淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1108201012485800
中文論文名稱 帶翼尖小翼水平式風力發電機葉片於極端天候下之性能研究
英文論文名稱 Performance Study of Wingleted Horizontal Axis Wind Turbine Blade under Severe Weather
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 邱宗祐
研究生英文姓名 Tsung-Yu Chiu
電子信箱 697430410@s97.tku.edu.tw
學號 697430410
學位類別 碩士
語文別 英文
口試日期 2010-07-19
論文頁數 70頁
口試委員 指導教授-宛 同
委員-劉登
委員-潘大知
中文關鍵字 風力發電  二相流  空氣動力分析  MRF  翼尖小翼 
英文關鍵字 Wind turbine,  Winglet  Two phase flow  Aerodynamic analysis  MRF 
學科別分類 學科別應用科學航空太空
中文摘要 有鑑於地球環境日益惡化,科學家紛紛開始著手研究較環保的替代能源,風力發電因而開始蓬勃發展。藉由風力驅動葉片來產生電能,除了其乾淨的特點之外,現今的技術發展成熟,已經可以提供大量且穩定的電力。本論文以NREL Phase VI 風力機為原型,做初步的模擬驗證,和實驗值比對亦獲得良好的結果。為了進一步增加風力發電的發電效率,本研究對葉片外型加上翼尖小翼,期盼能減少翼尖產生之誘導阻力,進而提升風力發電的輸出功率。近年來,計算流體力學廣泛應用於工程分析中,故本篇研究亦利用計算流體力學來分析加裝翼尖小翼之水平軸風力機性能,同時,考量到台灣地處季風氣候,炎熱多雨,因此,也針對大雨條件下之風力機性能利用多相流方法進行模擬分析。

英文摘要 As wind turbine continues to grow larger, problems associated with aerodynamics will become more critical. Thus, the wind energy technical research community has begun to seriously consider the aerodynamic control methodology. The power efficiency of a wind turbine is the index to show its capability of power generating.
To improve the wind turbine efficiency, some special inventions are created. In recent years, the experience of benefit from the winglet on aircraft makes engineers to put the device on wind turbine blades to improve the efficiency of power generating. Also, today the weather hazards and its impacts have been researched for many years in areas such as aviation. Thus rain effect in this work is investigated and is the main focus of this thesis. The heavy rain condition is validated through large numbers of water particle. How the rain can affect the performance of wind turbine is still a problem. Besides comparison between regular and wingleted turbine blade, we also analyze the performance of wingleted turbine with rain and no-rain conditions through numerical method.
Therefore, the present research tries to apply CFD (Computational Fluid Dynamics) technology in order to simulate the behavior of turbine blades with winglet. As the development of CFD commercial code, such like FLUENT, and CFD series, all of these can offer the fully modeling capability and good reliability. In this work FLUENT 6.3.2 is used to simulate flow of three bladed wind turbines, and both the pressure coefficient and torque coefficient are solved. Our results show that about 6 percent performance increase for a wingleted wind turbine and heavy rain situation can also enhance the thrust coefficient of our investigated wind turbine by a few percent. The research finding created here may represent a huge potential power gain if future wind turbine configuration and construction site are properly designed and chosen.
論文目次 Contents
CONTENTS .......................................................................................... IV
LIST OF FIGURES ................................................................................ V
LIST OF TABLES .............................................................................. VIII
NOMENCLATURE ............................................................................... IX
CHAPTER 1 INTRODUCTION.............................................................. 1
CHAPTER 2 RESEARCH BACKGROUND .......................................... 6
2.1 Characteristics ............................................................................ 6
2.2 Analysis with Blade Momentum Theory .................................. 14
2.3 Weather Factor ......................................................................... 18
CHAPTER 3 EFFECT OF WINGLET .................................................. 23
CHAPTER 4 VERIFICATION .............................................................. 27
4.1 Numerical Model ..................................................................... 27
4.2 Blade Geometry ....................................................................... 33
4.3 Verification ............................................................................... 38
CHAPTER 5 RESULTS AND DISCUSSIONS ..................................... 52
5.1 Discrete Phase Model ............................................................... 52
5.2 No Rain Condition ................................................................... 53
5.3 Heavy Rain Condition .............................................................. 60
CHAPTER 6 CONCLUSIONS .............................................................. 65
REFERENCES ...................................................................................... 68

