (2012) 153.
84.Q. Du, S. Mi, J. Zheng, C. Xu,” A comparative study of theelectrochemical behavior ofcomplementary polymerelectrochromic devices based ondifferent counter-electrodes”, Smart Mater. Struct. 22 (2013) 125025.
85.T.-H. Chang, C.-W. Hu, R.Vittal, K.-C. Ho,” Incorporation of plastic crystal and transparent UV-cured polymeric electrolyte in a complementary electrochromic device”,Sol. Energy Mater.Sol. Cells 126 (2014) 213.
86.C.-W. Kuo, B.-K. Chen, W.-B. Li, L.-Y. Tseng, T.-Y. Wu,C.-G. Tseng, H.-R. Chen,Y.-C. Huang,” Effects of Supporting Electrolytes on Spectroelectrochemical and ElectrochromicProperties of Polyaniline-poly(styrene sulfonic acid) andPoly(ethylenedioxythiophene)-poly(styrene sulfonic acid)-based ElectrochromicDevice”, J. Chin. Chem. Soc.61 (2014) 563.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信