List of Figures

FIGURE 1. TWO CLASSIC TYPES OF WIND TURBINE 1
FIGURE 2. PRINCIPLE OF WIND TURBINE AERODYNAMIC LIFTS 7
FIGURE 3. CHANGES OF SIZE AND OUTPUT POWER WITH TIME. 9
FIGURE 4. FUNDAMENTAL AERODYNAMICS OF HAWT 13
FIGURE 5. WAKE BEHIND THE ROTOR 13
FIGURE 6. CONTROL VOLUME FOR ACTUATOR DISK ANALYSIS 14
FIGURE 7. DIFFERENT KIND OF WT'S CP DISTRIBUTION 16
FIGURE 8. ICING CONDITIONS CORRESPONDING TO THE FOUR RIMES ICE PROFILES (RL, R2, R3, AND R4) . 19
FIGURE 9. EFFECT OF TIP VORTEX ON THE AIRCRAFT 23
FIGURE 10. DIFFERENT FLOW FIELDS BETWEEN WINGLET AND NO-WINGLET 24
FIGURE 11. DEFINITION OF KEY PARAMETERS DESCRIBING THE WINGLET . 25
FIGURE 12. MOVING REFERENCE FRAME (MRF) 29
FIGURE 13. S809 AIRFOIL 34
FIGURE 14. TWIST DISTRIBUTIONS ON TURBINE BLADE 34
FIGURE 15. TWISTED BLADE WITH S809 AIRFOIL SECTION 36
FIGURE 16. THE MODIFIED BLADE WITH WINGLET 36
FIGURE 17. WINGLET WITH NACA0012 AIRFOIL IS PERPENDICULAR TOWARD THE SUCTION SIDE 37
FIGURE 18. THE WINGLET HAS A TWIST ANGLE AOT=4∘ 37
FIGURE 19. THE S809 AIRFOIL IN C-TYPE GRID 39
FIGURE 20. NEAR WALL REGION 40
FIGURE 21. CP DISTRIBUTION ON S809 AIRFOIL AT AOA=0∘ 41
FIGURE 22. CP DISTRIBUTION ON S809 AIRFOIL AT AOA=1.02∘ 42
FIGURE 23. CP DISTRIBUTION ON S809 AIRFOIL AT AOA=5.13∘ 42
FIGURE 24. TETRAHEDRAL GRIDS FOR 3-D VERIFICATION 45
FIGURE 25. GRIDS NEAR BLADE SURFACE 45
FIGURE 26. CP DISTRIBUTION OF 30% STATION 46
FIGURE 27. CP DISTRIBUTION OF 46.6% STATION 47
FIGURE 28. CP DISTRIBUTION OF 63.3% STATION 47
FIGURE 29. CP DISTRIBUTION OF 80% STATION 48
FIGURE 30. CP DISTRIBUTION OF 95% STATION 48
FIGURE 31. VELOCITY FIELD AND (A)~(E) REPRESENT THE SPANWISE STATION AT 30%, 46.6%, 63.3%, 80% AND 95% SPAN LENGTH 50
FIGURE 32. GRIDS AROUND THE WINGLET 55
FIGURE 33. 80% SPAN STATION 56
FIGURE 34. 95% SPAN STATION 57
FIGURE 35. 108% SPAN STATION 57
FIGURE 36. GAUGE PRESSURE NEAR WING TIP 58
FIGURE 37. GAUGE PRESSURE NEAR WINGLET 58
FIGURE 38. THE VELOCITY FIELD AT WINGLET WITH NACA0012 58
FIGURE 39. GAUGE PRESSURE OF NORMAL CASE, THE LEFT IS PRESSURE SIDE AND RIGHT IS SUCTION SIDE. 59
FIGURE 40. GAUGE PRESSURE OF WINGLETED CASE, THE LEFT IS PRESSURE SIDE AND RIGHT IS SUCTION SIDE. 59
FIGURE 41. 30% SPAN STATION 62
FIGURE 42. 46.6% SPAN STATION 62
FIGURE 43. 63.3% SPAN STATION 63
FIGURE 44. 80% SPAN STATION 63
FIGURE 45. 95% SPAN STATION 64
FIGURE 46. 108% SPAN STATION 64

List of Tables

TABLE 1. ROUGHLY ESTIMATED PERFORMANCE OF HAWT 5
TABLE 2. DETAILS OF DEFFERENT WINGLET 26
TABLE 3. CHANGES OF POWER COEFFICIENT & THRUST WITH DIFFERENT WINGLET 26
TABLE 4. BLADE CHORD AND TWIST DISTRIBUTIONS 35
TABLE 5. COMPARISONS OF THE CL & CD AT (A) 0∘, (B) 1.02∘, (C) 5.13∘ ANGLE OF ATTACK FOR S809 AIRFOIL 40
TABLE 6. COMPARISON OF THE CFD RESULTS WITH EXPERIMENTAL DATA. 49
TABLE 7. COMPARISON OF THE CFD RESULTS WITH NORMAL AND WINGLETED WIND TURBINE. 56
TABLE 8. COMPARISON OF THE WIND TURBINE CFD RESULTS WITH NO RAIN AND HEAVY RAIN SITUATIONS. 61



參考文獻 References
[1] Wind Turbine Zone; URL: http://windturbinezone.blogspot.com
[2] Science/Environment Program, Wind Power; URL: http://www.bbc.co.uk/northernireland/schools/4_11/today/science/spr2000/pr02.shtml
[3]How Wind Power Works available online; URL: http://science.howstuffworks.com/wind-power5.htm
[4] Basic Aerodynamic Operating Principles of Wind Turbines, AWEA (American Wind Energy Association).
[5]Treehugger;URL:http://www.treehugger.com/files/2007/04/worlds_lagest_6.php
[6] Schreck, S. and Robinson, M., “Wind Turbine Blade Flow Fields And Prospects For Active Aerodynamic Control,” NREL/CP-500-41606, Aug. 2007. Golden, CO: National Renewable Energy Laboratory.
[7] Vermeera , L. J., Sørensen, J. N., and Crespo, A., “Wind Turbine Wake Aerodynamics,” Progress in Aerospace Sciences, Vol. 39, 2003, pp.467-510.
[8] Jonkman, J. M., “Modeling of the UAE Wind Turbine for Refinement of FAST_AD,” NREL/TP-500-34755, Dec. 2003. Golden, CO: National Renewable Energy Laboratory.
[9] “Wind Technology Discussion,” 2007. Neo-Aerodynamic Ltd Company. URL: http://www.neo-aerodynamic.com/WindTech.html
[10] Hartwanger, D. and Horvat, A., “3D Modeling of A Wind Turbine Using CFD”, NAFEMS Conference, 2008, United Kingdom.
[11] Alternate Energy And Life-Styles; URL: http://www.freewebs.com/acselectronics/altenergy2.html
[12] Burton, T. and Sharpe, D., “Wind Energy Handbook,” Feb. 2002.
[13] Jasinski, J., Noe, C., Selig, S., and Bragg, B., “Wind Turbine Performance under Icing Conditions,” AIAA, Aerospace Sciences Meeting & Exhibit, 35th, Reno, NV, Jan. 6-9, 1997.
[14] Hastings, E. C. and Manuel, G. S., “Scale-Model Test of Airfoils in Simulated Heavy Rain”, J. of Aircraft, Vol. 2, No. 6, 1985.
[15] “NASA Will Study Heavy Rain Effect on Wing Aerodynamics”, Aviation Week & Space Technology, Feb. 13, 1989.
[16] Thompson, B. E., and J. Jang, “Aerodynamic Efficiency of Wings in Rain”, J. of Aircraft, Vol. 33, No. 6, 1996.
[17] Tompson, B. E., Jang, J. and Dion, J. L., “Wing Performance in Moderate Rain”, J. of Aircraft, Vol. 32, No. 5, 1995.
[18] Maughmer, M. D., “About Winglet,” Soaring Magazine, 2002.
[19] Johansen, J., and Sørensen, N., “Numerical Analysis of Winglets on Wind Turbine Blades using CFD,” Risø-R-1543(EN), Risø National Laboratory, Roskilde, Feb. 2006.
[20] The user guide of FLUENT 6.3
[21] Gladish, G., “Fluid Equations In A Rotating Frame,” April 2009.
[22] Usage of Multiple Reference Frame (MRF) Feature in CFD-ACE+, available online; URL: http://www.esi-cfd.com/content/view/784
[23] CFD Online; URL: http://www.cfd-online.com
[24] Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications", AIAA Journal, Vol. 32, pp. 269-289, 1994.
[25] Giguere, P. and Selig, M. S., “Design of a Tapared and Twisted Blade for the NREL Combined Experiment Rotor,” Nrel/sr-500-26173, NREL, April 1999.
[26] Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S., and Larwood, S., “Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns”, Nrel/tp-500-29955, NREL, December 2001.
[27] Wolfe, P. and Ochs, S., “CFD Calculations of Aerodynamic Characteristic,” AIAA 97-0973, 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
[28] Sezer-Uzol, N. and Long, L. N., “3-D Time-Accurate CFD Simulations of Wind Turbine Rotor Flow Fields,” AIAA 2006-0394, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
[29] Potsdam, M. A. and Mavriplis, D. J., “Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor”, 47th AIAA Aerospace Sciences Meeting, January 2009, Orlando, Florida.
[30] Bilanin, A. J., “Scaling Laws for Testing Airfoils Under Heavy Rainfall”, J. of Aircraft, Vol. 24, No. 1, 1987.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信